EXERCISES 8: LECTURE REPRESENTATION THEORY

Exercise 1. Show that the representation induced from the trivial representation of the trivial subgroup of G is the regular representation of G.

Exercise 2. Here are also the character tables of $\mathbb{Z} / 5 \mathbb{Z}$ and D_{5} :

Class		1	2	3	4	5	Class		1	2	3	4
Size	,	1	1	1	1	1	Size	\|	1	5	2	2
Order	\|	1	5	5	5	5	Order	\|	1	2	5	5
$\mathrm{p}=$	5	1	1	1	1	1	p	2	1	1	4	3
							p	5	1	2	1	1
X. 1	+	1	1	1	1	1						
X. 2	0	1	Z1	Z1\#2	Z1\#3	Z1\#4	X. 1	+	1	1	1	1
X. 3	0	1	Z1\#4	Z1\#3	Z1\#2	Z1	X. 2	+	1	-1	1	1
X. 4	0	1	Z1\#3	Z1	Z1\#4	Z1\#2	X. 3	+	2	0	Z1	Z1\#2
X. 5	0	1	Z1\#2	Z1\#4	Z1	Z1\#3	X. 4	+	2	0	\#2	Z1

Identify the representations induced from the simple $\mathbb{Z} / 5 \mathbb{Z}$ representations to D_{5}.
Exercise 3. $\mathbb{Z} / 5 \mathbb{Z}$ and D_{5} act on the pentagon:
$\mathbb{Z} / 5 \mathbb{Z}$ acts by rotation on and D_{5} acts by rotation/reflection on

Identify the representation induced from the rotation action of $\mathbb{Z} / 5 \mathbb{Z}$ to D_{5}.
Exercise 4. Here are the character tables of $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and the quaternion group Q_{8} :

Identify the representations induced from the simple $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ representations to Q_{8}.

- The exercises are optimal and not mandatory. Still, they are highly recommend.
- There will be 12 exercise sheets, all of which have four exercises.
- The sheets can be found on the homepage www.dtubbenhauer.com/lecture-rt-2022.html.
- Slogan: "Everything that could be finite is finite, unless stated otherwise.". For example, groups are finite and representations are on finite dimensional vector spaces.
- There might be typos on the exercise sheets, my bad, so be prepared.

