EXERCISES 4: LECTURE REPRESENTATION THEORY

Exercise 1. Here is the character table of $\mathbb{Z} / 5 \mathbb{Z}$:

Class		1	2	3	4	5
Size	\|	1	1	1	1	1
Order		1	5	5	5	5
$\mathrm{p}=$	5	1	1	1	1	1
X. 1	+	1	1	1	1	1
X. 2	0	1	Z1	Z1\#2	Z1\#3	Z1\#4
X. 3	0		Z1\#4	Z1\#3	Z1\#2	Z1
X. 4	0		Z1\#3	Z1	Z1\#4	Z1\#2
X. 5	0	1	Z1\#2	Z1\#4	Z1	Z1\#3

In this table $Z 1$ is a primitive 5 th root of unity. Use this table to decompose the representation of $\mathbb{Z} / 5 \mathbb{Z}$ on the pentagon

$$
\mathbb{Z} / 5 \mathbb{Z} \text { acts by rotation on }
$$

given by rotation of five vertices (so on \mathbb{C}^{5}).
Exercise 2. In Exercise 1, what changes if one uses the rotation/reflection action of D_{5} (this group has ten elements)?
D_{5} acts by rotation/reflection on

Here is the relevant character table:

Class		1	2	3	4
Size	\|	1	5	2	2
Order		1	2	5	5
p	2	1	1	4	3
$\mathrm{p}=$	5	1	2	1	1
X. 1	+	1	1	1	1
X. 2	+	1	-1	1	1
X. 3	+	2	0	Z1	Z1\#2
X. 4	+	2	0	\#2	Z1

Exercise 3. Here is the character table of S_{3} :

How does the tensor product of the two-dimensional simple S_{3}-module with itself decompose?
Exercise 4. Let $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ be the finite group of 2 x 2 matrices of determinant one and entries in the finite field \mathbb{F}_{q}. Convince yourself that $\mathrm{SL}_{2}\left(\mathbb{F}_{2}\right) \cong S_{3}$ as groups, and compute the number of elements of $\mathrm{SL}_{2}\left(\mathbb{F}_{4}\right)$ using its character table:

Class		1	2	3	4	5
Size	\|	1	15	20	12	12
Order	\|	1	2	3	5	5
$\mathrm{p}=$	2	1	1	3	5	4
p	3	1	2	1	5	4
$\mathrm{p}=$	5	1	2	3	1	1
X. 1	+	1	1	1	1	1
X. 2	+	3	-1	0	Z1	Z1\#2
X. 3	+	3	-1	0	Z1\#2	Z1
X. 4	+	4	0	1	-1	-1
X. 5	+	5	1	-1	0	0

Decompose the tensor product of the representations associated to χ_{4} and χ_{5}.

- The exercises are optimal and not mandatory. Still, they are highly recommend.
- There will be 12 exercise sheets, all of which have four exercises.
- The sheets can be found on the homepage www.dtubbenhauer.com/lecture-rt-2022.html.
- Slogan: "Everything that could be finite is finite, unless stated otherwise.". For example, groups are finite and representations are on finite dimensional vector spaces.
- There might be typos on the exercise sheets, my bad, so be prepared.

