What are...minimal polynomials?

Or: Minimal relations

Minimal relations with coefficients in a fixed field \mathbb{K}

Relations satisfied by $z=\sqrt{2}+\sqrt[3]{3}$:

- In $\mathbb{Q}(\sqrt{2}+\sqrt[3]{3})$ we have that

$$
z-(\sqrt{2}+\sqrt[3]{3})=0
$$

- $\ln \mathbb{Q}(\sqrt{2})$ we have that

$$
z^{3}-3 \sqrt{2} \cdot z^{2}+6 \cdot z-(2 \sqrt{2}+3)=0
$$

- In $\mathbb{Q}(\sqrt[3]{3})$ we have that

$$
z^{2}-2 \sqrt[3]{3} \cdot z-(2-\sqrt[3]{3})=0
$$

- In \mathbb{Q} we have that

$$
\begin{gathered}
z^{6}-6 \cdot z^{4}-6 \cdot z^{3}+12 \cdot z^{2}-36 \cdot z+1=0 \\
\text { Are these minimal ? }
\end{gathered}
$$

Is this well-posed?

- Polynomials annihilating z form an ideal $I_{z} \subset \mathbb{K}[X]$
- $\mathbb{K}[X]$ is a PID if \mathbb{K} is a field
- Hence, there exists $m_{z} \in \mathbb{K}[X]$ with

$$
I_{z}=\left(m_{z}\right)
$$

- m_{z} is unique up to scaling

Thus, m_{z} is the minimal relation in the sense that it is the generator of the annihilating ideal I_{z} :

The question "What is the minimal relations satisfied by z ?" is well-posed

How to prove minimality?

- $X^{2}-2 \in \mathbb{Q}[X]$ is irreducible, so $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$ Degree 2
- $X^{3}-3 \in \mathbb{Q}[X]$ is irreducible, so $[\mathbb{Q}(\sqrt[3]{3}): \mathbb{Q}]=2$ Degree 3
- By the tower law $[\mathbb{Q}(\sqrt{2}+\sqrt[3]{3}): \mathbb{Q}]=6$ Degree 6
- Thus, $[\mathbb{Q}(\sqrt{2}+\sqrt[3]{3}): \mathbb{Q}(\sqrt{2})]=3$ and $[\mathbb{Q}(\sqrt{2}+\sqrt[3]{3}): \mathbb{Q}(\sqrt[3]{3})]=2$

Degrees 3 and 2

In total, the guessed minimal relations are minimal

For completeness: The formal definition/statements

Fields $\mathbb{K} \subset \mathbb{L}$, polynomial ring $\mathbb{K}[X]$, evaluation morphism

$$
\operatorname{eval}_{z}: \mathbb{K}[X] \rightarrow \mathbb{L}, \quad p(X) \mapsto p(z)
$$

The minimal polynomial m_{z} of $z \in \mathbb{L}$ is defined via $\left(m_{z}\right)=\operatorname{ker}\left(\right.$ eval $\left._{z}\right)+$ monic

- This is well-defined up to scaling since $\mathbb{K}[X]$ is a PID Existence
- Is $p \in \mathbb{K}[X]$ irreducible with $p(z)=0$, then $p=m_{z}$ up to scaling Uniqueness
- If z is algebraic, then eval ${ }_{z}$ descents to

$$
\overline{\mathrm{eval}}_{z}: \mathbb{K}[X] /\left(m_{z}\right) \stackrel{\cong}{\leftrightarrows} \mathbb{K}(z)
$$

and $1, \ldots, z^{\operatorname{deg}\left(m_{z}\right)-1}$ is a basis of $\mathbb{K}(z)$, so that $[\mathbb{K}(z): \mathbb{K}]=\operatorname{deg}\left(m_{z}\right)$
This is why we care

Computer talk

MinimalPolynomial[Root[\#^2-2 \& 1], X]
$-2+\mathrm{X}^{2}$
MinimalPolynomial[Root[\#^3-3\&,1], Y]
$-3+Y^{3}$
MinimalPolynomial[Root[\# ^ 2-2 \& 1] + Root[\# ^ 3-3 \& 1], Z]

$$
1-36 Z+12 Z^{2}-6 z^{3}-6 z^{4}+z^{6}
$$

To find the minimal polynomial of $z=x+y$ for $m_{x}(X)=a_{m} X^{m}+\ldots+a_{0}=0$ and $m_{y}(Y)=b_{n} Y^{n}+\ldots+b_{0}=0$ minimal do:

- Compute $m_{x}(Z-Y)$ Breakfast
- Compute the resultant of $m_{x}(Z-Y)$ and $m_{y}(Y)$ Linear algebra

$$
\text { e.g. } \operatorname{Res}_{m_{x}(Z-Y), m_{y}(Y)}(Z)
$$

- Find smallest factor of $\operatorname{Res}_{m_{x}(Z-Y), m_{y}(Y)}(Z)$ Might be tricky

Thank you for your attention!

I hope that was of some help.

