What are...field extensions?

Or: Adjoining roots

A zoo between \mathbb{Q} and \mathbb{C}

Question. What are the fields between \mathbb{Q} and \mathbb{C} ?

- $\mathbb{Q}(i)$ is the minimal field containing \mathbb{Q} and i
- $\mathbb{Q}(\sqrt{2})$ is the minimal field containing \mathbb{Q} and $\sqrt{2}$

The theory of field extensions asks for a tool box to study this zoo

Minimal relations

Question. What is the minimal relation $\zeta \sqrt{2}$ satisfies in \mathbb{Q} ?

$(\zeta \sqrt{2})^{0}$	$(\zeta \sqrt{2})^{1}$	$(\zeta \sqrt{2})^{2}$	$(\zeta \sqrt{2})^{3}$	$(\zeta \sqrt{2})^{4}$	$(\zeta \sqrt{2})^{5}$	$(\zeta \sqrt{2})^{6}$
1	$\zeta \sqrt{2}$	$2 \cdot \zeta^{2}$	$2 \cdot \sqrt{2}$	$4 \cdot \zeta$	$4 \cdot \zeta^{2} \sqrt{2}$	$8 \cdot 1$

- $\sqrt{2}$ satisfies a degree 2 relation $(\sqrt{2})^{2}-2=0$ in \mathbb{Q}
- ζ satisfies a degree 2 relation $\zeta^{2}+\zeta+1=0$ in \mathbb{Q}

Multiplicative!?

$\mathbb{Q}(\sqrt[4]{2})$ is of dimension 4 over \mathbb{Q} :

- $1, \sqrt[4]{2},(\sqrt[4]{2})^{2}$ and $(\sqrt[4]{2})^{3}$ are \mathbb{Q}-linear independent
- $(\sqrt[4]{2})^{4}$ satisfies a relation in \mathbb{Q}
$\mathbb{Q}(\sqrt[4]{2})$ is of dimension 2 over $\mathbb{Q}(\sqrt{2})$:
- 1 and $\sqrt[4]{2}$ are $\mathbb{Q}(\sqrt{2})$-linear independent
- $(\sqrt[4]{2})^{2}$ satisfies a relation in $\mathbb{Q}(\sqrt{2})$

For completeness: The formal definition/statements

A field \mathbb{L}, a subfield \mathbb{K} and a subset $M \subset \mathbb{L}$
(a) The field extension $\mathbb{K}(M)$ is the intersection of all fields containing $\mathbb{K} \cup M$ Adjoining roots
(b) The degree $[\mathbb{K}(M): \mathbb{K}]$ is the dimension of $\mathbb{K}(M)$ as a \mathbb{K} vector space

- $[\mathbb{K}(M): \mathbb{K}]<\infty$ is algebraic,$[\mathbb{K}(M): \mathbb{K}]=\infty$ is transcendental
- $\mathbb{K}(u)=\mathbb{K}(\{u\})$ are called simple field extensions
- Bases of simple field extensions are given by $1, u, u^{2}, \ldots, u^{d-1}$
- (If $f \in \mathbb{K}[X]$ is an irreducible polynomial with $f(u)=0$, then $[\mathbb{K}(u): \mathbb{K}]=$ degree of $f) \Rightarrow(u$ satisfies the relation determined by $f)$
- $[\mathbb{M}: \mathbb{K}]=[\mathbb{M}: \mathbb{L}] \cdot[\mathbb{L}: \mathbb{K}]$ Tower law

The machinery gets going

(a) $\mathbb{Q}(\zeta \sqrt{2})$ is at most of degree $6(\zeta \sqrt{2})^{6}=8 \cdot 1$
(b) $\mathbb{Q}(\zeta \sqrt{2})$ contains $\mathbb{Q}(\zeta)$ and $\mathbb{Q}(\sqrt{2})$
(c) The degree of $\mathbb{Q}(\zeta \sqrt{2})$ is divisible by 2

This is not obvious when looking at:

$(\zeta \sqrt{2})^{0}$	$(\zeta \sqrt{2})^{1}$	$(\zeta \sqrt{2})^{2}$	$(\zeta \sqrt{2})^{3}$	$(\zeta \sqrt{2})^{4}$	$(\zeta \sqrt{2})^{5}$	$(\zeta \sqrt{2})^{6}$
1	$\zeta \sqrt{2}$	$2 \cdot \zeta^{2}$	$2 \cdot \sqrt{2}$	$4 \cdot \zeta$	$4 \cdot \zeta^{2} \sqrt{2}$	$8 \cdot 1$

Thank you for your attention!

I hope that was of some help.

