What is...a group?

Or: Abstract symmetries

Two incarnations of the same beast

Abstract groups formalize the concept of symmetry

Two incarnations of cyclic groups a.k.a. rotational symmetries

\cdot	1	g	h
1	1	g	h
g	g	h	1
h	h	1	g

e.g. $g h=1$

What symmetries satisfy

- We have a composition rule $\circ(g, h)=g h$ Multiplication
- We have $g(h f)=(g h) f$ Associativity
- There is a do nothing operation $1 g=g=g 1$ Unit
- There is an undo operation $g g^{-1}=1=g^{-1} g$ Inverse

$s=$ reflection

For completeness: A formal definition

A group G is a set together with a map

$$
\circ: G \times G \rightarrow G, \circ(g, h)=g h \quad \text { composition }
$$

such that:
(a) \circ is associative: $g(h f)=(g h) f$ Associativity
(b) There exists $1 \in G$ such that $1 g=g=g 1$ Unit
(c) For all $g \in G$ there exists g^{-1} such that $g g^{-1}=1=g^{-1} g$ Inverse

Examples.

- Symmetry groups of "things" with $\circ=$ composition
- Symmetric groups S_{n}, alternating groups A_{n}
- Cyclic groups $\mathbb{Z} / n \mathbb{Z}$ with $\circ=$ addition
- \mathbb{Z} with $\circ=$ addition
- $\mathbb{Q} \backslash\{0\}$ with $\circ=$ multiplications

Symmetry groups of the platonic solids

	Without reflections	With reflections
Tetrahedron	A_{4} of order 12	S_{4} of order 24
Cube+Octahedron	S_{4} of order 24	$S_{4} \times \mathbb{Z} / 2 \mathbb{Z}$ of order 48
Dodecahedron+Icosahedron	A_{5} of order 60	$A_{5} \times \mathbb{Z} / 2 \mathbb{Z}$ of order 120

Thank you for your attention!

I hope that was of some help.

