What is...a unique factorization domain?

Or: Primes!

Fundamental theorem of arithmetic – part 1. Factor trees exist We want that for general rings, if possible Factor trees are not unique, but...

Fundamental theorem of arithmetic – part 2. The leaves of factor trees are unique

We want that for general rings, if possible

What makes a prime a prime?

Definition 1. $p \in \mathbb{Z}$ is irreducible , that is

 $(p = ab) \Rightarrow (a \text{ is invertible or } b \text{ is invertible})$

Definition 2. $p \in \mathbb{Z}$ is prime, that is

 $(p \text{ divides } ab) \Rightarrow (p \text{ divides } a \text{ or } b)$

- ▶ In \mathbb{Z} both definitions are equivalent
- ► Definition 1. Easy to prove existence of factorizations but uniqueness is hard
- ► Definition 2. Easy to prove uniqueness of factorizations but existence is hard

An integral domain R is called a unique factorization domain (UFD) if

$$r \neq 0 \Rightarrow \exists primes \ p_k \ such \ that \ r = sp_1^{e_1}...p_n^{e_n}$$

Here s is some invertible element

Thus, factor trees exist

- (a) Such a factor tree always has unique leaves
- (b) Alternatively, one could also demand that factor trees for irreducible elements exist and have unique leaves
- (c) In a UFD we have

 $\mathsf{irreducible} \Leftrightarrow \mathsf{prime}$

Examples. Fields, \mathbb{Z} , $\mathbb{K}[X]$ for a field \mathbb{K} , $\mathbb{Z}[i]$, $\mathbb{Z}[e^{2\pi i/n}]$ for n = 1, ..., 22, the ring of integers of $\mathbb{Q}[\sqrt{-d}]$ for d = 1, 2, 3, 7, 11, 19, 43, 67, 163

- ▶ The invertible elements in $\mathbb{Z}[\sqrt{-5}]$ are ±1
- ▶ 2 is irreducible
- ▶ 3 is irreducible
- ▶ $1 + \sqrt{-5}$ is irreducible
- ▶ $1 \sqrt{-5}$ is irreducible
- ► None of these are primes!
- ► Unique factorization fails:

Thank you for your attention!

I hope that was of some help.