What are...group actions on fields?

Or: The beginning of Galois theory

Groups in the wild

Groups naturally arise as automorphisms a.k.a. symmetries of objects, e.g.:

- Symmetry groups of the platonic solids Dice!

- Roots of polynomials also have certain symmetries

$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \subset$| $\bullet-\sqrt{2}+i$ | $\sqrt{2}+i$ |
| :--- | :--- |
| | $\bullet-\sqrt{2}-i$ |
| | |
| | |

Symmetries and field extensions

$$
\begin{array}{r}
\bullet-\sqrt{2}+i \\
\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \subset \\
\bullet-\sqrt{2}-i \\
f:\left\{\begin{array}{c|}
\sqrt{2}+i \\
i \mapsto-i \\
\mathbb{Q} \text { fixed }
\end{array} \quad g:\left\{\begin{array}{c}
\sqrt{2} \mapsto \sqrt{2} \\
i \mapsto-i \\
\mathbb{Q} \text { fixed }
\end{array}\right.\right.
\end{array}
$$

- f and g are automorphisms of $\mathbb{Q}(\sqrt{2}, i)=\mathbb{Q}(\sqrt{2}+i)$, both fix \mathbb{Q}
- The minimal polynomial of $\sqrt{2}+i$ is of degree $4=|\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}|$

A badly behaved example

- f is not an automorphisms of $\mathbb{Q}\left(\zeta_{5}\right)$ and f does not fix \mathbb{Q}
- The minimal polynomial of ζ_{5} is of degree 4 , not $5=|\mathbb{Z} / 5 \mathbb{Z}|$
(a) An automorphism $f \in \operatorname{Aut}(\mathbb{L})$ is a field isomorphism $\mathbb{L} \rightarrow \mathbb{L}$ A symmetry
(b) $\operatorname{Aut}(\mathbb{L})$ is a group
(c) For a subgroup $G \subset \operatorname{Aut}(\mathbb{L})$ we have the fixed (sub)field

$$
\mathbb{L}^{G}=\{x \in \mathbb{L} \mid f(x)=x \forall f \in G\} \subset \mathbb{L}
$$

(d) The orbit of $x \in \mathbb{L}$ is

$$
G . x=\{f(x) \mid f \in G\}
$$

$$
\text { Let } \mathbb{K}=\mathbb{L}^{G} \text { for } G \subset \operatorname{Aut}(\mathbb{L}) \text { finite }
$$

- If $G \cdot x=\left\{x=x_{1}, \ldots, x_{r}\right\}$, then $[\mathbb{K}(x): \mathbb{K}]=r$
- $[\mathbb{K}(x): \mathbb{K}]$ divides $|G|$
- The minimal polynomial is

$$
m_{x}=\left(X-x_{1}\right) \cdot \ldots \cdot\left(X-x_{r}\right)
$$

- $[\mathbb{L}: \mathbb{K}]=|G|$

Back to the fifth root of unity ζ_{5}

- f is an automorphisms of $\mathbb{Q}\left(\zeta_{5}\right)$ and f does fix \mathbb{Q}
- The minimal polynomial of ζ_{5} is

$$
m_{\zeta_{5}}=\left(X-\zeta_{5}\right)\left(X-\zeta_{5}^{2}\right)\left(X-\zeta_{5}^{3}\right)\left(X-\zeta_{5}^{4}\right)
$$

Thank you for your attention!

I hope that was of some help.

