What are...normal and separable extensions?

Or: Linear factors matter

Groups act on roots of polynomials How is this reflected in field extensions?

An ill-behaved example

 \blacktriangleright $X^3 - 2$ does not split in $\mathbb{Q}(\sqrt[3]{2})$

A well-behaved example

 \triangleright The symmetric group S_3 permutes the roots of f:

 $\zeta \leftrightarrows \zeta^2$, $\zeta\sqrt[3]{2}$ $\sqrt[3]{2}$ $\begin{matrix} \downarrow \\ \zeta^2 \sqrt[3]{2} \end{matrix}$

- Finity information is **present** in $\mathbb{Q}(\zeta + \sqrt[3]{2}) = \mathbb{Q}(\zeta, \sqrt[3]{2})$
- If does split in $\mathbb{Q}(\zeta + \sqrt[3]{2})$

An algebraic field extension $K \subset \mathbb{L}$ is normal over K if

every irreducible $f \in K[X]$ with a root in L splits

An algebraic field extension $\mathbb{K} \subset \mathbb{L}$ is separable over \mathbb{K} if for all $x \in \mathbb{L}$

the minimal polynomials $m_x \in \mathbb{K}[X]$ have $\partial_X m_x \neq 0$

- Minimal normal extensions exist and are unique Existence and uniqueness
- \triangleright Every algebraic extension of a field of characteristic zero or a finite field is separable Morally, separable is a non-condition

For $f = a_n X^n + ... + a_0$ define $\partial_X f = na_n X^{n-1} + ... + a_0$

 \triangleright ∂_X satisfies linearity:

$$
\partial_X(a\cdot f+b\cdot g)=a\cdot\partial_Xf+b\cdot\partial_Xg
$$

 \triangleright ∂_X satisfies the product rule:

$$
\partial_X(fg) = \partial_X(f)g + f\partial_X(g)
$$

► For irreducible $f \in \mathbb{K}[X]$ we have

 $(\partial_X f \neq 0) \Leftrightarrow f$ has no multiple roots

Thank you for your attention!

I hope that was of some help.