What is...a ring?

Or: Generalizing the integers

A good old friend - the integers \mathbb{Z}

| \bullet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -3 | -2 | -1 | 0 | 1 | 2 | 3 |

(a) \mathbb{Z} has an addition,$+ \mathbb{Z}$ has a multiplication • Two operations
(b) $(\mathbb{Z},+)$ is an abelian group
(c) (\mathbb{Z}, \cdot) is an abelian monoid
(d) The two rules distribute over one another Compatibility

The Gaussian integers $\mathbb{Z}[i], i^{2}+1=0$

(a) $\mathbb{Z}[i]$ has an addition,$+ \mathbb{Z}[i]$ has a multiplication • Two operations
(b) $(\mathbb{Z}[i],+)$ is an abelian group
(c) $(\mathbb{Z}[i], \cdot)$ is an abelian monoid
(d) The two rules distribute over one another Compatibility

The Eisenstein integers $\mathbb{Z}[\omega], \omega^{2}+\omega+1=0$

(a) $\mathbb{Z}[\omega]$ has an addition,$+ \mathbb{Z}[\omega]$ has a multiplication • Two operations
(b) $(\mathbb{Z}[\omega],+)$ is an abelian group
(c) $(\mathbb{Z}[\omega], \cdot)$ is an abelian monoid
(d) The two rules distribute over one another Compatibility

For completeness: A formal definition

A commutative ring R is a set such that:
(a) R has an addition,$+ R$ has a multiplication - Two operations
(b) $(R,+)$ is an abelian group
(c) (R, \cdot) is an abelian monoid
(d) The two rules distribute over one another Compatibility

For a ring one drop the assumption that $a b=b a$ Rings generalize matrices over \mathbb{Z} :

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Generalizing concepts from \mathbb{Z} to R

$$
a \in \mathbb{Z}[i] \text { is a Gaussian prime if } a=b c \text { implies } b= \pm i a
$$

- $a+b i$ is a Gaussian prime if and only if $a=p$ or $b=p$ is prime for $p \equiv 3 \bmod 4$, or $a^{2}+b^{2}$ is prime

$$
2=(1+i)(1-i), \quad 5=(2+i)(2-i)
$$

- Every Gaussian integer $a+b i$ can be factor into Gaussian primes

$$
10=2 \cdot 5=(1+i)(1-i)(2+i)(2-i)
$$

- Such a factorization is unique up to units

Ring theory studies properties of \mathbb{Z} under a more general umbrella

Thank you for your attention!

I hope that was of some help.

