What is...algebra?

Or: How to not solve polynomial equations

The art of studying structures
a biased and not fully faithful map of pure mathematics (based on a map by Alex Sarlin and Innokentij Zotov)
Innokentij Zotov) quantum physics functional analysis

The evolution of algebra

(a) What are solution to polynomial equations?

$$
X^{2}+c_{1} X+c_{0}=0 \Leftrightarrow\left(c_{1}=-\left(s_{1}+s_{2}\right) \& c_{0}=s_{1} s_{2}\right)
$$

(b) Does a polynomial equation have a solution?

$$
\text { Integer solutions of } X^{4}+Y^{4}=Z^{4} \text { ? }
$$

(c) What can be said about the nature of the solutions?

The symmetric group permutes the solutions of $X^{2}+c_{1} X+c_{0}=0$
(d) What is the right language to study the solutions and related problems?

$$
\text { Addtion table of } \mathbb{F}_{2}: \begin{array}{c||c|c}
+ & 0 & 1 \\
\hline \hline 0 & 0 & 1 \\
\hline 1 & 1 & 0
\end{array}
$$

(e) What are the patterns in the language itself?

The keywords - what (a classical course in) algebra studies

- Groups a.k.a. symmetries
\triangleright Isomorphism theorems
\triangleright Sylow theory
\triangleright Permutation groups
- ...
- Rings, fields and modules
\triangleright Ideals
\triangleright Prime factorization
\triangleright Classification of abelian groups
- ...
- Galois theory
\triangleright Field extensions
\triangleright Galois extensions
\triangleright Insolvability of the quintic
$\triangleright \ldots$

Application one - straightedge and compass constructions

Question: Find the regular n-gons constructible by straightedge-compass
Problem: Very hard to do explicitly Gauss: Solve a structural problem instead
(a) There is a nice solution in terms of primes of the form $2^{2^{k}}-1$
(b) The explicit construction needs a lot of work, see e.g. Richmond ~ 1893 :

```
A CONSTRUOTION FOR A REQULAR POLYGON OF
    By Hersert W. Rtemyoxd, King's College, Cambridge
LET OA,OB (fig. 6) be two perpendicular radii of a circle.
L Make OI one-fourth of OB, and the angle OIE one-
fourth of OIA; also find in OA produced a point F such that
EIF is 4\mp@subsup{5}{}{\circ}\mathrm{ . Let the circle on }AF\mathrm{ as diameter cut OB in K,},\mp@code{,}
and let the circle whose centre is E and radius EK cut OA in
Ns}\mathrm{ and }\mp@subsup{N}{\textrm{s}}{}\mathrm{ ; then if ordimates }\mp@subsup{N}{\textrm{a}}{8}\mp@subsup{P}{8}{},\mp@subsup{N}{P}{}\mp@subsup{P}{\textrm{s}}{}\mathrm{ are drawn to the
circle, the arcs }A\mp@subsup{P}{3}{}AP\mathrm{ will be }3/17\mathrm{ and }5/17\mathrm{ of the
circumference.
Proof. Let O}\mathrm{ denote the angle OIE, so that 4C=OIA,
and tan}4C=4;\mathrm{ also let }\alpha\mathrm{ stand for 2%/17
    Then (cf, Hobson's Trigonometry, p. 111)
        2(\operatorname{cos}\alpha+\operatorname{cos}2\alpha+\operatorname{cos}4\alpha+\operatorname{cos}8\alpha),
and }2(\operatorname{cos}3\alpha+\operatorname{cos}6\alpha+\operatorname{cos}5\alpha+\operatorname{cos}7\alpha
are the roots of }\mp@subsup{z}{}{2}+z=4\mathrm{ , or of
z}+4=\operatorname{cot}40=4
    Therefore
        2(\operatorname{cos}\alpha+\operatorname{cos}2\alpha+\operatorname{cos}4\alpha+\operatorname{cos}8\alpha)=2\operatorname{tan}2C,
        2(\operatorname{cos}3\alpha+\operatorname{cos}6\alpha+\operatorname{cos}5\alpha+\operatorname{cos}7\alpha)=-2\operatorname{cot}2C.
    Again, 2(\operatorname{cos}3\alpha+\operatorname{cos}5\alpha) and 2(\operatorname{cos}6\alpha+\operatorname{cos}\tau\alpha) are the
roots of
            \mp@subsup{x}{}{3}+2x\operatorname{cot}2C=1.
    Therefore }2(\operatorname{cos}3\alpha+\operatorname{cos}5\alpha)=\operatorname{tan}C\mathrm{ ,
        2(\operatorname{cos}3\alpha+\operatorname{cos}5\alpha)=\operatorname{tan}C,
    Similarly, 2(\operatorname{cos}a+\operatorname{cos}4\alpha)=\operatorname{tan}(C+4\mp@subsup{5}{}{\prime}),
        2(\operatorname{cos}2a+\operatorname{cos}8a)=\quad\operatorname{tan}(C-4\mp@subsup{5}{}{\circ})
    Finally, we may write the results in the following form:
2 cos 3\alpha+2\operatorname{cos}5\alpha=2\operatorname{cos}\alpha.2\operatorname{cos}4\alpha=\operatorname{tan}C
2\operatorname{cos}\alpha+2\operatorname{cos}4\alpha=2\operatorname{cos}6\alpha.2\operatorname{cos}7\alpha=\operatorname{tan}(C+4\mp@subsup{5}{}{\circ})
2\operatorname{cos}6\alpha+2\operatorname{cos}7\alpha=2\operatorname{cos}2\alpha,2\operatorname{cos}8\alpha=\operatorname{tan}(C+9\mp@subsup{0}{}{\circ})
2\operatorname{cos}2\alpha+2\operatorname{cos}8\alpha=2\operatorname{cos}3\alpha.2\operatorname{cos}5\alpha=\operatorname{tan}(C-4\mp@subsup{0}{}{\circ})
```


Application two - the Abel-Ruffini theorem

There is no formula involving only $+,-, \cdot, \div, \sqrt[n]{ }$ solving

$$
X^{5}+c_{4} X^{4}+c_{3} X^{3}+c_{2} X^{2}+c_{1} X^{1}+c_{0}
$$

The proof uses the structure of symmetric groups

Thank you for your attention!

I hope that was of some help.

