EXERCISES 4: LECTURE REPRESENTATION THEORY

Exercise 1. Here is the character table of $\mathbb{Z}/5\mathbb{Z}$:

Class	I	1	2	3	4	5
Size	L	1	1	1	1	1
0rder		1	5	5	5	5
p =	5	1	1	1	1	1
X.1	+	1	1	1	1	1
X.2	0	1	Z1	Z1#2	Z1#3	Z1#4
Х.З	0	1	Z1#4	Z1#3	Z1#2	Z1
X.4	0	1	Z1#3	Z1	Z1#4	Z1#2
X.5	0	1	Z1#2	Z1#4	Z1	Z1#3

In this table Z1 is a primitive 5th root of unity. Use this table to decompose the representation of $\mathbb{Z}/5\mathbb{Z}$ on the pentagon

Exercise 2. In Exercise 1, what changes if one uses the rotation/reflection action of D_5 (this group has ten elements)?

Here is the relevant character table:

Class	1	1	2	3	4
Size	1	1	5	2	2
0rder	1	1	2	5	5
p =	2	1	1	4	3
p =	5	1	2	1	1
X.1	+	1	1	1	1
X.2	+	1	-1	1	1
Х.З	+	2	0	Z1	Z1#2
X.4	+	2	0	Z1#2	Z1

Exercise 3. Here is the character table of S_3 :

```
. . . . . . . . . . . .
Class |
         1 2 3
Size |
         1 3 2
Order |
         1
            2
               3
p = 2
         1 1 3
p = 3
         1 2 1
X.1
     +
         1 1 1
Χ.2
     +
         1 -1 1
X.3 +
         2
            0 -1
```

How does the tensor product of the two-dimensional simple S_3 -module with itself decompose?

Exercise 4. Let $SL_2(\mathbb{F}_q)$ be the finite group of 2x2 matrices of determinant one and entries in the finite field \mathbb{F}_q . Convince yourself that $SL_2(\mathbb{F}_2) \cong S_3$ as groups, and compute the number of elements of $SL_2(\mathbb{F}_4)$ using its character table:

Cla	SS	1	1	2	3	4	5
Siz	e	1	1	15	20	12	12
0rd	er	1	1	2	3	5	5
р	=	2	1	1	3	5	4
р	=	3	1	2	1	5	4
р	=	5	1	2	3	1	1
X.1		+	1	1	1	1	1
X.2		+	3	-1	0	Z1	Z1#2
Х.З		+	3	-1	0	Z1#2	Z1
Χ.4		+	4	0	1	-1	-1
Χ.5		+	5	1	-1	0	0

Decompose the tensor product of the representations associated to χ_4 and χ_5 .

- ▶ The exercises are optimal and not mandatory. Still, they are highly recommend.
- ▶ There will be 12 exercise sheets, all of which have four exercises.
- ▶ The sheets can be found on the homepage www.dtubbenhauer.com/lecture-rt-2022.html.
- ▶ Slogan: "Everything that could be finite is finite, unless stated otherwise.". For example, groups are finite and representations are on finite dimensional vector spaces.
- ▶ There might be typos on the exercise sheets, my bad, so be prepared.