What is...algebra?

Or: How to not solve polynomial equations

The art of studying structures

Algebra searches for the common ground of various structures

(a) What are solution to polynomial equations?

$$X^{2} + c_{1}X + c_{0} = 0 \Leftrightarrow (c_{1} = -(s_{1} + s_{2})\& c_{0} = s_{1}s_{2})$$

(b) Does a polynomial equation have a solution?

Integer solutions of $X^4 + Y^4 = Z^4$?

(c) What can be said about the nature of the solutions?

The symmetric group permutes the solutions of $X^2 + c_1 X + c_0 = 0$

(d) What is the right language to study the solutions and related problems?

(e) What are the patterns in the language itself?

- ► Groups a.k.a. symmetries
 - Isomorphism theorems
 - \triangleright Sylow theory
 - Permutation groups
 - ▷ ...
- ► Rings, fields and modules
 - ▷ Ideals
 - Prime factorization
 - Classification of abelian groups
 - ▷ ...
- ► Galois theory
 - Field extensions
 - > Galois extensions
 - ▷ Insolvability of the quintic

▷ ...

Application one – straightedge and compass constructions

Question: Find the regular *n*-gons constructible by straightedge-compass Problem: Very hard to do explicitly Gauss: Solve a structural problem instead

(a) There is a nice solution in terms of primes of the form $2^{2^k} - 1$

(b) The explicit construction needs a lot of work, see *e.g.* Richmond \sim 1893:

1	A CONSTRUCTION FOR A REGULAR POLYGON OF SEVENTEEN SIDES.
	By HERBERT W. RICHMOND, King's College, Cambridge.
fi J a 2 c	ET OA_i OB (fig. 6) he two perpendicular radii of a circle. Make OI one-fourth of OB_i and the angle OIS one- work of OIA_i as boind in OA provided a point F work that OIA_i as the one-control of OIA_i and OIA_i and OIA_i and let the , trede whose control is E and radius EK out OA in that A is the interval of control of N_i , N_i and even to the irrede, the area AP_{ij} AP_i will be $3/17$ and $5/17$ of the irredefined for the second of the second of OIA_i and S_i (in the second of OIA_i).
	Proof. Let C denote the angle OIE, so that $4C = OIA$, nd $\tan 4C = 4$; also let a stand for $2\pi/17$. Then (cf. Hobson's Trigonometry, p. 111)
	$2(\cos\alpha + \cos 2\alpha + \cos 4\alpha + \cos 8\alpha),$
a	nd $2(\cos 3\alpha + \cos 6\alpha + \cos 5\alpha + \cos 7\alpha)$
a	re the roots of $s^2 + s = 4$, or of
	$z^3 + 4z \cot 4 C = 4.$ Therefore
	$2(\cos \alpha + \cos 2\alpha + \cos 4\alpha + \cos 8\alpha) = 2\tan 2C,$
	$2(\cos 3\alpha + \cos 6\alpha + \cos 5\alpha + \cos 7\alpha) = -2\cot 2C.$
r	Again, $2(\cos 3\alpha + \cos 5\alpha)$ and $2(\cos 6\alpha + \cos 7\alpha)$ are the costs of $\alpha^2 + 2\alpha \cot 2C = 1$.
	Therefore $2(\cos 3\alpha + \cos 5\alpha) = \tan C$,
	$2 \left(\cos 6\alpha + \cos 5\alpha \right) = -\cot C.$
	Similarly, $2(\cos \alpha + \cos 4\alpha) = -\cot 0$.
	$2(\cos 2x + \cos 8x) = \tan (C - 45^{\circ}),$ $2(\cos 2x + \cos 8x) = \tan (C - 45^{\circ}),$
	Finally, we may write the results in the following form :
	2 cos $3\alpha + 2 \cos 5\alpha = 2 \cos \alpha$, $2 \cos 4\alpha = \tan C$
	$2\cos \alpha + 2\cos 4\alpha - 2\cos 6\alpha + 2\cos 7\alpha - \tan((1+45^{\circ}))$
	$2\cos 6\alpha + 2\cos 7\alpha = 2\cos 7\alpha = 2\cos 2\alpha \cdot 2\cos 8\alpha = \tan (C + 90^{\circ})$ (A).
	$2\cos 2\alpha + 2\cos 8\alpha = 2\cos 3\alpha \cdot 2\cos 5\alpha = \tan (C - 45')$

Application two – the Abel–Ruffini theorem

The proof uses the structure of symmetric groups

Thank you for your attention!

I hope that was of some help.