What are...Galois extensions?

Or: Shuffling roots

Splitting fields

What makes $\mathbb{L} = \mathbb{Q}(\text{roots of } X^4 - 2)$ "better" than *e.g.* $\mathbb{Q}(\sqrt[4]{2})$?

Symmetries of the roots

G = ⟨f,g | f² = g⁴ = (gf)² = 1⟩ ≅ D₈, the dihedral group of order eight
Most of these symmetries are not visible in Q(⁴√2): G_{Q(⁴√2)} = ⟨g²⟩ ≅ Z/2Z

More symmetries of the roots?

orbit $D_8.\sqrt[4]{2} = \{\pm\sqrt[4]{2}, \pm i\sqrt[4]{2}\},$ fixed field $\mathbb{L}^{D_8} = \mathbb{Q}(\text{roots of } X^4 - 2)^{D_8} = \mathbb{Q}$

▶ $[\mathbb{L}:\mathbb{Q}] = [\mathbb{L}:\mathbb{L}^{D_8}] \cdot [\mathbb{L}^{D_8}:\mathbb{Q}] = |D_8| \cdot [\mathbb{L}^{D_8}:\mathbb{Q}], \text{ thus } [\mathbb{L}:\mathbb{Q}] = 8 = |D_8|$ ▶ $[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}] = 4 \neq |\mathbb{Z}/2\mathbb{Z}|$ The following are equivalent for an algebraic field extension $\mathbb L$ of $\mathbb K$:

- (a) ${\mathbb L}$ is the splitting field of a separable polynomial in ${\mathbb K}[X]$
- (b) ${\mathbb L}$ is normal and separable over ${\mathbb K}$
- (c) $\operatorname{Aut}(\mathbb{L}/\mathbb{K}) = [\mathbb{L} : \mathbb{K}]$

(d)
$$\mathbb{L}^{\operatorname{Aut}(\mathbb{L}/\mathbb{K})} = \mathbb{K}$$

If any of these are true, $\mathbb L$ is Galois over $\mathbb K$

▶ $G(\mathbb{L}/\mathbb{K}) = \operatorname{Aut}(\mathbb{L}/\mathbb{K})$ is called the Galois group of \mathbb{L} over \mathbb{K}

 The first two conditions involve polynomials, the other the Galois group Roots and symmetries

- ► Every separable extension can be embedded into a Galois extension
- \blacktriangleright If $\mathbb K$ is of characteristic 0 or finite, then the separability conditions always hold

Different polynomial, same Galois group

• $\mathbb{Q}(\text{roots of } X^4 - 2) = \mathbb{Q}(\text{roots of } X^8 + 4X^6 + 2X^4 + 28X^2 + 1) = \mathbb{Q}(\sqrt[4]{2}, i)$

- The orbit $D_8.(i + \sqrt[4]{2}) = \text{roots of } X^8 + 4X^6 + 2X^4 + 28X^2 + 1$
- ▶ The minimal polynomial id $m_{i+\sqrt[4]{2}} = X^8 + 4X^6 + 2X^4 + 28X^2 + 1$

Thank you for your attention!

I hope that was of some help.