What is...a (normal) subgroup?

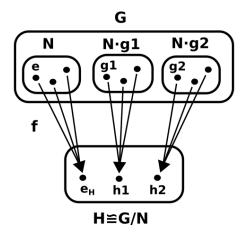
Or: Why care about the difference?

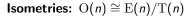
Substructures vs. quotients

	substructure	good quotients
sets	subset	congruence
vector spaces	linear subspace	linear subspace
groups	subgroup	normal subgroup
rings	subring	ideals
categories	subcategory	congruence

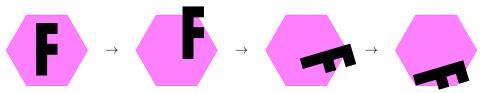
- (a) For groups substructures do not give good quotients
- (b) Substructures = subgroups Substructures
- (c) Normal subgroups ⇔ good quotients Quotients

- ► Structure preserving maps between groups = group homomorphisms
- ► Subgroups are the images of group homomorphisms Substructures
- ► Normal subgroups are the kernels of group homomorphisms **Quotients**

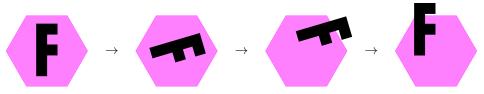




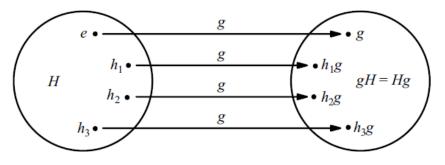
Move - then rotate - then move back is not a rotation:



Rotate - then move - then rotate back is a translation:

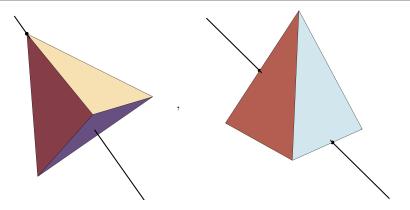


- (a) A subgroup $H \subset G$ is a subset of a group G that forms a group under the induced multiplication
- (b) A normal subgroup $N \lhd G$ is a subgroup of a group G invariant under conjugation $N = g^{-1}Ng$ (or gN = Ng) for all $g \in G$



- ▶ S_5 has 17 non-conjugate non-trivial subgroups
- ▶ S_5 has 1 non-conjugate non-trivial normal subgroups

Normal and "abnormal" subgroups in $RotSym(tetrahedron) \cong A_4$



- ▶ Four rotation axes vertex-face \Rightarrow four conjugate $\mathbb{Z}/3\mathbb{Z}$ abnormal
- \blacktriangleright Three rotation axes edge-edge \Rightarrow three conjugate $\mathbb{Z}/2\mathbb{Z}$ abnormal
- ▶ The $\mathbb{Z}/2\mathbb{Z}$ combine into $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ normal

Thank you for your attention!

I hope that was of some help.