What is...a ring?

Or: Generalizing the integers

(a) ${\mathbb Z}$ has an addition +, ${\mathbb Z}$ has a multiplication \cdot ${\mbox{ Two operations}}$

- (b) $(\mathbb{Z},+)$ is an abelian group
- (c) (\mathbb{Z}, \cdot) is an abelian monoid
- (d) The two rules distribute over one another Compatibility

- (a) $\mathbb{Z}[\omega]$ has an addition +, $\mathbb{Z}[\omega]$ has a multiplication \cdot . Two operations
- (b) $(\mathbb{Z}[\omega], +)$ is an abelian group
- (c) $(\mathbb{Z}[\omega], \cdot)$ is an abelian monoid
- (d) The two rules distribute over one another Compatibility

A commutative ring R is a set such that:

- (a) R has an addition +, R has a multiplication \cdot Two operations
- (b) (R, +) is an abelian group
- (c) (R, \cdot) is an abelian monoid

(d) The two rules distribute over one another Compatibility

For a ring one drop the assumption that ab = baRings generalize matrices over \mathbb{Z} :

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Generalizing concepts from $\mathbb Z$ to R

 $a \in \mathbb{Z}[i]$ is a Gaussian prime if a = bc implies $b = \pm ia$

► a + bi is a Gaussian prime if and only if a = p or b = p is prime for $p \equiv 3 \mod 4$, or $a^2 + b^2$ is prime

$$2 = (1 + i)(1 - i), \quad 5 = (2 + i)(2 - i)$$

• Every Gaussian integer a + bi can be factor into Gaussian primes

$$10 = 2 \cdot 5 = (1+i)(1-i)(2+i)(2-i)$$

Such a factorization is unique up to units

Ring theory studies properties of $\ensuremath{\mathbb{Z}}$ under a more general umbrella

Thank you for your attention!

I hope that was of some help.