What are...irreducible polynomials?

Or: Analogs of primes

What is special about prime numbers?

What we know is:

$\mathbb{Z} / n \mathbb{Z}$ is a field $\Leftrightarrow n$ is prime

What we want to have is:
$\mathbb{K}[X] /(f)$ is a field $\Leftrightarrow f$ is irreducible

- $\mathbb{Q}[X] /\left(X^{2}-2\right) \cong \mathbb{Q}(\sqrt{2})$, the isomorphism is $X \mapsto \sqrt{2}$ Field
- $\mathbb{R}[X] /\left(X^{2}+1\right) \cong \mathbb{C}$, the isomorphism is $X \mapsto i$ Field
- In $\mathbb{Z}[X] /\left(X^{2}\right)$ the polynomial X is not invertible Not a field

Prime are irreducible

Multiplication table of $\mathbb{Z} / 4 \mathbb{Z}$

	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

- $\operatorname{In} \mathbb{Z}$ is 4 reducible $4=2 \cdot 2$
- Thus, $2 \cdot 2=0$ in $\mathbb{Z} / 4 \mathbb{Z}$
- We have $4 \mathbb{Z} \subset 2 \mathbb{Z} \subset \mathbb{Z}$
- With contrast, for $n=2$ we have

$$
(a \cdot b=2) \text { implies }(a=2 \text { or } b=2 \text { up to units) }
$$

and $\mathbb{Z} / 2 \mathbb{Z}$ is a maximal ideal

Zero divisors and $0=1$

Zero divisors can not be invertible:

$$
(a \cdot b=0 \text { and } b \cdot c=1) \text { implies }(0=1)
$$

- $\ln \mathbb{R}[X]$ is $X^{2}-2$ reducible $X^{2}-2=(X-\sqrt{2})(X+\sqrt{2})$
- Thus, $(X-\sqrt{2})(X+\sqrt{2})=0$ in $\mathbb{R}[X] /\left(X^{2}-2\right)$
- We have e.g. $\left(X^{2}-2\right) \subset(X-\sqrt{2}) \subset \mathbb{R}[X]$
- With contrast, in $\mathbb{Q}[X]$ we have

$$
\left(a \cdot b=X^{2}-2\right) \text { implies }\left(a=X^{2}-2 \text { or } b=X^{2}-2\right. \text { up to units) }
$$

and $\left(X^{2}-2\right)$ is a maximal ideal

For completeness: The formal definition

A polynomial $f \in R\left[X_{1}, \ldots, X_{n}\right]$ is irreducible if

$$
(a \cdot b=f) \Rightarrow(a=f \text { or } b=f \text { up to units })
$$

- We have

$$
\mathbb{K}[X] /(f) \text { is a field } \Leftrightarrow f \text { is irreducible }
$$

- Irreducible polynomials are primes in polynomials
- Being irreducible depends on the underlying ring
- Figuring out whether f is irreducible is key

Examples.

- Irreducible \Rightarrow no roots in R; the converse is false
- $(f \in \mathbb{C}[X]$ is irreducible $) \Leftrightarrow$ (f is of degree one)
- $(f \in \mathbb{R}[X]$ is irreducible $) \Leftrightarrow(f$ is of degree one or $f=(X-a)(X-b)$ for a, b not real)

The rich world of field extensions of \mathbb{Q}

Theorem (Eisenstein)

For p prime, take a polynomial $f=a_{n} \cdot X^{n}+\ldots+a_{0} \in \mathbb{Z}[X]$ that satisfies:
(a) p divides a_{0}, \ldots, a_{n-1}
(b) p does not divide a_{n}
(c) p^{2} does not divide a_{0}

Then f is irreducible in $\mathbb{Q}[X]$

- This applies to infinitely many polynomials of arbitrary degree, e.g.

$$
X^{n}+p \cdot\left(X_{n-1}+\ldots+1\right)
$$

- Any cyclotomic polynomial is irreducible

$$
f(X)=\frac{X^{p}-1}{X-1}=X^{p-1}+\ldots+1
$$

because we can substitute

$$
f(X+1)=\frac{(X+1)^{p}-1}{X}=X^{p-1}+\binom{p}{p-1} X^{p-2}+\ldots+\binom{p}{1}
$$

Thank you for your attention!

I hope that was of some help.

