EXERCISES 6: LECTURE REPRESENTATION THEORY

Class	1 2	3	4	5	6
Size	1 1	1	1	1	1
Order	1 2	3	3	6	6
p = 2	1 1	4	3	3	4
p = 3	1 2	1	1	2	2
X.1 +	1 1	1	1	1	1
X.2 +	1 -1	1	1	-1	-1
X.3 0	1 1	J	-1-J	-1-J	J
X.4 0	1 -1	-1-J	J	- J	1+J
X.5 0	1 -1	J	-1-J	1+J	- J
X.6 0	1 1	-1-J	J	J	-1-J

Exercise 1. Here is the character table of $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$:

How does the character table of an arbitrary finite abelian group looks like?

Exercise 2. Let χ be a nontrivial simple character. Show that $\sum_{g \in G} \chi(g) = 0$. Verify this in the S_4 example:

Class		1	2	3	4	5
Size	1	1	3	6	8	6
0rder		1	2	2	3	4
p =	2	1	1	1	4	2
p =	3	1	2	3	1	5
X.1	+	1	1	1	1	1
X.2	+	1	1	-1	1	-1
Х.З	+	2	2	0	-1	0
X.4	+	3	-1	-1	0	1
X.5	+	3	-1	1	0	-1

Exercise 3. Let $f: G \to H$ be a surjective group homomorphism and let $\phi: H \to \operatorname{GL}_n(\mathbb{C})$ be a simple *H*-representation. Prove that $\phi \circ f$ is a simple *G*-representation.

Exercise 4. Show that if $g \in G$ is nontrivial, then there is a simple representation ϕ with $\phi(g) \neq id$ (id is the identity matrix).

- ▶ The exercises are optimal and not mandatory. Still, they are highly recommend.
- ▶ There will be 12 exercise sheets, all of which have four exercises.
- ▶ The sheets can be found on the homepage www.dtubbenhauer.com/lecture-rt-2022.html.
- ▶ Slogan: "Everything that could be finite is finite, unless stated otherwise.". For example, groups are finite and representations are on finite dimensional vector spaces.
- ▶ There might be typos on the exercise sheets, my bad, so be prepared.