What are...minimal polynomials?

Or: Minimal relations

Relations satisfied by
$$z = \sqrt{2} + \sqrt[3]{3}$$
:

▶ In $\mathbb{Q}(\sqrt{2} + \sqrt[3]{3})$ we have that

$$z - \left(\sqrt{2} + \sqrt[3]{3}\right) = 0$$

▶ In $\mathbb{Q}(\sqrt{2})$ we have that

$$z^3 - 3\sqrt{2} \cdot z^2 + 6 \cdot z - (2\sqrt{2} + 3) = 0$$

▶ In $\mathbb{Q}(\sqrt[3]{3})$ we have that

$$z^2 - 2\sqrt[3]{3} \cdot z - (2 - \sqrt[3]{3}) = 0$$

 \blacktriangleright In ${\mathbb Q}$ we have that

$$z^{6} - 6 \cdot z^{4} - 6 \cdot z^{3} + 12 \cdot z^{2} - 36 \cdot z + 1 = 0$$

Are these minimal ?

- ▶ Polynomials annihilating *z* form an ideal $I_z \subset \mathbb{K}[X]$
- ▶ $\mathbb{K}[X]$ is a PID if \mathbb{K} is a field
- ▶ Hence, there exists $m_z \in \mathbb{K}[X]$ with

 $I_z = (m_z)$

 \blacktriangleright *m_z* is unique up to scaling

Thus, m_z is the **minimal** relation in the sense that it is the generator of the annihilating ideal I_z :

The question "What is the minimal relations satisfied by z?" is well-posed

How to prove minimality?

• $X^2 - 2 \in \mathbb{Q}[X]$ is irreducible, so $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$ Degree 2

- ► $X^3 3 \in \mathbb{Q}[X]$ is irreducible, so $[\mathbb{Q}(\sqrt[3]{3}) : \mathbb{Q}] = 2$ Degree 3
- ▶ By the tower law $[\mathbb{Q}(\sqrt{2} + \sqrt[3]{3}) : \mathbb{Q}] = 6$ Degree 6
- ► Thus, $[\mathbb{Q}(\sqrt{2} + \sqrt[3]{3}) : \mathbb{Q}(\sqrt{2})] = 3$ and $[\mathbb{Q}(\sqrt{2} + \sqrt[3]{3}) : \mathbb{Q}(\sqrt[3]{3})] = 2$ Degrees 3 and 2

In total, the guessed minimal relations are minimal

Fields $\mathbb{K} \subset \mathbb{L}$, polynomial ring $\mathbb{K}[X]$, evaluation morphism

$$eval_z \colon \mathbb{K}[X] \to \mathbb{L}, \quad p(X) \mapsto p(z)$$

The minimal polynomial m_z of $z \in \mathbb{L}$ is defined via $(m_z) = \text{ker}(\text{eval}_z) + \text{monic}$

- ▶ This is well-defined up to scaling since $\mathbb{K}[X]$ is a PID Existence
- ▶ Is $p \in \mathbb{K}[X]$ irreducible with p(z) = 0, then $p = m_z$ up to scaling Uniqueness
- If z is algebraic, then $eval_z$ descents to

$$\overline{\operatorname{eval}}_z \colon \mathbb{K}[X]/(m_z) \xrightarrow{\cong} \mathbb{K}(z)$$

and $1, ..., z^{\deg(m_z)-1}$ is a basis of $\mathbb{K}(z)$, so that $[\mathbb{K}(z) : \mathbb{K}] = \deg(m_z)$ This is why we care MinimalPolynomial[Root[$\ddagger ^2 - 2 \&, 1$], X] -2 + X² MinimalPolynomial[Root[$\ddagger ^3 - 3 \&, 1$], Y] -3 + Y³ MinimalPolynomial[Root[$\ddagger ^2 - 2 \&, 1$] + Root[$\ddagger ^3 - 3 \&, 1$], Z] 1 - 36 Z + 12 Z² - 6 Z³ - 6 Z⁴ + Z⁶

To find the minimal polynomial of z = x + y for $m_x(X) = a_m X^m + ... + a_0 = 0$ and $m_y(Y) = b_n Y^n + ... + b_0 = 0$ minimal do:

- ► Compute $m_x(Z Y)$ Breakfast
- Compute the resultant of $m_x(Z Y)$ and $m_y(Y)$ Linear algebra

e.g.
$$\operatorname{Res}_{m_x(Z-Y),m_y(Y)}(Z)$$

▶ Find smallest factor of $\text{Res}_{m_x(Z-Y),m_y(Y)}(Z)$ Might be tricky

Thank you for your attention!

I hope that was of some help.