What is...a unique factorization domain?

Or: Primes!

Factor trees - the leaves are the primes

Fundamental theorem of arithmetic - part 1. Factor trees exist We want that for general rings, if possible

Factor trees are not unique, but...

Fundamental theorem of arithmetic - part 2. The leaves of factor trees are unique We want that for general rings, if possible

What makes a prime a prime?

$$
\begin{aligned}
& \text { Definition 1. } p \in \mathbb{Z} \text { is irreducible, that is } \\
& (p=a b) \Rightarrow(a \text { is invertible or } b \text { is invertible })
\end{aligned}
$$

$$
\begin{aligned}
& \text { Definition 2. } p \in \mathbb{Z} \text { is prime, that is } \\
& \text { (} p \text { divides } a b) \Rightarrow(p \text { divides } a \text { or } b)
\end{aligned}
$$

- $\operatorname{In} \mathbb{Z}$ both definitions are equivalent
- Definition 1. Easy to prove existence of factorizations but uniqueness is hard
- Definition 2. Easy to prove uniqueness of factorizations but existence is hard

For completeness: The formal definition

An integral domain R is called a unique factorization domain (UFD) if

$$
r \neq 0 \Rightarrow \exists \text { primes } p_{k} \text { such that } r=s p_{1}^{e_{1}} \ldots p_{n}^{e_{n}}
$$

Here s is some invertible element

Thus, factor trees exist

(a) Such a factor tree always has unique leaves
(b) Alternatively, one could also demand that factor trees for irreducible elements exist and have unique leaves
(c) In a UFD we have

$$
\text { irreducible } \Leftrightarrow \text { prime }
$$

Examples. Fields, $\mathbb{Z}, \mathbb{K}[X]$ for a field $\mathbb{K}, \mathbb{Z}[i], \mathbb{Z}\left[e^{2 \pi i / n}\right]$ for $n=1, \ldots, 22$, the ring of integers of $\mathbb{Q}[\sqrt{-d}]$ for $d=1,2,3,7,11,19,43,67,163$

The standard non-example $\mathbb{Z}[\sqrt{-5}]$

- The invertible elements in $\mathbb{Z}[\sqrt{-5}]$ are ± 1
- 2 is irreducible
- 3 is irreducible
- $1+\sqrt{-5}$ is irreducible
- $1-\sqrt{-5}$ is irreducible
- None of these are primes!
- Unique factorization fails:

Thank you for your attention!

I hope that was of some help.

