What is...a group?

Or: Abstract symmetries

Two incarnations of the same beast

	Abstract	Incarnation
Numbers	3	or
Groups	$S_4 = \langle s, t, u \mid some relations angle$	or

Abstract groups formalize the concept of symmetry

Two incarnations of cyclic groups a.k.a. rotational symmetries

e.g.
$$gh = 1$$

- We have a composition rule $\circ(g, h) = gh$ Multiplication
- We have g(hf) = (gh)f Associativity
- There is a do nothing operation 1g = g = g1 Unit
- There is an undo operation $gg^{-1} = 1 = g^{-1}g$ Inverse

For completeness: A formal definition

A group G is a set together with a map $\circ: G \times G \to G, \circ(g, h) = gh$ composition such that: (a) \circ is associative: g(hf) = (gh)f Associativity (b) There exists $1 \in G$ such that 1g = g = g1 Unit (c) For all $g \in G$ there exists g^{-1} such that $gg^{-1} = 1 = g^{-1}g$ Inverse

Examples.

- ▶ Symmetry groups of "things" with \circ =composition
- Symmetric groups S_n , alternating groups A_n
- Cyclic groups $\mathbb{Z}/n\mathbb{Z}$ with $\circ =$ addition
- ▶ \mathbb{Z} with $\circ =$ addition
- ▶ $\mathbb{Q} \setminus \{0\}$ with $\circ =$ multiplications

Symmetry groups of the platonic solids

	Without reflections	With reflections
Tetrahedron	A ₄ of order 12	S ₄ of order 24
Cube+Octahedron	S ₄ of order 24	$S_4 imes \mathbb{Z}/2\mathbb{Z}$ of order 48
Dodecahedron+lcosahedron	A_5 of order 60	$A_5 imes \mathbb{Z}/2\mathbb{Z}$ of order 120

Thank you for your attention!

I hope that was of some help.