What is...the calculus of ideals?

Or: Ideals are like numbers

Example. $\mathbb{Z}/4\mathbb{Z}[X]$ with $X^2 = 0$

The elements outside of $\{0, 2, 2 + X, X, 2X, 3X, 2 + 2X, 2 + 3X\}$ are all invertible :

$$\blacktriangleright 1 \cdot 1 = 1, \ 3 \cdot 3 = 9 \equiv 1 \ \mathsf{mod} \ 4$$

▶
$$(a+bX)(c+dX) \equiv 1 \mod 4 \Leftrightarrow (a = c \in \{1,3\} \text{ and } b = -d)$$

• Example. $(3+2X)(3+2X) = 9 + 12X + 4X^2 \equiv 1 \mod 4$

- (2, X) $\leftrightarrow elements$ of the form $r \cdot 2 + r' \cdot X$
- ▶ (2), (2 + X), $(X) \iff$ elements of the form $r \cdot 2$, $r \cdot (2 + X)$, $r \cdot X$
- ▶ $(2X) \iff$ elements of the form $r \cdot 2 \cdot X$

(a) $Ra = \{r \cdot a \mid r \in R\}$, $aR = \{a \cdot r \mid r \in R\}$, $RaR = \{r \cdot a \cdot r' \mid r, r' \in R\}$ (b) $(a, b, ...) = \{r \cdot a + r' \cdot b + ...\}$ ideal generated by a, b, ...

Another slick illustration

- The sum I + J of ideals gives an addition
- ▶ The product *IJ* of ideals gives a multiplication
- ▶ I + J is a supremum, is $I \cap J$ an infimum

(a) $I + J = \{r \cdot i + r' \cdot j \mid r, r' \in R, i \in I, j \in J\}, IJ = \{\sum_{fin} i \cdot j \mid i \in I, j \in J\}$ (b) $I \cap J$ the set theoretic intersection Warning. $I \cup J$ is in general not an ideal Let *R* be a ring, then the collection of left ideal \mathcal{I} forms a semiring and a lattice: (a) \mathcal{I} has an addition +, \mathcal{I} has a multiplication \cdot Two operations (b) $(\mathcal{I}, +)$ is an abelian monoid (c) (\mathcal{I}, \cdot) is a monoid (d) The two rules distribute over one another Compatibility (e) (\mathcal{I}, \subset) has + and \cap as a supremum respectively infimum Order

► The example of a semiring and a lattice is

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

Ideals behave like numbers!

- If R has a unit, then R is the unit of \mathcal{I}
- ▶ If *R* is commutative, then so is \mathcal{I}

- ▶ (2, X) is a maximal ideal
- (2X) is a minimal ideal
- ▶ (2, X) is a prime ideal
- (2), (2 + X), (X) and (2X) are principal ideals

► etc.

Thank you for your attention!

I hope that was of some help.