What is...the Chinese remainder theorem?

Or: Arranging rectangles

A puzzle à la Sun-tzu

Puzzle. What is the smallest $n \in \mathbb{N}$ such that we can arrange *n* into $7 \times a$ and

 $11 \times b$ rectangles with leftovers 3 and 1?

The puzzle asks to solve the congruences:

Given.
$$\begin{cases} n \equiv 3 \mod 7 \\ n \equiv 1 \mod 11 \end{cases}$$
 Task. Find minimal *n*

► System of congruences

Given.
$$\begin{cases} n \equiv r_1 \mod m_1 \\ \vdots & \text{Task. Find minimal } n \\ n \equiv r_k \mod m_k \end{cases}$$

are analogs of systems of linear equations

► How can one solve these systematically ?

► Can this be generalized ?

Here what we can do

0	1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20	21
22	23	24	25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40	41	42	43
44	45	46	47	48	49	50	51	52	53	54
55	56	57	58	59	60	61	62	63	64	65
66	67	68	69	70	71	72	73	74	75	76

- ▶ Write down a numbered 11 · 7 square
- \blacktriangleright Mark the second column, and every seventh entry starting at 3
- ▶ The intersection of the markers is the unique solution

For coprime moduli $m_1, ..., m_k$ and remainders $r_1, ..., r_k$, there is $n \in \mathbb{N}$ such that: (a) $n < N = m_1 \cdot ... \cdot m_k$

(b) *n* satisfies the congruences Existence

 $n \equiv r_1 \mod m_1$

 $n \equiv r_k \mod m_k$

(c) *n* is unique Uniqueness

(d) The assignment

 $n \mod N \mapsto (n \mod m_1, ..., n \mod m_k)$

is a group isomorphism

$$\mathbb{Z}/N\mathbb{Z}\xrightarrow{\cong}\mathbb{Z}/m_1\mathbb{Z}\times\ldots\times\mathbb{Z}/m_k\mathbb{Z}$$

The restriction "coprime" is necessary, otherwise the statement will look different

Fix a ring R

- (a) Two ideals I, J are coprime if I + J = R Bézout in rings
- (b) For (two-sided) ideals $I_1, ..., I_k$ let be I their intersection
- (c) The assignment

```
n \mod I \mapsto (n \mod I_1, ..., n \mod I_k)
```

is a group isomorphism

$$R/I \xrightarrow{\cong} R/I_1 \times \ldots \times R/I_k$$

Existence Uniqueness

(d) If R is commutative, then $I = I_1 \cdot ... \cdot I_k$

This applies, for example, to polynomial rings

Thank you for your attention!

I hope that was of some help.