What is...the Chinese remainder theorem?

Or: Arranging rectangles

Puzzle. What is the smallest $n \in \mathbb{N}$ such that we can arrange n into $7 \times a$ and $11 \times b$ rectangles with leftovers 3 and 1 ?

45 of course! But why?

The puzzle asks to solve the congruences:

$$
\text { Given. }\left\{\begin{array}{l}
n \equiv 3 \bmod 7 \\
n \equiv 1 \bmod 11
\end{array} \quad \text { Task. Find minimal } n\right.
$$

- System of congruences

$$
\text { Given. } \begin{cases}n \equiv r_{1} \bmod m_{1} \\ \vdots & \text { Task. Find minimal } n \\ n \equiv r_{k} \bmod m_{k} & \end{cases}
$$

are analogs of systems of linear equations

- How can one solve these systematically ?
- Can this be generalized?

Here what we can do

0	1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20	21
22	23	24	25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40	41	42	43
44	45	46	47	48	49	50	51	52	53	54
55	56	57	58	59	60	61	62	63	64	65
66	67	68	69	70	71	72	73	74	75	76

- Write down a numbered 11.7 square
- Mark the second column, and every seventh entry starting at 3
- The intersection of the markers is the unique solution

For completeness: The formal statement

For coprime moduli m_{1}, \ldots, m_{k} and remainders r_{1}, \ldots, r_{k}, there is $n \in \mathbb{N}$ such that:
(a) $n<N=m_{1} \cdot \ldots \cdot m_{k}$
(b) n satisfies the congruences Existence

$$
\begin{aligned}
& n \equiv r_{1} \bmod m_{1} \\
& \vdots \\
& n \equiv r_{k} \bmod m_{k}
\end{aligned}
$$

(c) n is unique Uniqueness
(d) The assignment

$$
n \bmod N \mapsto\left(n \bmod m_{1}, \ldots, n \bmod m_{k}\right)
$$

is a group isomorphism

$$
\mathbb{Z} / N \mathbb{Z} \xrightarrow{\cong} \mathbb{Z} / m_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / m_{k} \mathbb{Z}
$$

The restriction "coprime" is necessary, otherwise the statement will look different

Generalization? Sure!

Fix a ring R

(a) Two ideals I, J are coprime if $I+J=R$ Bézout in rings
(b) For (two-sided) ideals I_{1}, \ldots, I_{k} let be I their intersection
(c) The assignment

$$
n \bmod I \mapsto\left(n \bmod I_{1}, \ldots, n \bmod I_{k}\right)
$$

is a group isomorphism

$$
R / I \xrightarrow{\cong} R / I_{1} \times \ldots \times R / I_{k}
$$

Existence Uniqueness

(d) If R is commutative, then $I=I_{1} \cdot \ldots \cdot I_{k}$

This applies, for example, to polynomial rings

Thank you for your attention!

I hope that was of some help.

