EXERCISES 7: LECTURE REPRESENTATION THEORY

Exercise 1. Let χ be a character of G. Show that $\chi(g)$ is an algebraic integer for all $g \in G$. Here is the character table of $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ for comparison:

Class	L	1	2	3	4	5	6
Size	Ť.	1	1	1	1	1	1
0rder	1	1	2	3	3	6	6
p =	2	1	1	4	3	3	4
p =	3	1	2	1	1	2	2
X.1	+	1	1	1	1	1	1
X.2	+	1	-1	1	1	-1	-1
Х.З	0	1	1	J	-1-J	-1-J	J
X.4	0	1	-1	-1-J	J	- J	1+J
X.5	0	1	-1	J	-1-J	1+J	- J
X.6	0	1	1	-1-J	J	J	-1-J

Here J is a primitive third root of unity.

Exercise 2. Let p be a prime and let G be a group of order p^2 . Show that G is abelian. Hint: Use that the dimension of simple representations divide the order of G.

It gets a bit more complicated from p^3 onward:

Small groups of prime power order p^n are given as follows:

- Order *p*: The only group is cyclic.
- Order p^2 : There are just two groups, both abelian.
- Order p^3 : There are three abelian groups, and two non-abelian groups. One of the non-abelian groups is the semidirect product of a normal cyclic subgroup of order p^2 by a cyclic group of order p. The other is the quaternion group for p = 2 and a group of exponent p for p > 2.
- Order p⁴: The classification is complicated, and gets much harder as the exponent of p increases.

Exercise 3. Let p, q be primes with p < q and $q \not\equiv 1 \mod p$. Show that any group G of order pq is abelian.

Hint: Use that the dimension of simple representations divide the order of G.

Exercise 4. Let G be a non-abelian group of order 39. Determine the dimensions of the simple representations of G and how many simple representations G has of each dimensions (up to equivalence).

Hint: Use that the dimension of simple representations divide the order of G, and the number of 1-dimensional simple representations also divide the order of G.

Addendum: There is only one such group and Magma can find it:

F<a, b> := FreeGroup(2); G<x, y>, phi := quo< F | a^13 = 1, b^3 = 1, b*a = a^3*b >; Order(G)

- ▶ The exercises are optimal and not mandatory. Still, they are highly recommend.
- ▶ There will be 12 exercise sheets, all of which have four exercises.
- ▶ The sheets can be found on the homepage www.dtubbenhauer.com/lecture-rt-2022.html.
- ▶ Slogan: "Everything that could be finite is finite, unless stated otherwise.". For example, groups are finite and representations are on finite dimensional vector spaces.
- ▶ There might be typos on the exercise sheets, my bad, so be prepared.