What are...group actions on fields?

Or: The beginning of Galois theory

Groups in the wild

Groups naturally arise as automorphismsa.k.a. symmetriesof objects, e.g.:► Symmetry groups of the platonic solidsDice!

$$S_4 \subset \mathcal{N}_4$$
 $S_4 \times \mathbb{Z}/2\mathbb{Z} \subset \begin{bmatrix} 6 \\ 2 \end{bmatrix} \xrightarrow{8} S A_5 \times \mathbb{Z}/2\mathbb{Z} \subset \begin{bmatrix} 12 \\ 2 & 6 \end{bmatrix}$

▶ Roots of polynomials also have certain symmetries

Question. What are the symmetry groups of fields ?

- ▶ *f* and *g* are automorphisms of $\mathbb{Q}(\sqrt{2}, i) = \mathbb{Q}(\sqrt{2} + i)$, both fix \mathbb{Q}
- ► The minimal polynomial of $\sqrt{2} + i$ is of degree $4 = |\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}|$

A badly behaved example

▶ f is not an automorphisms of $\mathbb{Q}(\zeta_5)$ and f does not fix \mathbb{Q}

▶ The minimal polynomial of ζ_5 is of degree 4, not $5 = |\mathbb{Z}/5\mathbb{Z}|$

- (a) An automorphism $f \in Aut(\mathbb{L})$ is a field isomorphism $\mathbb{L} \to \mathbb{L}$ A symmetry
- (b) $Aut(\mathbb{L})$ is a group
- (c) For a subgroup ${\it G} \subset {\rm Aut}({\mathbb L})$ we have the fixed (sub)field

$$\mathbb{L}^{G} = \{x \in \mathbb{L} \mid f(x) = x \,\forall f \in G\} \subset \mathbb{L}$$

(d) The orbit of $x \in \mathbb{L}$ is

$$G.x = \{f(x) \mid f \in G\}$$

Let $\mathbb{K} = \mathbb{L}^{G}$ for $G \subset Aut(\mathbb{L})$ finite

- ▶ If $G.x = \{x = x_1, ..., x_r\}$, then $[\mathbb{K}(x) : \mathbb{K}] = r$
- ▶ $[\mathbb{K}(x) : \mathbb{K}]$ divides |G|
- ► The minimal polynomial is

$$m_x = (X - x_1) \cdot \ldots \cdot (X - x_r)$$

 $\blacktriangleright \ [\mathbb{L}:\mathbb{K}] = |G|$

Back to the fifth root of unity ζ_5

- f is an automorphisms of $\mathbb{Q}(\zeta_5)$ and f does fix \mathbb{Q}
- ▶ The minimal polynomial of ζ_5 is

$$m_{\zeta_5} = (X - \zeta_5)(X - \zeta_5^2)(X - \zeta_5^3)(X - \zeta_5^4)$$

Thank you for your attention!

I hope that was of some help.