## EXERCISES 3: LECTURE REPRESENTATION THEORY

Exercise 1. The group $\mathbb{Z}$ acts on $\mathbb{C}^{2}$ by $1 \mapsto\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Show that $\mathbb{C}^{2}$ with this $\mathbb{Z}$-action is an indecomposable but not a simple representation. What changes if one goes to $\mathbb{Z} / n \mathbb{Z}$, the integers modulo $n$ ?


Exercise 2. Let $D_{4}$ be the dihedral group with eight elements. Abstractly $D_{4}$ is generated by $\sigma$ and $\tau$ and the multiplication table

|  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Show that $D_{4}$ has precisely four nonequivalent actions on $\mathbb{C}$ given by $\sigma \mapsto \pm 1, \tau \mapsto \pm 1$, all of which give simple representations.

Exercise 3. Continuing Exercise 3, show that $D_{4}$ acts on $\mathbb{C}^{2}$ by $\sigma \mapsto\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), \tau \mapsto\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) .(i \in \mathbb{C}$ is the imaginary unit.) Show that the corresponding representation is simple.

Exercise 4. Continuing Exercises 2 and 3 , since $D_{4}$ is the symmetry group of the square

there is an induced representation on $\mathbb{C}^{4}$. Here $\sigma$ acts by $r_{90}$ and $\tau$ by $m_{0}$. Decompose this representation into simple summands.

- The exercises are optimal and not mandatory. Still, they are highly recommend.
- There will be 12 exercise sheets, all of which have four exercises.
- The sheets can be found on the homepage www.dtubbenhauer.com/lecture-rt-2022.html.
- Slogan: "Everything that could be finite is finite, unless stated otherwise.". For example, groups are finite and representations are on finite dimensional vector spaces.
- There might be typos on the exercise sheets, my bad, so be prepared.

