EXERCISES 1: LECTURE REPRESENTATION THEORY

Exercise 1. For any set X, let G = Aut(X) the group of automorphisms of X. Endow $\mathbb{K}X$ with the structure of a G-module, where \mathbb{K} is an arbitrary field.

Exercise 2. An example of Exercise 1 is the symmetric group S_n on $\{1, \ldots, n\}$ acting by permutation on an (n-1)-simplex. For example, when n = 4 the group S_4 acts on the tetrahedron:

The three displayed actions are the ones from (234) (left), (12)(34) (middle) and (34) when one labels the vertices 1 (right), 2 (top), 3 (front) and 4 (left).

After extending scalars to \mathbb{K} , show that this representation always has a S_n -invariant subspace (so a subrepresentation).

Exercise 3. Show that the rotational symmetries of ngons can be interpreted as a representation of $\mathbb{Z}/n\mathbb{Z}$ on \mathbb{C}^3 .

Exercise 4. For $k \in \mathbb{Z}$ show that $\phi_k \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{C}$ determined by $\phi(1) = \exp(2\pi i k/n)$ defines a representation of $\mathbb{Z}/n\mathbb{Z}$. When are ϕ_k and ϕ_l equivalent?

- ▶ The exercises are optimal and not mandatory. Still, they are highly recommend.
- ▶ There will be 12 exercise sheets, all of which have four exercises.
- ▶ The sheets can be found on the homepage www.dtubbenhauer.com/lecture-rt-2022.html.
- ▶ Slogan: "Everything that could be finite is finite, unless stated otherwise.". For example, groups are finite and representations are on finite dimensional vector spaces.
- ▶ There might be typos on the exercise sheets, my bad, so be prepared.