EXERCISES 3: LECTURE REPRESENTATION THEORY

Exercise 1. The group \mathbb{Z} acts on \mathbb{C}^2 by $1 \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Show that \mathbb{C}^2 with this \mathbb{Z} -action is an indecomposable but not a simple representation. What changes if one goes to $\mathbb{Z}/n\mathbb{Z}$, the integers modulo n?

Exercise 2. Let D_4 be the dihedral group with eight elements. Abstractly D_4 is generated by σ and τ and the multiplication table

Show that D_4 has precisely four nonequivalent actions on \mathbb{C} given by $\sigma \mapsto \pm 1$, $\tau \mapsto \pm 1$, all of which give simple representations.

Exercise 3. Continuing Exercise 3, show that D_4 acts on \mathbb{C}^2 by $\sigma \mapsto \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $\tau \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. $(i \in \mathbb{C}$ is the imaginary unit.) Show that the corresponding representation is simple.

Exercise 4. Continuing Exercises 2 and 3, since D_4 is the symmetry group of the square

there is an induced representation on \mathbb{C}^4 . Here σ acts by r_{90} and τ by m_0 . Decompose this representation into simple summands.

- ▶ The exercises are optimal and not mandatory. Still, they are highly recommend.
- ▶ There will be 12 exercise sheets, all of which have four exercises.
- ▶ The sheets can be found on the homepage www.dtubbenhauer.com/lecture-rt-2022.html.
- ▶ Slogan: "Everything that could be finite is finite, unless stated otherwise.". For example, groups are finite and representations are on finite dimensional vector spaces.
- ▶ There might be typos on the exercise sheets, my bad, so be prepared.