What are...field extensions?

Or: Adjoining roots

The theory of field extensions asks for a tool box to study this zoo

Question. What is the minimal relation $\zeta\sqrt{2}$ satisfies in \mathbb{Q} ?

- ▶ $\sqrt{2}$ satisfies a degree 2 relation $(\sqrt{2})^2 2 = 0$ in \mathbb{Q}
- ▶ ζ satisfies a degree 2 relation $\zeta^2 + \zeta + 1 = 0$ in \mathbb{Q}

 $\mathbb{Q}(\sqrt[4]{2})$ is of dimension 4 over \mathbb{Q} :

- ▶ 1, $\sqrt[4]{2}$, $(\sqrt[4]{2})^2$ and $(\sqrt[4]{2})^3$ are \mathbb{Q} -linear independent
- ▶ $(\sqrt[4]{2})^4$ satisfies a relation in \mathbb{Q}

 $\mathbb{Q}(\sqrt[4]{2})$ is of dimension 2 over $\mathbb{Q}(\sqrt{2})$:

- $\blacktriangleright~1$ and $\sqrt[4]{2}$ are $\mathbb{Q}(\sqrt{2})\text{-linear}$ independent
- $(\sqrt[4]{2})^2$ satisfies a relation in $\mathbb{Q}(\sqrt{2})$

 $\mathbb{Q}(\sqrt[4]{2})$ $4 \begin{pmatrix} |2\\ \mathbb{Q}(\sqrt{2})\\ |2 \end{pmatrix}$

A field \mathbb{L} , a subfield \mathbb{K} and a subset $M \subset \mathbb{L}$

- (a) The field extension $\mathbb{K}(M)$ is the intersection of all fields containing $\mathbb{K} \cup M$ Adjoining roots
- (b) The degree $[\mathbb{K}(M) : \mathbb{K}]$ is the dimension of $\mathbb{K}(M)$ as a \mathbb{K} vector space
 - ▶ $[\mathbb{K}(M) : \mathbb{K}] < \infty$ is algebraic, $[\mathbb{K}(M) : \mathbb{K}] = \infty$ is transcendental
 - $\mathbb{K}(u) = \mathbb{K}(\{u\})$ are called simple field extensions
 - ▶ Bases of simple field extensions are given by $1, u, u^2, ..., u^{d-1}$
 - ▶ (If $f \in \mathbb{K}[X]$ is an irreducible polynomial with f(u) = 0, then $[\mathbb{K}(u) : \mathbb{K}] = \text{degree of } f) \Rightarrow (u \text{ satisfies the relation determined by } f)$
 - $\blacktriangleright \ [\mathbb{M} : \mathbb{K}] = [\mathbb{M} : \mathbb{L}] \cdot [\mathbb{L} : \mathbb{K}]$ Tower law

(a) $\mathbb{Q}(\zeta\sqrt{2})$ is at most of degree 6 $(\zeta\sqrt{2})^6 = 8 \cdot 1$ (b) $\mathbb{Q}(\zeta\sqrt{2})$ contains $\mathbb{Q}(\zeta)$ and $\mathbb{Q}(\sqrt{2})$ (c) The degree of $\mathbb{Q}(\zeta\sqrt{2})$ is divisible by 2

This is not obvious when looking at:

Thank you for your attention!

I hope that was of some help.