What is...the Jordan-Hölder theorem?

Or: The elements of group theory.

Elements of group theory

- A group G is called simple if 1 and G are the only normal subgroups
- If $1 \subsetneq N \subsetneq G$ is normal, then G / N and N are smaller groups to study, e.g.

$$
1 \subsetneq \mathbb{Z} / 6 \mathbb{Z} \subsetneq \mathbb{Z} / 12 \mathbb{Z}, \quad \frac{\mathbb{Z} / 12 \mathbb{Z}}{\mathbb{Z} / 6 \mathbb{Z}} \cong \mathbb{Z} / 2 \mathbb{Z} \text { and } \mathbb{Z} / 6 \mathbb{Z}
$$

- Simple groups are the elements of group theory

Question. Is there a group-analog of a chemical formula?

Composition series

- $N \triangleleft G$ means $N \subset G$ is normal
- Decomposition into smaller components N_{k} / N_{k+1}

$$
\ldots \triangleleft N_{3} \triangleleft N_{2} \triangleleft N_{1}=G
$$

is called a normal series, e.g.

$$
1 \triangleleft \mathbb{Z} / 6 \mathbb{Z} \triangleleft \mathbb{Z} / 12 \mathbb{Z}, \quad \frac{\mathbb{Z} / 12 \mathbb{Z}}{\mathbb{Z} / 6 \mathbb{Z}} \cong \mathbb{Z} / 2 \mathbb{Z} \text { and } \frac{\mathbb{Z} / 6 \mathbb{Z}}{1} \cong \mathbb{Z} / 6 \mathbb{Z}
$$

- Decomposition into the simplest components N_{k} / N_{k+1}

$$
1=N_{n} \triangleleft \ldots \triangleleft N_{3} \triangleleft N_{2} \triangleleft N_{1}=G
$$

is called a composition series if N_{k} / N_{k+1} are simple, e.g.
$1 \triangleleft \mathbb{Z} / 2 \mathbb{Z} \triangleleft \mathbb{Z} / 6 \mathbb{Z} \triangleleft \mathbb{Z} / 12 \mathbb{Z}, \frac{\mathbb{Z} / 12 \mathbb{Z}}{\mathbb{Z} / 6 \mathbb{Z}} \cong \mathbb{Z} / 2 \mathbb{Z}$ and $\frac{\mathbb{Z} / 6 \mathbb{Z}}{\mathbb{Z} / 2 \mathbb{Z}} \cong \mathbb{Z} / 3 \mathbb{Z}$ and $\frac{\mathbb{Z} / 2 \mathbb{Z}}{1} \cong \mathbb{Z} / 2 \mathbb{Z}$

Question. Do these exist? Are composition series unique?

The fundamental theorem of arithmetic

This generalizes $12=3 \cdot 2 \cdot 2=2 \cdot 3 \cdot 2=2 \cdot 2 \cdot 3$

For completeness: The formal statement

Let G be a finite group
(a) There is a composition series $1=N_{n} \triangleleft \ldots \triangleleft N_{3} \triangleleft N_{2} \triangleleft N_{1}=G$ Existence
(b) Two composition series have the same length n and the same composition factors N_{k} / N_{k+1} up to reordering and isomorphism Uniqueness
(c) The composition factors N_{k} / N_{k+1} are invariants of G

For all G, if $1=N_{n} \triangleleft \ldots \triangleleft N_{3} \triangleleft N_{2} \triangleleft N_{1}=G$ exists, then (b) and (c) still hold

That G is finite is essential for existence - e.g. \mathbb{Z} does not have a composition series

The elements - examples of finite simple groups

- 1 is sometimes included
- $\mathbb{Z} / p \mathbb{Z}$ for p prime
- Alternating groups A_{n} for $n \geq 5$ (A_{5} is the smallest simple non-abelian group)
- Matrix groups such as

$$
\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{F}_{p}, a d-b c=1\right\}
$$

(This is almost true: You have to massage them a bit to get a simple group)

- Funny exceptions, but only 26 of these (or 27, depending who you ask)

$$
n \geq 5: \quad 1 \triangleleft A_{n} \triangleleft S_{n}, \quad \frac{S_{n}}{A_{n}} \cong \mathbb{Z} / 2 \mathbb{Z}, \quad \frac{A_{n}}{1} \cong A_{n}
$$

Thank you for your attention!

I hope that was of some help.

