What are...(finite) fields?

Or: Fields are relatively rare

Field = ring (using a suitable definition of ring) + every element $\neq 0$ is invertible

- $\blacktriangleright \ \mathbb{Z}$ is not a field, \mathbb{Q} is a field
- $\blacktriangleright \ \mathbb{Z}/4\mathbb{Z}$ is not a field, $\mathbb{Z}/3\mathbb{Z}$ is a field

World of rings

World of fields

- ► (Co)products ×, * exists
- ▶ Initial ring ℤ, terminal ring 0 exists
- ► Free rings "polynomials" exists

Similarly for groups/vector spaces/etc.

► (Co)products ×, * do not exists

- ► Initial, terminal fields do not exists
- ► Free fields do not exists

Algebraically weird!

Galois fields - finite blossoms

- ▶ Let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ Order p
- ► For $q = p^k$ let $\mathbb{F}_q = \mathbb{F}_p[X]/(f \text{ irreducible, degree } k)$ Order q
- $\blacktriangleright \mathbb{F}_q$ is a field Existence

Closing Galois fields – infinite blossoms

Fact A finite field \mathbb{K} is never algebraically closed **Proof** $1 + \prod_{a \text{ elements of } \mathbb{K}} (X - a)$ has no roots

The algebraic closure of \mathbb{F}_q is

$$\overline{\mathbb{F}_q} = \bigcup_k \mathbb{F}_{p^k}$$

- ▶ $\overline{\mathbb{F}_q}$ is constructed by adding roots of irreducible polynomials Existence
- ▶ $\overline{\mathbb{F}_q}$ is algebraically closed and minimal with this property Uniqueness

A field $\mathbb K$ is a set with $\ 0,1\in\mathbb K, 0\neq 1$ such that:

- (a) ${\mathbb K}$ has an addition +, ${\mathbb K}$ has a multiplication \cdot
- (b) $(\mathbb{K},+)$ is an abelian group
- (c) $(\mathbb{K} \setminus \{0\}, \cdot)$ is an abelian group Asymmetric
- (d) The two rules distribute over one another

Examples.

$$\blacktriangleright \ \mathbb{Q}, \ \overline{\mathbb{Q}}, \ \mathbb{R}, \ \overline{\mathbb{R}} \cong \mathbb{R}(\sqrt{-1}) \cong \mathbb{C}$$

- $\blacktriangleright \mathbb{F}_q, \overline{\mathbb{F}_q}$
- ▶ Finite extensions such as $\mathbb{Q}(\sqrt{2})$, infinite extensions such as $\mathbb{Q}(X)$
- ▶ p-adics Q_p

(d) Example. Take $\mathbb{Q}(X_i \mid i \in \alpha)$

Thank you for your attention!

I hope that was of some help.