## What are...subrings and ideals?

Or: Two valid substructures

## Substructures vs. quotients

|  | substructure | good quotients |
| :---: | :---: | :---: |
| sets | subset | congruence |
| vector spaces | linear subspace | linear subspace |
| groups | subgroup | normal subgroup |
| rings | subring | ideals |
| categories | subcategory | congruence |

(a) For rings substructures do not give good quotients
(b) Substructures $=$ subring Substructures
(c) Ideals $\Leftrightarrow$ good quotients Quotients

## Ideals generalize divisibility

- 0 is divisible by 8 Additive unit
- If $a, b \in \mathbb{Z}$ are divisible by 8 , then so is $a+b$ Internal addition
- 1 is not divisible by 8

No multiplicative unit

- If $a \in \mathbb{Z}$ is divisible by 8 , then so is ar for all $r \in \mathbb{Z}$ External multiplication

- A matrix times a row matrix is a row matrix:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 2 & 0 \\
0 & 3 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 14 & 0 \\
0 & 32 & 0 \\
0 & 50 & 0
\end{array}\right)
$$

## External left multiplication

- A column matrix times a matrix is a column matrix:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 2 & 3 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
30 & 36 & 42 \\
0 & 0 & 0
\end{array}\right)
$$

External right multiplication
This is not two-sided, e.g.:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 2 & 3 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
2 & 4 & 6 \\
5 & 10 & 15 \\
8 & 16 & 24
\end{array}\right)
$$

## For completeness: Two formal definitions

(a) A subring $S \subset R$ is a subset of a ring $R$ that forms a ring under the induced addition and multiplication
(b) A two-sided ideal $I \subset R$ is a subset of a ring $R$ that forms a subgroup under the induced addition and is closed under external multiplication $r i \in I$ and ir $\in I$ for all $i \in I$ and $r \in R$
(c) A left ideal $I \subset R$ is a subset of a ring $R$ that forms a subgroup under the induced addition and is closed under external left multiplication ri$\in I$ for all $i \in I$ and $r \in R$
(d) A right ideal $I \subset R$ is a subset of a ring $R$ that forms a subgroup under the induced addition and is closed under external right multiplication ir $\in I$ for all $i \in I$ and $r \in R$

- $\mathrm{M}_{2 \times 2}(\mathbb{C})$ has infinitely many non-trivial subrings
- $\mathrm{M}_{2 \times 2}(\mathbb{C})$ has no non-trivial two-sided ideals


## Subrings and ideals under quotients

## Theorem. There are 1:1 correspondences

$$
\begin{aligned}
& \{S \mid I \subset S \subset R \text { subring }\} \stackrel{1: 1}{\longleftrightarrow}\{T \mid T \subset R / I \text { subring }\} \\
& \quad\{J \mid I \subset J \subset R \text { ideal }\} \stackrel{1: 1}{\longleftrightarrow}\{K \mid K \subset R / I \text { ideal }\}
\end{aligned}
$$


preserving the lattice structure (a.k.a. the inclusion)

## Thank you for your attention!

I hope that was of some help.

