EXERCISES 8: LECTURE REPRESENTATION THEORY

Exercise 1. Show that the representation induced from the trivial representation of the trivial subgroup of G is the regular representation of G.

Exercise 2. Here are also the character tables of $\mathbb{Z}/5\mathbb{Z}$ and D_5 :

Class	T	1	2	3	4	5	Class 1 2 3 4
Size		1	1	1	1	1	Size 1 5 2 2
0rder		1	5	5	5	5	Order 1 2 5 5
p =	5	1	1	1	1	1	p = 2 1 1 4 3
							p = 5 1 2 1 1
X.1	+	1	1	1	1	1	
X.2	0	1	Z1	Z1#2	Z1#3	Z1#4	X.1 + 1 1 1 1
Х.З	0	1	Z1#4	Z1#3	Z1#2	Z1	X.2 + 1 -1 1 1
X.4	0	1	Z1#3	Z1	Z1#4	Z1#2	X.3 + 2 0 Z1 Z1#2
X.5	0	1	Z1#2	Z1#4	Z1	Z1#3	X.4 + 2 0 Z1#2 Z1

Identify the representations induced from the simple $\mathbb{Z}/5\mathbb{Z}$ representations to D_5 . Exercise 3. $\mathbb{Z}/5\mathbb{Z}$ and D_5 act on the pentagon:

 $\mathbb{Z}/5\mathbb{Z}$ acts by rotation on and D_5 acts by rotation/reflection on

Identify the representation induced from the rotation action of $\mathbb{Z}/5\mathbb{Z}$ to D_5 .

Exercise 4. Here are the character tables of $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and the quaternion group Q_8 :

<u></u>						Character table of Q ₈						
Class		T	2	3	4							
Size		1	1	1	1	Q_8 : Quaternion group; = $C_4.C_2$ = Dic_2 = 2^{1+2}_{-}						
0rder	I	1	2	2	2							
						class	1	2	4A	4B	4C	
p =	2	1	1	1	1	size	1	1	2	2	2	
						ρ1	1	1	1	1	1	trivial
X.1	+	1	1	1	1	ρ2	1	1	-1	1	-1	linear of order 2
X.2	+	1	-1	1	-1	ρ3	1	1	1	-1	-1	linear of order 2
Х.З	+	1	1	-1	-1	ρ4	1	1	-1	-1	1	linear of order 2
X.4	+	1	-1	-1	1	ρ ₅	2 ·	-2	0	0	0	symplectic faithful, Schur index 2

Identify the representations induced from the simple $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ representations to Q_8 .

- ▶ The exercises are optimal and not mandatory. Still, they are highly recommend.
- ▶ There will be 12 exercise sheets, all of which have four exercises.
- ▶ The sheets can be found on the homepage www.dtubbenhauer.com/lecture-rt-2022.html.
- ▶ Slogan: "Everything that could be finite is finite, unless stated otherwise.". For example, groups are finite and representations are on finite dimensional vector spaces.
- ▶ There might be typos on the exercise sheets, my bad, so be prepared.