What is...an Euclidean domain?

Or: Generalizing division with remainder

Euclid's algorithm - find the gcd

The greatest common divisor of 12 and 8 is 4 .
The greatest common divisor of 13 and 8 is 1.

- $a=q_{0} b+r_{0}, b=q_{1} r_{0}+r_{1}, \ldots$
- This is eventually stabilize and $\operatorname{gcd}(a, b)=r_{\text {final }} \neq 0$

Question. Does this extend beyond integers?

Steadily decreasing

This terminates because the remainder keeps decreasing

gcd for polynomials

$$
f=X^{5}+X^{4}-X^{3}-X^{2}-X-1, \quad g=X^{3}-2 \cdot X-1, \quad \operatorname{gcd}(f, g)=X+1
$$

$$
\begin{aligned}
\left(X^{5}+X^{4}-X^{3}-X^{2}-X-1\right) & =\left(X^{2}+X+1\right)\left(X^{3}-2 \cdot X-1\right)+\left(2 \cdot X^{2}+2 \cdot X\right) \\
\left(X^{3}-2 \cdot X-1\right) & =\left(\frac{1}{2} \cdot X-\frac{1}{2}\right)\left(2 \cdot X^{2}+2 \cdot X\right)+(-X-1) \\
\left(2 \cdot X^{2}+2 \cdot X\right) & =(-2 \cdot X)(-X-1)+0
\end{aligned}
$$

- This terminates because the remainder keeps decreasing (degree-wise)
- We have

$$
f=(X+1)\left(X^{4}-X^{2}-1\right), \quad g=(X+1)\left(X^{2}-X-1\right)
$$

- The gcd can be normalized using invertible elements $(-X-1)=-(X+1)$

For completeness: The formal definition

A degree function $\delta: R \backslash\{0\} \rightarrow \mathbb{Z}_{\geq 0}$ on an integral domain R is a map satisfying:

$$
a=q \cdot b+r \Rightarrow(r=0 \text { or } \delta(r)<\delta(b))
$$

If R admits a degree function, then it is called Euclidean
(a) The Euclidean algorithm works for such R Euclid
(b) Bézout's identity holds $\operatorname{gcd}(a, b)=s \cdot a+t \cdot b$
(c) The $\operatorname{gcd}(a, b)$ is the result of the Euclidean algorithm
(d) If " $a=q \cdot b+r$ " can be made algorithmic, then the Euclidean algorithm can be as well Algorithm
(e) Euclidean implies PID e.g. $\left(a_{1}, \ldots, a_{n}\right)=\left(\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)\right)$

Examples. Fields, $\mathbb{Z}, \mathbb{K}[X]$ for a field $\mathbb{K}, \mathbb{Z}[i], \mathbb{Z}\left[e^{2 \pi i / 3}\right], \mathbb{Z}[\sqrt{-d}]$ for $d=1,2$,

$$
\mathbb{Q}[\sqrt{-d}] \text { for } d=1,2,3,7,11
$$

Fix an integral domain R
(a) One can define $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ by:

- d divides all a_{i} Divisor
- If d^{\prime} divides all a_{i}, then d^{\prime} divides d Greatest
(b) One can define $e=\operatorname{lcm}\left(a_{1}, \ldots, a_{n}\right)$ by:
- e is divided by all a_{i} Multiple
- If e^{\prime} is divided by all a_{i}, then e^{\prime} is divided by e Lowest
(c) If they exist, then they are unique up to invertible elements
(d) If they exist, then

$$
\left(a_{1}, \ldots, a_{n}\right)=\left(\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)\right), \quad\left(a_{1}\right) \cap \ldots \cap\left(a_{n}\right)=\left(\operatorname{lcm}\left(a_{1}, \ldots, a_{n}\right)\right)
$$

This applies, for example, to polynomial rings

Thank you for your attention!

I hope that was of some help.

