What are...irreducible polynomials?

Or: Analogs of primes

What is special about prime numbers?

What we know is:

 $\mathbb{Z}/n\mathbb{Z}$ is a field \Leftrightarrow *n* is prime

What we want to have is:

 $\mathbb{K}[X]/(f)$ is a field $\Leftrightarrow f$ is irreducible

- ▶ $\mathbb{Q}[X]/(X^2-2) \cong \mathbb{Q}(\sqrt{2})$, the isomorphism is $X \mapsto \sqrt{2}$ Field
- ▶ $\mathbb{R}[X]/(X^2+1) \cong \mathbb{C}$, the isomorphism is $X \mapsto i$ Field
- ▶ In $\mathbb{Z}[X]/(X^2)$ the polynomial X is not invertible Not a field

Prime are irreducible

Multiplication table of $\mathbb{Z}/4\mathbb{Z}$

	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

- ▶ In \mathbb{Z} is 4 reducible $4 = 2 \cdot 2$
- ▶ Thus, $2 \cdot 2 = 0$ in $\mathbb{Z}/4\mathbb{Z}$
- \blacktriangleright We have $4\mathbb{Z} \subset 2\mathbb{Z} \subset \mathbb{Z}$
- ▶ With contrast, for n = 2 we have

$$(a \cdot b = 2)$$
 implies $(a = 2 \text{ or } b = 2 \text{ up to units})$

and $\mathbb{Z}/2\mathbb{Z}$ is a maximal ideal

Zero divisors can not be invertible:

$$(a \cdot b = 0 \text{ and } b \cdot c = 1) \text{ implies } (0 = 1)$$

- ▶ In $\mathbb{R}[X]$ is $X^2 2$ reducible $X^2 2 = (X \sqrt{2})(X + \sqrt{2})$
- Thus, $(X \sqrt{2})(X + \sqrt{2}) = 0$ in $\mathbb{R}[X]/(X^2 2)$
- We have e.g. $(X^2 2) \subset (X \sqrt{2}) \subset \mathbb{R}[X]$
- ▶ With contrast, in $\mathbb{Q}[X]$ we have

$$(a \cdot b = X^2 - 2)$$
 implies $(a = X^2 - 2$ or $b = X^2 - 2$ up to units)

and $(X^2 - 2)$ is a maximal ideal

A polynomial $f \in R[X_1, ..., X_n]$ is irreducible if $(a \cdot b = f) \Rightarrow (a = f \text{ or } b = f \text{ up to units})$

We have

$\mathbb{K}[X]/(f)$ is a field $\Leftrightarrow f$ is irreducible

- ► Irreducible polynomials are primes in polynomials
- ▶ Being irreducible depends on the underlying ring
- Figuring out whether f is irreducible is key

Examples.

- Irreducible \Rightarrow no roots in *R*; the converse is false
- $(f \in \mathbb{C}[X] \text{ is irreducible}) \Leftrightarrow (f \text{ is of degree one})$
- (f ∈ ℝ[X] is irreducible) ⇔ (f is of degree one or f = (X − a)(X − b) for a, b not real)

Theorem (Eisenstein)

For *p* prime, take a polynomial $f = a_n \cdot X^n + ... + a_0 \in \mathbb{Z}[X]$ that satisfies:

- (a) *p* divides $a_0, ..., a_{n-1}$
- (b) p does not divide a_n
- (c) p^2 does not divide a_0

Then f is irreducible in $\mathbb{Q}[X]$

► This applies to infinitely many polynomials of arbitrary degree, *e.g.*

$$X^n + p \cdot (X_{n-1} + \ldots + 1)$$

► Any cyclotomic polynomial is irreducible

$$f(X) = \frac{X^{p} - 1}{X - 1} = X^{p-1} + \dots + 1$$

because we can substitute

$$f(X+1) = \frac{(X+1)^p - 1}{X} = X^{p-1} + \binom{p}{p-1}X^{p-2} + \dots + \binom{p}{1}$$

Thank you for your attention!

I hope that was of some help.