What are...Galois extensions?

Or: Shuffling roots

Splitting fields

$$
X^{4}-2 \text { has roots } \pm \sqrt[4]{2}, \pm i \sqrt[4]{2}
$$

What makes $\mathbb{L}=\mathbb{Q}\left(\right.$ roots of $\left.X^{4}-2\right)$ "better" than e.g. $\mathbb{Q}(\sqrt[4]{2})$?

Symmetries of the roots

- $G=\left\langle f, g \mid f^{2}=g^{4}=(g f)^{2}=1\right\rangle \cong D_{8}$, the dihedral group of order eight
- Most of these symmetries are not visible in $\mathbb{Q}(\sqrt[4]{2}): G_{\mathbb{Q}(\sqrt[4]{2})}=\left\langle g^{2}\right\rangle \cong \mathbb{Z} / 2 \mathbb{Z}$

More symmetries of the roots?

orbit $D_{8} \cdot \sqrt[4]{2}=\{ \pm \sqrt[4]{2}, \pm i \sqrt[4]{2}\}, \quad$ fixed field $\mathbb{L}^{D_{8}}=\mathbb{Q}\left(\text { roots of } X^{4}-2\right)^{D_{8}}=\mathbb{Q}$
$-[\mathbb{L}: \mathbb{Q}]=\left[\mathbb{L}: \mathbb{L}^{D_{8}}\right] \cdot\left[\mathbb{L}^{D_{8}}: \mathbb{Q}\right]=\left|D_{8}\right| \cdot\left[\mathbb{L}^{D_{8}}: \mathbb{Q}\right]$, thus $[\mathbb{L}: \mathbb{Q}]=8=\left|D_{8}\right|$

- $[\mathbb{Q}(\sqrt[4]{2}): \mathbb{Q}]=4 \neq|\mathbb{Z} / 2 \mathbb{Z}|$

For completeness: The formal definition/statements

The following are equivalent for an algebraic field extension \mathbb{L} of \mathbb{K} :
(a) \mathbb{L} is the splitting field of a separable polynomial in $\mathbb{K}[X]$
(b) \mathbb{L} is normal and separable over \mathbb{K}
(c) $\operatorname{Aut}(\mathbb{L} / \mathbb{K})=[\mathbb{L}: \mathbb{K}]$
(d) $\mathbb{L}^{\mathrm{Aut}(\mathbb{L} / \mathbb{K})}=\mathbb{K}$

If any of these are true, \mathbb{L} is Galois over \mathbb{K}

- $G(\mathbb{L} / \mathbb{K})=\operatorname{Aut}(\mathbb{L} / \mathbb{K})$ is called the Galois group of \mathbb{L} over \mathbb{K}
- The first two conditions involve polynomials, the other the Galois group Roots and symmetries
- Every separable extension can be embedded into a Galois extension
- If \mathbb{K} is of characteristic 0 or finite, then the separability conditions always hold

Different polynomial, same Galois group

$$
f: \text { complex conjugation, } \quad g:\left\{\begin{array}{l}
\sqrt[4]{2} \mapsto i \sqrt[4]{2} \\
\text { "Rest fixed" }
\end{array}\right.
$$

- $\mathbb{Q}\left(\right.$ roots of $\left.X^{4}-2\right)=\mathbb{Q}\left(\right.$ roots of $\left.X^{8}+4 X^{6}+2 X^{4}+28 X^{2}+1\right)=\mathbb{Q}(\sqrt[4]{2}, i)$
- The orbit $D_{8} \cdot(i+\sqrt[4]{2})=$ roots of $X^{8}+4 X^{6}+2 X^{4}+28 X^{2}+1$
- The minimal polynomial id $m_{i+\sqrt[4]{2}}=X^{8}+4 X^{6}+2 X^{4}+28 X^{2}+1$

Thank you for your attention!

I hope that was of some help.

