## EXERCISES 2: LECTURE REPRESENTATION THEORY

Exercise 1. Show that a representation $\phi$ of dimension two is simple if and only if there is no common eigenvector to all $\phi_{g}$ with $g \in G$.
Exercise 2. Recall the module $V$ of $\mathbb{Z} / n \mathbb{Z}$ via the rotation action on an $n$ gon.


$$
\mathbb{Z} / 3 \mathbb{Z}=\left\{1, g, h \mid g^{2}=h, g^{3}=1\right\} .
$$

Show that $V$ is not simple.
Exercise 3. $S_{3}$ acts on a triangle by permuting the vertices:

## The symmetric group in three letters acts on a triangle via the rule

 " green $=1$, red $=2$, blue $=3$, and then permute":

Show that the associated $S_{3}$-module, call it $V_{\text {perm }}$, has a one-dimensional subrepresentation $V_{\text {triv }}$.
Exercise 4. Show that $V_{\text {perm }} / V_{\text {triv }}$ from Exercise 4 is simple.

- The exercises are optimal and not mandatory. Still, they are highly recommend.
- There will be 12 exercise sheets, all of which have four exercises.
- The sheets can be found on the homepage www.dtubbenhauer.com/lecture-rt-2022.html.
- Slogan: "Everything that could be finite is finite, unless stated otherwise.". For example, groups are finite and representations are on finite dimensional vector spaces.
- There might be typos on the exercise sheets, my bad, so be prepared.

