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Abstract. Quantum invariants are more than just topological invariants needed to tell objects
apart. They build bridges between topology, algebra, number theory and quantum physics helping
to transfer ideas, and stimulating mutual development. They also have a deep and interesting
connection to representation theory, in particular, to representations of quantum groups.

The goal of these lecture notes is to explain how categorical algebra gives a way to study
algebra and topology; in particular, how quantum invariants arise purely category theoretical.
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Introduction

Motivated by the Rosetta Stone, see Figure 1, here is the categorical Rosetta stone.
Category theory Algebra Topology Physics Logic

objects X algebraic data X manifold X system X proposition X
morphism f : X → Y relation f : X → Y cobordism f : X → Y process f : X → Y proof f : X → Y

monoidal product X ⊗ Y product data X ⊗ Y disjoint union X ⊗ Y joint systems X ⊗ Y conjunction X ⊗ Y
monoidal product f ⊗ g parallel relations f ⊗ g disjoint union f ⊗ g parallel process f ⊗ g parallel proofs f ⊗ g

Figure 1. The Rosetta stone: the top and middle texts are in ancient Egyptian
using hieroglyphic and Demotic scripts, respectively, while the bottom is in ancient
Greek. The decree has only minor differences among the three versions, so the
Rosetta stone became key to deciphering Egyptian hieroglyphs.
https://commons.wikimedia.org/wiki/File:Rosetta_Stone_BW.jpeg

In the 1980s we have witnessed the birth of a fascinating new mathematical field, often called
quantum algebra or quantum topology. The most spectacular achievements of this was to combine
various fields of mathematics and mathematical physics such as the theory of monoidal categories,
von Neumann algebras and subfactors, Hopf algebras, representations of semisimple Lie algebras,
quantum field theories, the topology of knots, etc., all centered around the so-called quantum
invariants of links.

In these lecture notes we focus our attention on the categorical aspects of the theory. Our goal
is the construction and study of invariants of knots and links using techniques from categorical
algebra only:

Goal. Use the left column of the categorical Rosetta stone to say something interesting
about the others; especially with the focus on quantum invariants.

Summarized in a picture, the goal is to describe the categorical analog of:

Algebra: non-commutative structures
Topology: knots and links

� �= �
Physics: particles in R3

Logic: ribbon logic
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1. Categories – definitions, examples and graphical calculus

The slogan for this first section is:

“Classical mathematics is based on sets, modern mathematics is based on categories.”

1A. A word about conventions.

Convention 1.1 Throughout, categories will be denoted by bold letters such as C or D, objects
by X, Y etc. and morphisms by e.g. f, g. Moreover, functors are denoted by F, G etc., while natural
transformations are denoted by Greek letters such as α. Further, for the sake of simplicity, we will
write X ∈ C for objects and (f : X → Y) ∈ C (or just f ∈ C) for morphisms f ∈ HomC(X, Y), and
also gf = g ◦ f for composition, which is itself denoted by ◦. (Note our reading conventions from
right to left, called operator notation.) When we write these we assume that the expression
makes sense.

Convention 1.2 There are some set theoretical issues with the definitions of some categories.
For example, the objects of Set are all sets, which do not form a set. These issues are completely
unimportant for the aims of these notes and ignored throughout.

Convention 1.3 Throughout, we will read any diagrammatics bottom to top, cf. Example 1.11,
and right to left, cf. (2-7). Moreover, the Feynman diagrams which we will use should be oriented,
but we employ the convention that “No orientation on Feynman diagrams means upward oriented
by default.”.

Convention 1.4 � will always denote some field, which we sometimes specialize to be e.g. of
characteristic zero. If we need an algebraically closed field we write K, and a general associative
and unital ring such as Z is denoted by S. (A lot of constructions which we will see are stated
over a field �, but could also be formulated over S. We find it however easier to think about a
field � and leave potential and easy generalizations to the reader.)

1B. Basics. We begin at the beginning:

Definition 1.5 A category C consists of

• a collection of objects Ob(C);

• a set of morphisms HomC(X, Y) for all X, Y ∈ C;

such that

(i) there exists a morphism gf ∈ HomC(X, Z) for all f ∈ HomC(X, Y) and g ∈ HomC(Y, Z);

(ii) there exists a morphism idX for all X ∈ C satisfying idYf = f = fidX for all f ∈ HomC(X, Y);

(iii) we have h(gf) = (hg)f whenever this makes sense.

The morphism gf is called the composition of g after f, while the morphism idX is called
the identity on X. The last condition in Definition 1.5 is called associativity of morphism
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composition as it is equivalent to associativity (and we henceforth omit all brackets). In particular,
EndC(X) = HomC(X, X) is always a monoid.

Example 1.6 Categories generalize many familiar concepts.

(a) Categories generalize monoids: given a monoid M, there is a category M with Ob(M) =
{•} (a dummy) and HomM(•, •) = M, where composition is the multiplication in M. The
picture for M = Z/4Z being the cyclic group with four elements is

•

0

1

2

3 , gf = f + g mod 4.

(b) Categories generalize monoids in another way: there is a category Mon whose objects
are monoids and whose morphisms are monoid maps.

(c) Categories generalize sets: there is a category Set whose objects are sets and whose
morphisms are maps.

(d) Categories generalize vector spaces: there is a category Vec� whose objects are � vector
spaces and whose morphisms are � linear maps. More general, the same construction
gives the category of S modules also, abusing notation a bit, denoted by VecS.

(e) Categories generalize vector spaces in another way: there is a category fdVec� whose
objects are finite dimensional � vector spaces and whose morphisms are � linear maps.

Remark 1.7 Note that categories are traditionally named after their objects, as e.g. Set, but
the main players are actually the morphisms.

Example 1.8 Later we often have categories which are denoted by Mod(A), which will be
module categories of A. For now we observe that Mod(Z), the category of abelian groups,
whose objects are abelian groups (equivalently, Z modules VecZ) and whose morphisms are group
homomorphisms, is a category.

Example 1.9 It is formally not correct to think of morphisms as maps. For example, there is
a category A3 having three objects and three non-identity morphisms arranged via

2

1 3

gf

gf

,(1-1)

having the evident composition rule. Thus, morphisms are more like “arrows” and not maps.

Remark 1.10 In (1-1) we have seen the first commutative diagram, which in general is a
certain oriented graph, in these lecture notes. This is always to be understood that all ways
composing along the various edges of the graph give the same result. In (1-1) this is easy as the
commutative diagram is a triangle and there are only two paths to compare, which are equal by
definition. However, things can get more complicated, of course, cf. Exercise 1.58.
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Example 1.11 Very important for these lecture notes are the following examples. We will
not define these formally, which is a bit painful, but rather stay with the informal, but handy,
definition. (Later we will be able to give alternative and rigorous constructions.)

(a) The category 1Cob of 1 dimensional cobordisms. Its objects are 0 dimensional
manifolds, a.k.a. points •n = •...• for n ∈ N, and its morphisms are 1 dimensional
cobordisms between these, a.k.a. strands, illustrated as follows:

Y
f ↑

X
= ,

Z
g ↑

Y
= ,

where X = • • •, Y = • • • • • and Z = •. Composition is stacking g on top of f:

Z
gf ↑

X
= .

(b) The category 1Tan of 1 dimensional tangles. This is the same as 1Cob, but now
remembering some embedding into R3, illustrated as follows:

Y
f ↑

X
= ,

Z
g ↑

Y
= ,

where X = • • •, Y = • • • • • and Z = •. Composition is stacking g on top of f:

Z
gf ↑

X
= .

(c) The category 1State of 1 dimensional states (sometimes called oriented tangles),
which is the category of particles moving in space with objects being particles and
morphisms being worldlines. Said otherwise, it is the same as 1Tan, but now remembering
some orientation, illustrated as follows:

Y
f ↑

X
= ,

Z
g ↑

Y
= ,
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where X = (•�) • •, Y = • • •(•�)•� and Z = •, a notation which will become clear in later
sections. Composition is stacking g on top of f:

Z
gf ↑

X
= .

Definition 1.12 For any category C, the pair category C×C is the category whose objects
and morphisms are pairs of their corresponding types, i.e.

Ob(C×C) =
�

(X, Y) | X, Y ∈ C
�

, HomC×C
�
(X, Y), (Z, A)

�
= HomC(X, Z) × HomC(Y, A),

and whose composition is defined componentwise.

Definition 1.13 For any category C, the opposite category Cop is the category with the
same objects and morphisms, but reversed composition:

C Cop

Reversed ◦? No Yes
.(1-2)

We also write fop for opposite morphisms.

1C. Feynman diagrams. We now discuss a convenient notation for categories, sometimes called
Feynman (or Penrose) diagrams, but we will also say e.g. diagrammatics.

Given a category C we will denote objects X ∈ C and morphisms f ∈ C via

X �

X

X �
= X

�
, f �

X

f

Y

, idX �

X

X

=

X

idX

X

.(1-3)

From now on we use the convention from Convention 1.3, meaning we omit the orientations.

Remark 1.14 This notation is “Poincaré dual” to the one f : X → Y since, in diagrammatic
notation, objects are strands and morphisms points, illustrated as coupons, see (1-3).

Composition is horizontal stacking, i.e.

Z

h

A

◦




Y

g

Z

◦

X

f

Y

 =

X

f
Y

g
Z

h

A

=




Z

h

A

◦

Y

g

Z

 ◦

X

f

Y

.(1-4)
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The formal rule of manipulation of these diagrams is:
“Two diagrams are equivalent if they are

related by scaling.”
.(1-5)

The following is (almost) evident.

Theorem 1.15 The graphical calculus is consistent, i.e. two morphisms are equal if and only if
their diagrams are related by (1-5).

Proof. Note that associativity is implicitly used as we have only one way to illustrate h(gf) = (hg)f
as shown in (1-4), while

Y

Y

◦

X

f

Y

=

X

f

Y

=

X

f

Y

◦

X

X

shows the identity axiom. �

Remark 1.16 Later, with more structure at hand, these diagrams will turn out to be a (quite
useful) 2 dimensional calculus. For now they are rather 1 dimensional.

1D. Maps between categories. A map between categories is:

Definition 1.17 A functor F: C → D between categories C and D is a map sending

• X ∈ C to an object F(X) ∈ D;

• (f : X → Y) ∈ C to a morphism
�
F(f) : F(X) → F(Y)

�
∈ D;

such that

(i) composition is preserved, i.e. F(gf) = F(g)F(f);

(ii) identities are preserved, i.e. F(idX) = idF(X).

Example 1.18 There is an identity functor IdC : C → C, sending each object and each
morphism to themselves.

A functor sends objects to objects and morphisms to morphisms in such a way that all relevant
structures are preserved, and can thus be seen as a morphisms between categories. Note further
that one can compose functors in the evident way (with the identity functors being identities)
and the result is again a functor:

Lemma 1.19 If F and G are functors, then so is GF. �

Example 1.20 Hence, we get the prototypical example of a category: Cat, the category of
categories, whose objects are categories and whose morphisms are functors.

Example 1.21 Functors generalize many familiar concepts.
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(a) Functors generalize monoid maps: a functor F: M → M� between monoid categories M
and M�, as in Example 1.6.(a), is a homomorphism of monoids.

(b) Functors generalize models: a functor F: M → Set between a monoid category M and
Set assigns a set F(•) to • and an endomorphism F(f) of F(•) to f ∈ M, which can be
seen as a concrete model of the underlying monoid M.

(c) Functors generalize representations: a functor F: M → Vec� between a monoid category
M and Vec� assigns a � vector space F(•) to • and a � linear endomorphism F(f) of F(•)
to f ∈ M, which can be seen as a representation of the underlying monoid M.

(d) Functors generalize forgetting: there is a functor Forget : Vec� → Set which forgets the
underlying � linear structure.

(e) Functors generalize free structures: there is a functor Free: Set → Vec� for which Free(X)
is the free � vector space with basis X and Free(f) is the � linear extension of f.

Finally, note that any functor F: C → D gives rise to a natural map

HomC(X, Y) → HomD
�
F(X), F(Y)

�
, f �→ F(f),

which we often use without further comment. In particular:

Example 1.22 There are hom functors:

HomC(X, −) : C → Set,

�
Y �→ HomC(X, Y),
f �→ (f ◦ −),

HomC(−, X) : Cop → Set,

�
Y �→ HomC(Y, X),
f �→ (− ◦ f).

Remark 1.23 A functor F: Cop → D, such as HomC(−, X), is sometimes seen as a contravari-
ant functor F: C → D, meaning that F(gf) = F(f)F(g) holds instead of F(gf) = F(g)F(f).

1E. Maps between maps between categories. A map between functors is:

Definition 1.24 A natural transformation α : F ⇒ G between functors F, G: C → D is a
collection of morphisms in D

{αX : F(X) → G(X) | X ∈ C}

such that the following diagram commutes for all f ∈ C:

F(X) F(Y)

G(X) G(Y)

F(f)

αX αY

G(f)

.(1-6)



QUANTUM TOPOLOGY WITHOUT TOPOLOGY 9

Remark 1.25 The diagram in (1-6) (which is the classical way of illustrating natural transfor-
mations, sometimes also called natural or naturality) is of course the same as

G
α ⇑

F
�

G(X) G(Y)

F(X) F(Y)

G(f)

F(f)

αX αY ,

which, using our reading conventions, is saying that α can be seen as a morphism from F to G.

There is of course a composition of natural transformations, called the vertical composition
and denoted by ◦, of natural transformations given by

H
β ⇑

G
α ⇑

F

�

H(X) H(Y)

G(X) G(Y)

F(X) F(Y)

H(f)

G(f)

βX βY

F(f)

αX

βαX

αY

βαY .(1-7)

Example 1.26 There is an identity natural transformation IDF : F → F, (IDF)X = idX.

Clearly:

Lemma 1.27 If α and β are natural transformations, then so is βα. �

Example 1.28 By Lemma 1.27, there is a category Hom(C, D), the category of functors
from C to D. Its objects are all such functors and its morphisms are natural transformations,
with composition being vertical composition. A special case are endofunctors, whose category
we denote by End(C) = Hom(C, C), which will play an important role.

Example 1.29 Natural transformations generalize intertwiners (a.k.a. maps of representations):
given two representations F, G: M → Vec� as in Example 1.21.(c), a natural transformation
between them would provide a commuting diagram

F(•) F(•)

G(•) G(•)

F(f)

α• α•

G(f)

⇒ F(f)α• = α•G(f),

where F(•) and G(•) are the � vector spaces associated to the representations, and α• : F(•) → G(•)
is a � linear map between them.

Example 1.30 Having a monoid category M, the category Hom(M, Vec�) can be identified
with all representations of the underlying monoid.

1F. Some notions which we will need. Up next, some category theoretical notions.
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Definition 1.31 Let (f : X → Y) ∈ C.

(i) f is called an isomorphism if there exists a (g : Y → X) ∈ C such that

gf = idX, fg = idY.

(ii) f is called a monomorphism or monic if it is left-cancellative, i.e.

(fh = fi) ⇒ (h = i) for all h, i ∈ C.

(iii) f is called a epimorphism or epic if it is right-cancellative, i.e.

(hf = if) ⇒ (h = i) for all h, i ∈ C.

The following is the usual Yoga:

Lemma 1.32 If f ∈ C is an isomorphism, then g ∈ C as in Definition 1.31.(i) is unique.
Moreover, such an f is monic and epic. �

Thus, we can just denote the g as in Definition 1.31.(i) as f−1 and call it the inverse of f.

Example 1.33 In a lot of categories, e.g. Set or Vec� the three notions in Definition 1.31
correspond to bijective, injective and surjective morphisms, respectively. However, this is slightly
misleading: all non-identity morphisms in A3, cf. Example 1.9, are monic and epic, but none of
these is an isomorphism, nor does being injective or surjective make sense.

Definition 1.34 Let X, Y, Z ∈ C, and all morphisms are assumed to be in C.

(i) X and Y are called isomorphic, denoted by X ∼= Y, if there exists an isomorphism f : X → Y.

(ii) X is called a subobject of Y, denoted by X �→ Y, if there exists a monic morphism
f : X → Y.

(iii) Y is called a quotient of X, denoted by X � Y, if there exists an epic morphism f : X → Y.

(iv) X is called a subquotient of Z if there exists Y and a sequence X � Y �→ Z, i.e. if X is a
quotient of a subobject of Z.

Note that fixing an isomorphism f : X → Y also gives us a unique isomorphism f−1 : Y → X, a fact
which we will use silently throughout.

Example 1.35 Note that e.g. being isomorphic depends on the category one is working in.
Explicitly, Z/4Z and Z/2Z×Z/2Z are clearly isomorphic in Set, but not in Mod(Z) since the
corresponding morphisms in Set are not homomorphisms of abelian groups.

Example 1.36 For C, D ∈ Cat, by using Definition 1.34.(a), we get the notions of two
categories being isomorphic, denoted by C ∼= D.
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Example 1.37 For F, G ∈ Hom(C, D), by using Definition 1.34.(a), we get the notions of
two functors being isomorphic. In particular, F ∈ Hom(C, Set) is called representable (a
particular nice functor), if its isomorphic to a hom functor as in Example 1.22.

We will also use the notion ∼=, �→ and � for the morphisms, e.g. f : X �→ Y means that f is monic.
The following is clear.

Lemma 1.38 The three notions ∼=, �→ and � are reflexive and transitive, meaning e.g.
�
X �→ Y and Y �→ Z

�
⇒ (X �→ Z), for all X, Y, Z ∈ C,

and ∼= is symmetric, thus, an equivalence relation. �

Definition 1.39 Let C, D ∈ Cat.

(i) C is called a subcategory of D, denoted by C ⊂ D, if Ob(C) ⊂ Ob(D), HomC(X, Y) ⊂
HomD(X, Y) for all X, Y ∈ C, and idX ∈ C for all X ∈ C.

(ii) Such a subcategory is called dense if for all Y ∈ D there exists X ∈ C such that X ∼= Y.

(iii) Such a subcategory is called full if HomC(X, Y) = HomD(X, Y) for all X, Y ∈ C.

Example 1.40 We have fdVec� ⊂ Vec�, and fdVec� is full, but not dense, in Vec�.

Using Lemma 1.38 we can define:

Definition 1.41 Let Ob(C)/ ∼= be a choice of representatives of Ob(C)/ ∼=. Given a category
C, its skeleton Sk(C) is the full subcategory with objects Ob(C)/ ∼=.

Formally the skeleton depends on the choice of representatives. However, we can (and will) be
sloppy and say that there is “the” skeleton:

Lemma 1.42 For any Ob(C)/ ∼=, the corresponding skeletons are isomorphic. �

A category is called skeletal, if its isomorphic to its skeleton.

Example 1.43 The skeleton of fdVec� can be identified with Mat�, i.e. Sk(fdVec�) ∼= Mat�.
Here Mat� is the category of matrices whose objects are natural numbers m, n ∈ N, and
HomMat�(n, m) = Matm×n(�), i.e. matrices with entries in �, and Mat� is skeletal.

Definition 1.44 We let K0(C) = Ob(C)/ ∼= , and call it the Grothendieck classes of C.
Elements in K0(C) are Grothendieck classes of X ∈ C and denoted by [X].

We think of K0(C) as capturing all information about the objects of C. For an arbitrary category
K0(C) is just a set, but when C has more structure, then so does K0(C).

Example 1.45 We can identify K0(fdVec�)
∼=−→ N as sets, the map being [�n] �→ n, since any

X ∈ fdVec� is isomorphic to �n for some n ∈ N.
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Note that fdVec� and Mat� in some sense contain the same information, but they are not
isomorphic: fdVec� �∼= Mat�. This is due to the fact that isomorphisms of categories give
bijections on objects. But recall that we “do not care about objects”. So maybe asking

IdC = GF, FG = IdD

is a bit too much. This motivates the following “correct” notion of equivalence of categories:

Definition 1.46 Let C, D ∈ Cat. The categories C and D are called equivalent, denoted by
C � D, if there exists F: C → D and G: D → C such that

IdC ∼= GF, FG ∼= IdD,

where ∼= is taken in Hom(C, D), cf. Example 1.37

Remark 1.47 In Feynman diagrammatics for Hom(C, D) there is a nice interpretation of
equivalence. To this end, let us fix

ι : IdC
∼=−→ GF, ε : FG

∼=−→ IdD,

sometimes also called unit and counit. Then these can be pictured as caps and cups

ι �
X

ι

G F

, ε �
X

ε

F G
,

where we have not drawn strands for the identity functors, by the usual convention. Later, with
more structure at hand, we will revisit such diagrams, which then become topological objects.

Functors as in Definition 1.46 are called equivalences and they are quasi-inverse to each other.
Clearly, isomorphic categories are equivalent, but the converse is not true:

Example 1.48 Any category C is equivalent to its skeleton, but not necessary isomorphic.
Explicitly, fdVec� � Mat�, but fdVec� �∼= Mat�.

Example 1.49 The category fSet, which is the full subcategory of Set with objects being
finite sets, is not skeletal.

Example 1.50 The category fSet∼=, which is the subcategory of fSet with the same objects,
but only bijections, is not skeletal. Its skeleton is Symtop which is the subcategory of 1Cob, cf.
Example 1.11.(a), with the same objects but only cobordisms without Morse points (a.k.a. no
turnbacks). A typical diagram in Symtop is a permutation diagram, e.g.

.

Note that HomSymtop(•m, •n) = ∅ unless m = n.

Let us also note:



QUANTUM TOPOLOGY WITHOUT TOPOLOGY 13

Lemma 1.51 Any functor F ∈ Hom(C, D) induces a map

K0(F) : K0(C) → K0(D), [X] �→ [F(X)].

Further, if F is an equivalence, then K0(F) is an isomorphism. �

If one wants to check whether two categories are equivalent one almost always uses:

Proposition 1.52 A functor F: C → D is an equivalence if and only if

• it is dense (also called essentially surjective), i.e.

for all Y ∈ D there exist X ∈ C such that F(X) ∼= Y;

• it is faithful, i.e.

HomC(X, Y) �→ HomD
�
F(X), F(Y)

�
for all X, Y ∈ C;

• it is full, i.e.

HomC(X, Y) � HomD
�
F(X), F(Y)

�
for all X, Y ∈ C.

If a functor is full and faithful, then we also say its fully faithful.

Proof. The proof is what is called diagram chasing.

⇒. Let (F, G, ι, ε) as in Remark 1.47 define the equivalence. By εX : FG(Y)
∼=−→ Y we see that F is

dense. To see that F is faithful consider the commuting diagram

X GF(X)

X� GF(X�)

f or g

∼=
ιX

GF(f) or GF(g)
ιX�
∼=

.

Assuming that GF(f) = GF(g), by Exercise 1.59, implies that f = g which in turn implies that F
is faithful. Very similar arguments, using again Exercise 1.59, show that F is full.

⇐. Suppose that F is dense and fully faithful, so we need to construct the quadruple (F, G, ι, ε)
as in Remark 1.47. First, using density, we find an object G(Y) for all Y ∈ D as well as an
isomorphism εY : FG(Y)

∼=−→ Y. Thus, for each f : Y → Y� we find a unique solution FG(f) to make

FG(Y) Y

FG(Y�) Y�

FG(f)

∼=
εY

f
εY�
∼=

commutative, by Exercise 1.59. Hence, fully faithfulness of F defines us G(f). Scrutiny of this
construction actually show that G(Y) and G(f), and εY assemble into a functor and a natural
transformation, respectively. It remains to construct ιX (and prove that these give rise to a natural
transformation), which can be done in a similar fashion. �

Definition 1.53 A category C is called concrete if it admits a faithful functor, called its
realization, R: C → Set.

Example 1.54 The functor Forget, cf. Example 1.21.(d), realizes Vec� as a concrete category.
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The following is arguably the most important statement in classical category theory and know as
the Yoneda lemma. We will not need it, and only give a reference for its proof, but any text
on category theory without it feels like “missing something”. So here we go:

Theorem 1.55 For any F ∈ Hom(C, Set) and any X ∈ C there is a bijection

HomHom(C,Set)
�
HomC(X, −), F

�
→ F(X),

�
α : HomC(X, −) ⇒ F

�
�→ αX(idX).

Moreover, this correspondence is natural in both F and X.

Proof. Proofs are tend to be a bit technical and longish. We do not need the Yoneda lemma
much, so we refer to [Ma98, Section III.2]. �

As a consequence we have the Yoneda embedding(s) given by the Yoneda functor(s):

Proposition 1.56 Fix C ∈ Cat. We have fully faithful functors
�

Y: C → Hom(Cop, Set),
X �→ HomC(−, X), (f : X → Y) �→

�
f ◦ − : HomC(−, X) → HomC(−, Y), g �→ fg

�
,

�
Yop : Cop → Hom(C, Set),
X �→ HomC(X, −), (f : X → Y)op �→

�
− ◦ f : HomC(Y, −) → HomC(X, −), g �→ gf

�
.

Hence, C and Cop are full subcategories of Hom(Cop, Set) respectively of Hom(C, Set).

Proof. From the construction of the Yoneda functors we see that we have injections

HomC(X, Y) �→ HomHom(C,Set)
�
HomC(X, −), HomC(Y, −)

�
,

HomC(X, Y) �→ HomHom(C,Set)
�
HomC(−, X), HomC(−, Y)

�
.

(1-8)

Further, Theorem 1.55 implies that every natural transformation between represented functors
arises in this way, showing that (1-8) are bijections. Comparing this to the second and third bullet
points in Proposition 1.52, which define the notion of being fully faithful, shows the claim. �

Example 1.57 For the category A3 from Example 1.9 the Yoneda functor Yop associates

Y(1) =
�

HomA3(1, −) : A3 → Set,

�
1 �→ {id1}, 2 �→ {f}, 3 �→ {gf}
f �→ (id1 �→ f), g �→ (id2 �→ g), gf �→ (id1 �→ gf),

�
,

etc., which identifies (A3)op with the functors of the form HomA3(i, −) for i ∈ {1, 2, 3}.

1G. Exercises.

Exercise 1.58 Given the following diagram in some category.
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If all the numbered subdiagrams commute, does it follow that the diagram itself is commutative?

Exercise 1.59 Given f : X → Y and fixed isomorphisms X ∼= X� and Y ∼= Y�, there exists a unique
f � : X� → Y� such that any, or, equivalently, all, of the following diagrams commute:

X Y

X� Y�
f

∼=

f�

∼=

,

X Y

X� Y�
f

∼=

f�

∼=

,

X Y

X� Y�
f

∼=

f�

∼=

,

X Y

X� Y�
f

∼=

f�

∼=

.

Exercise 1.60 Consider the following statement: “In every concrete category C with realization
R, a morphism f ∈ C is an isomorphism ⇔ R(f) ∈ Set is an isomorphism.”. Is this claim true or
false? Is at least one of the two directions, meaning ⇒ or ⇐, correct?

Exercise 1.61 What is the skeleton of the category fSet from Example 1.49?

Exercise 1.62 Let F ∈ Hom(C, D) be an equivalence of categories. Show that f ∈ C is monic
(or epic, or an isomorphism) if and only if F(f) ∈ D is monic (or epic, or an isomorphism).

2. Monoidal categories I – definitions, examples and graphical calculus

We have seen Feynman diagrams for categories, but they are a 1 dimensional. So:

What are the right axioms to get a 2 dimensional diagrammatic calculus?
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2A. Motivating example. If one considers the vertical composition of natural transformations
(1-7), then it seems there should be a second, horizontal composition ⊗:

G(X) G(Y)

G(X) G(Y)

G(f)

βX

G(f)

βY ⊗
F(X) F(Y)

F(X) F(Y)

F(f)

αX

F(f)

αY =
GF(X) GF(Y)

GF(X) GF(Y)

GF(f)

(β⊗α)X

GF(f)

(β⊗α)Y .(2-1)

As we will see, there is indeed such a second composition.

2B. A more down to earth motivating example. Recall from Definition 1.12 that we can
form the pair category Set×Set. Note that we have a functor

⊗ : Set×Set → Set, ⊗
�
(X, Y)

�
= X ⊗ Y = X × Y, ⊗

�
(f, g)

�
= f ⊗ g = f × g,

where we already use the usual standard notation,meaning writing e.g. X ⊗ Y instead of ⊗
�
(X, Y)

�
,

for these kinds of functors.

The functor ⊗ is actually a bit better: it is a bifunctor. This mean that it satisfies an identity
rule and the interchange law, i.e.

idX ⊗ idY = idX⊗Y, (gf) ⊗ (kh) = (g ⊗ k)(f ⊗ h).(2-2)

Note the following:

• This is only weakly associative, i.e.

X ⊗ (Y ⊗ Z) �= (X ⊗ Y) ⊗ Z, but rather X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y) ⊗ Z,

because the set X ⊗ (Y ⊗ Z) contains elements of the form
�
x, (y, z)

�
, while (X ⊗ Y) ⊗ Z

contains elements of the form
�
(x, y), z

�
.

• Similarly, this operation has � = {•} as a unit, but it is again only a weak unit, meaning

�⊗ X �= X �= X ⊗ �, but rather �⊗ X ∼= X ∼= X ⊗ �.

2C. A word about conventions. As we have seen in the example above, there are two
operations for morphisms ◦ and ⊗, but only one ⊗ for objects. Recall, cf. Convention 1.1, that
we already abbreviate gf = g ◦ f, and we will do the same for objects:

Convention 2.1 We will write XY = X ⊗ Y for simplicity, and similarly we write Xk instead of
k ∈ N factors of the form X ⊗ ... ⊗ X

Convention 2.2 Although monoidal categories, functor etc. usually consists of a choice of
extra data, we will for brevity often just write e.g. C for a monoidal category. We also e.g. write
“C is a monoidal category” when the choice of monoidal structure is clear from the context.

Convention 2.3 There will be several places where we have two or more monoidal categories
with potentially different structures. However, in order not to overload the notation we will write
e.g. � for all of them instead of for example �C.
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2D. Basics. The definition of a monoidal category is a mouthful (but we will get rid most of the
complication later in Theorem 2.32):

Definition 2.4 A monoidal category (C, ⊗,�, α, λ, ρ) consists of

• a category C;

• a bifunctor (cf. (2-2))

⊗ : C×C → C, ⊗
�
(X, Y)

�
= XY, ⊗

�
(f, g)

�
= f ⊗ g,

called monoidal product;

• a unit (object) � ∈ C;

• a collection of natural isomorphisms

αX,Y,Z : X(YZ)
∼=−→ (XY)Z,(2-3)

for all X, Y, Z ∈ C, called associators;

• a collection of natural isomorphisms

λX : �X
∼=−→ X, ρX : X�

∼=−→ X,(2-4)

for all X ∈ C, called left and right unitors;

such that

(i) the equality holds, i.e. we have commuting diagrams
�
(XY)Z

�
A

(XY)(ZA)
�
X(YZ)

�
A

X
�
Y(ZA)

�
X
�
(YZ)A

�

αXY,Z,A αX,Y,Z⊗idA

idX⊗αY,Z,A

αX,Y,ZA αX,YZ,A

,

for all X, Y, Z, A ∈ C.

(ii) the equality holds, i.e. we have commuting diagrams

XY

X(�Y) (X�)Y

idX⊗λY

αX,�,Y

ρX⊗idY
,

for all X, Y ∈ C.

Remark 2.5 There is a hidden equality, coming from naturality,

X�(Y�Z�) (X�Y�)Z�

X(YZ) (XY)Z

αX�,Y�,Z�

αX,Y,Z

f⊗(g⊗h) (f⊗g)⊗h ,

which holds for all for all X, Y, Z ∈ C and all f, g, h ∈ C.
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Definition 2.6 A monoidal category C is called strict if all associators and unitors are
identities, and non-strict otherwise.

Example 2.7 Monoidal categories arise in the wild.

(a) As seen above, Set with ⊗ = × and � = {•} is a non-strict monoidal category.

(b) Similarly, Vec� or fdVec� with ⊗ = ⊗� and � = � are non-strict monoidal categories.

(c) The skeletons of the three examples above, with the same monoidal structures, are strict
monoidal categories.

Example 2.8 Monoidal structures on categories are far from being unique. For example, Vec�
and fdVec� have another monoidal structure given by ⊗ = ⊕ and � = {0}, which is again
non-strict. We will however always use the monoidal structures in Example 2.7.(b).

Example 2.9 Diagrammatic categories such as 1Cob, 1Tan and 1State, cf. Example 1.11,
have (often) a monoidal structure given by ⊗ being juxtaposition, e.g.

⊗ = .

and � being the empty diagram. These monoidal structures are strict.

The following is in some sense the motivation for the name “monoidal category”. Recall hereby
the Grothendieck classes K0(C) of C, see Definition 1.44.

Proposition 2.10 For any monoidal category C its Grothendieck classes K0(C) form a monoid
with multiplication and unit

[X][Y] = [XY], 1 = [�].

Proof. Directly from the definitions, e.g. the associator (2-3) and the unitors (2-4) descent to
associativity and unitality on K0(C). �

Example 2.11 Coming back to Example 1.45, K0(fdVec�)
∼=−→ N with [�n] �→ n is an isomor-

phism of monoids.

Example 2.9 gives important examples of strict monoidal categories, while crucial examples of
non-strict monoidal categories are the monoidal incarnations of groups. These are very different
from the ones we have, noting that every group is of course a monoid, seen in Example 1.6.(a):

Example 2.12 Let G be a group.

(a) The category Vec(G) is the category with Ob
�
Vec(G)

�
= G, and whose morphisms are

only identities. The monoidal product is i ⊗ j = ij, with i, j, ij ∈ G. For example, if
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G = Z/2Z × Z/2Z, then we have

(0, 0) (1, 0) (0, 1) (1, 1)

id(0,0) id(1,0) id(0,1) id(1,1)

, (a, b) ⊗ (c, d) = (a + c, b + d),

HomVec(G)(i, j) =
�

{idi} if i = j,

∅ if i �= j.

Thus, as a category Vec(G) is rather boring and the point is the monoidal structure,
which is strict, by construction.

(b) We also have the � linear version Vec�(G) of Vec(G). The only difference is that the
endomorphisms are now given by scalars times the identities:

HomVec�(G)(i, j) ∼=
�
� if i = j,

0 if i �= j.

The monoidal category Vec�(G) is strict.

(c) Let ω ∈ Z3(G,C∗) be a 3 cocycle of G, see Remark 2.13. Then we can define a monoidal
category Vecω

C(G) exactly as above, but with associator and unitors

αi,j,k = ω(i, j, k)idijk λi = ω(1, 1, i)−1idi, ρi = ω(i, 1, 1)idi.(2-5)

Explicitly, for G = Z/2Z we have H3(G,C∗) ∼= Z/2Z and the non-trivial ω has ω(1, 1, 1) =
−1. Finally, note that Vec1

C(G) = VecC(G), but for a non-trivial ω ∈ H3(G,C∗) the
monoidal category Vecω

C(G) is non-strict and skeletal at the same time.

Remark 2.13 For a group G, one can define a cohomology theory H∗(G,C∗), called group
cohomology. As usual these are constructed from a certain cochain complex and H i(G,C∗) =
Zi(G,C∗)/Bi(G,C∗), so i cocycles modulo i coboundaries. All we need to know about group
cohomology are the 3 cocycles which are functions ω : G × G × G → C∗ satisfying

ω(j, k, l)ω(i, jk, l)ω(i, j, k) = ω(ij, k, l)ω(i, j, kl),

pictorially:

•

• •

• •

ω(ij, k, l) ω(i, j, k)

ω(j, k, l)

ω(i, j, kl) ω(i, jk, l)

.(2-6)

Comparing (2-6) and Definition 2.4 shows that scaling as in (2-5) satisfies the and equations.

Remark 2.14 Note that for Vec(G) or Vec�(G) we can also allow monoids M instead of
groups G, or work over rings S, but for Vecω

S (M) one would need to be careful how to define it.
For example, our cocycles take values in C∗, but one could let them take values in e.g. �∗.

A good question is whether we can “ignore” non-strict monoidal categories since working with
associators and unitors is a bit messy. However, Example 2.12.(c) suggests that one can not
simply go to the skeleton, although this works for monoidal categories such as fdVec�. We can
only answer this question after we have a bit more technology at hand.



20 DANIEL TUBBENHAUER

2E. Feynman diagrams for monoidal categories. Motivated by Example 2.9, we get the
following Feynman diagrammatics for strict monoidal categories. That is, given a strict monoidal
category C, we can depict ⊗ as juxtaposition and the unit as an empty diagram, e.g.

�� ∅, XY �

X

X

Y

Y

, g ⊗ f �

Z

g

A

X

f

Y

.(2-7)

Note the cute fact that we do not need to be careful with the relative heights in (2-7) since the
interchange law (2-2) implies that

(idA ⊗ f)
◦

(g ⊗ idX)
�

Z

g

A

X

f

Y

=

Z

g

A

X

f

Y

�
(g ⊗ idY)

◦
(idZ ⊗ f)

.(2-8)

We can also illustrate morphisms with many ⊗ inputs nicely, e.g.

f : XYZ → AB �

Y

f

X Z

A B

.(2-9)

However, note that there are two drawbacks. First, diagrammatic calculus, by its very definition,
is not suitable for non-strict monoidal categories. Second, although (2-8) looks promising, we do
not have a 2 dimensional calculus yet as we are not allowed to change the upwards orientation of
diagrams (recall Convention 1.3), e.g.

Y

f

X Z

A
B

(2-10)

is not an allowed diagram.

Remark 2.15 One should stress here that (2-10) and the text around it is not a contradiction
to Example 2.9: in that example the diagrams actually are just abbreviations for upwards oriented
Feynman diagrams, e.g.

�
Y

cap

• •�
,

where • and •� are the two generating objects of 1State, as we will see. (Note that the unit is
omitted from diagrams, cf. (2-7).)

Example 2.16 By our convention that � is diagrammatically presented by the empty diagram,
it follows that every morphisms f : � → � is presented by a floating diagram:

f : � → �� f .
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We discuss how to incorporate non-strict monoidal categories below; the flaw of having only
upward oriented diagrams will be taken care of in Section 4.

2F. Coherence for monoids. For starters, let us compare two definitions of a monoid M, with
Def1 being the one that you will usually find in written texts:

Def1 a set M multiplication unit h(gf) = (hg)f
Def2 a set M multiplication unit associativity

,(2-11)

where “associativity” means that all ways of using parentheses agree. Both definitions have their
advantages: Def2 is arguably the correct definition, but Def1 is much more useful in practice and
one only needs to check h(fg) = (hg)f instead of infinitely many bracketings. So one would like
to have the following, called coherence theorem for monoids, which is rarely stated:

Theorem 2.17 The two definitions in (2-11) are equivalent.

Proof. Clearly, Def2 implies Def1. To see that Def1 implies Def2, we argue diagrammatically.
The condition h(gf) = (hg)f can be pictured as

h(gf)

h fg

=

(hg)f

h fg

.(2-12)

However, successively applying this equality gives

...

=

...

= ... =

...

.(2-13)

(Actually, these are not aligned, cf. (2-14).) Thus, all ways of putting parenthesis agree. �

The above can also be stated differently. Let Kn be the 1 dimensional CW complex (a.k.a. graph)
obtained by adding an edge to the disjoint union of the graphs in (2-13) (with n endpoints) for
each application of (2-12), connecting the corresponding graphs. For example,

K4 =(2-14)

Then the above can be rephrased as π0(Kn) = 0.

2G. Coherence for monoidal categories. With respect to the discussion about coherence for
monoids, in particular, (2-11), here is Def2 for monoidal categories with Def1 being Definition 2.4.

Definition 2.18 A monoidal category (C, ⊗,�, α, λ, ρ) consists of

• a category C;
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• a bifunctor (cf. (2-2))

⊗ : C×C → C, ⊗
�
(X, Y)

�
= XY, ⊗

�
(f, g)

�
= f ⊗ g,

called monoidal product;

• a unit (object) � ∈ C;

• a collection of natural isomorphisms

αX,Y,Z : X ⊗ (Y ⊗ Z)
∼=−→ (X ⊗ Y) ⊗ Z,

for all X, Y, Z ∈ C, called associators;

• a collection of natural isomorphisms

λX : �X
∼=−→ X, ρX : X�

∼=−→ X,

for all X ∈ C, called left and right unitors;

such that “every formal diagram” made up of associators and unitors commutes.

We will not define what “every formal diagram” means precisely as this gets a bit technical.
Moreover, we will only sketch a proof of the coherence theorem for monoidal categories
(also known as Mac Lane’s coherence theorem), which is up next, for the very same reason.

Theorem 2.19 The two definitions Definition 2.4 and Definition 2.18 are equivalent.

Proof. Let us sketch how this can be proven, following the exposition in [Ka93]. (A completely
different proof is due to Mac Lane, see [Ma98, Section VII.2].) Let us focus on associators, the
idea of the proof with unitors is exactly the same.

The proof works by constructing certain polytopes Kn, sometimes called Stasheff polytopes.
These are 2 dimensional analogs of the graphs we have seen in the proof of Theorem 2.17, and
constructed from the two relevant commuting diagrams, and equations. For example,

,

(the picture is taken from [Ka93]) so K4 is just the equation. Then one needs to show that
π1(Kn) = 1. �
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Note the analogy: In the 1 dimensional case (for monoids, categories etc.) one needs to assume
that K3 is “nice”, and all other polytopes will then also be “nice”. On the other hand, in the 2
dimensional case (for monoidal categories etc.) one needs to assume that K4 is “nice”.

2H. Monoidal functors, natural transformations and equivalences. First things first:

Definition 2.20 A monoidal functor (F, ξ, ξ�) with F ∈ Hom(C, D) consists of

• a functor F;

• a collection of natural isomorphisms

ξX,Y : F(X)F(Y)
∼=−→ F(XY),

for all X, Y ∈ C;

• a natural isomorphism

ξ� : �
∼=−→ F(�);

such that

(i) the equality holds, i.e. we have a commuting diagram

�
F(X)F(Y)

�
F(Z) F(XY)F(Z)

F(X)
�
F(Y)F(Z)

�
F
�
(XY)Z

�

F(X)F(YZ) F
�
X(YZ)

�

ξX,Y⊗idF(Z)

ξXY,ZαF(X),F(Y),F(Z)

idF(X)⊗ξY,Z

ξX,YZ

F(αX,Y,Z)

,

for all X, Y, Z ∈ C;

(ii) a left and a right equation holds, i.e. we have commuting diagrams

�F(X) F(�)F(X)

F(X) F(�X)

ξ�⊗idF(X)

λF(X) ξ�,X

F(λX)

,

F(X)� F(X)F(�)

F(X) F(X�)

idF(X)⊗ξ�

ρF(X) ξX,�

F(ρX)

,

for all X ∈ C.

Definition 2.21 A monoidal natural transformation α : F ⇒ G between monoidal functors
F, G ∈ Hom(C, D) is a natural transformation such that

(i) for all X, Y ∈ C there is a commuting diagram

G(X)G(Y) G(XY)

F(X)F(Y) F(XY)

ξX,Y

ξX,Y

αX⊗αY αXY ;
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(ii) there is a commuting diagram

�

F(�) G(�)

ξ�ξ�

α�

.

Lemma 2.22 We have the following.

(i) If F and G are monoidal functors, then so is GF.

(ii) If α and β are monoidal natural transformations, then so is βα. �

Thus, since the identity functor has an evident structure of a monoidal functor:

Example 2.23 We get further examples of (plain) categories.

(a) There is a category MCat, the category of monoidal categories. Its objects are
monoidal categories and its morphisms are monoidal functors.

(b) There is a category Hom⊗(C, D), the category of monoidal functors from C to D.
Its objects are monoidal functors and its morphisms are monoidal natural transformations,
with vertical composition (1-7).

Example 2.24 Given any category C, the category End(C) of its endofunctors is a strict
monoidal category:

• the composition ◦ is vertical composition of natural transformations (1-7);

• the monoidal product on objects is G ⊗ F = GF, i.e. composition of functors;

• the monoidal product on morphisms is β ⊗ α = βα, i.e. horizontal composition of natural
transformation (2-1).

Definition 2.25 C, D ∈ MCat are called monoidally equivalent, denoted by C �⊗ D, if
there exists an equivalence F ∈ Hom(C, D) which is additionally a monoidal functor.

Example 2.26 Equivalent monoidal categories need not, but can be, monoidally equivalent:

(a) Recall that fdVec� � Mat�. Together with the choice of monoidal structures being the
usual tensor products, this is an monoidal equivalence fdVec� �⊗ Mat�.

(b) We have Vec�(G) � Vec�(G�) are equivalent as categories if and only if #G = #G�.
However, Vec�(G) �⊗ Vec�(G�) if and only if G = G�.

(c) Similarly, Vecω
�
(G) � Vecω�

�
(G�) holds always, i.e. regardless of the 3 cocycles. However,

Vecω
�
(G) and Vecω�

�
(G) are rarely equivalent as monoidal categories. Explicitly, let

ω be the non-trivial 3 cocycle of G = Z/2Z. Then VecC(Z/2Z) � Vecω
C(Z/2Z) but

VecC(Z/2Z) ��⊗ Vecω
C(Z/2Z).
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Remark 2.27 More general as in Example 2.26.(c), one can check that Vecω
�

(G) ��⊗ Vecω�
�

(G)
unless ω and ω� are cohomologically equivalent, see e.g. [EGNO15, Proposition 2.6.1]. (The
philosophy is that H3(G,�∗) “measures” how much choice there is to twist the associativity
constrain.) One can further show that Vecω

�
(G) is only monoidally equivalent to a skeletal

category if ω is cohomologically trivial.

Again, we have:

Lemma 2.28 Any functor F ∈ Hom⊗(C, D) induces a monoid homomorphism

K0(F) : K0(C) → K0(D), [X] �→ [F(X)].

Further, if F is an equivalence, then K0(F) is an isomorphism. �

We leave it to the reader to define monoidal analogs of notions which we have seen in Section 1
(whenever appropriate), e.g. what a monoidal subcategory is. We only mention here that
there are now three opposite categories (four, if one takes C itself into account):

Definition 2.29 For any monoidal category C, we define three additional monoidal categories

C Cop Cco Ccoop

Reversed ◦? No Yes No Yes
Reversed ⊗? No No Yes Yes

.(2-15)

Using op is called taking the opposite, cf. Definition 1.13, taking co is called taking the cooppo-
site, and Ccoop is called the biopposite of C.

2I. Strict vs. non-strict. Let us start the comparison of strict and non-strict monoidal
categories with a crucial example of a strict monoidal category, very much in the spirit of
Example 2.24.

Definition 2.30 Given a monoidal category C, define the category of right C module
endofunctors, denoted by End�C(C), via:

• the objects are pairs (F, ρ) with F ∈ End(C) and natural isomorphisms ρX,Y : F(X)Y →
F(XY) such that we have a commuting diagram

F
�
(XY)Z

�

F
�
X(YZ)

�
F(XY)Z

F(X)(YZ) (F(X)Y)Z

F(αX,Y,Z) ρXY,Z

αF(X),Y,Z

ρX,YZ ρX,Y⊗idZ

(2-16)

for all X, Y, Z ∈ C;
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• the morphisms α : (F, ρ) ⇒ (G, ρ�) are natural transformations α : F ⇒ G such that we
have a commuting diagram

G(X)Y G(XY)

F(X)Y F(XY)

ρ�
X,Y

ρX,Y

αX⊗idY αXY(2-17)

for all X, Y ∈ C;

• the composition ◦ is vertical composition of natural transformations.

Lemma 2.31 For End�C(C) as in Definition 2.30 the rules

• ⊗ on objects is (G, ρ�)(F, ρ) = (GF, ρ��), where

ρ��
X,Y =

�
GF(X)

�
Y G

�
F(X)Y

�
GF(XY)

ρ�
F(X),Y G(ρX,Y) ;

• ⊗ on morphisms is horizontal composition of natural transformations;

define the structure of a strict monoidal category on End�C(C) with � = IdC.

Proof. All appearing structures use compositions, either of maps, functors or of natural transfor-
mations, which are associative by definition. Thus, the only calculation one needs to check is
that βα satisfies (2-17) if α and β do. This is straightforward. �

Comparing the definitions of a monoidal category (in particular, the and the equations)
and of a strict monoidal category, the following seems to be surprising.

Theorem 2.32 For any monoidal category C there exists a strict monoidal category Cst which
is monoidally equivalent to C, i.e. C �⊗ Cst.

The statement of Theorem 2.32 is called strictification, and it allows us to very often “ignore”
that we have to worry about associators and unitors. For example, we get diagrammatics for any
monoidal category by passing to Cst.

Proof. The idea is as follows. As a matter of fact, every monoid M is isomorphic to the monoid
End�M(M) consisting of maps from M to itself commuting with the right multiplication of M; the
isomorphism is given by left multiplication. We will prove the theorem by copying this fact, i.e.
we will show that Cst can be chosen to be End�C(C).

By Lemma 2.31 we have a strict monoidal category End�C(C), which has a left action functor

L: C → End�C(C), L(X) = (X ⊗ −, α−1
X,−,−), L(f) = f ⊗ −.

Note that (2-16) for L is the equation.

The functor L is an equivalence of categories, which we verify using Proposition 1.52.

• The functor L is dense since any (F, ρ) is isomorphic to L
�
F(�)

�
.
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• The functor L is faithful, since L(f) = L(g) implies f ⊗ id� = g ⊗ id�, which in turn gives
f = g, by naturality of the unitor ρ. That is, commutativity of

X� X

Y� Y

ρX

f⊗id� f⊗id�

ρY

,

X� X

Y� Y

ρX

g⊗id� g⊗id�

ρY

,

with bottom and top being isomorphisms and f ⊗ id� = g ⊗ id� implies f = g.

• Given a morphism α ∈ End�C(C), define a morphism

f = X X� Y� Y
ρ−1

X α� ρY
.

Direct verification shows that L(f) = α, thus L is full.

Finally, we define the structure of a monoidal functor on L via defining

• ξX,Y :
�
X ⊗ (Y ⊗ −), idX ⊗ α−1

Y,−,−α−1
X,Y−,−

� ∼=−→
�
(X ⊗ Y) ⊗ −, α−1

XY,−,−

�
to be the associator αX,Y,− ;

• ξ� : (IdC, id)
∼=−→ (�⊗ −, α−1

�,−,−) to be given by the inverse of the left unitor λ.

One verifies that this satisfies the axioms in Definition 2.20. �

Remark 2.33 Alternatively, Theorem 2.32 can be proven using Theorem 2.19, see e.g. [Ma98,
Section XI.3].

2J. More graphical calculus. Recall the rules for diagrammatics of strict monoidal categories,
i.e. (2-7) and (2-9). The formal rule of manipulation of these diagrams is:

“Two diagrams are equivalent if they are related by scaling
or by a planar isotopy keeping the upwards orientation.”

.(2-18)

Theorem 2.34 The graphical calculus is consistent, i.e. two morphisms are equal if and only if
their diagrams are related by (2-18).

Proof. This basically boils down to (2-8). �

Example 2.35 Note that the condition of keeping the upwards orientation is a bit strange.
In fact, it is probably not needed and can be dropped. The condition of only allowing planar
isotopies is however crucial and e.g.

f

g

hX Y �=

f

g

hX Y ,

present different morphisms in general.

Let us finish by showing the first hints why the diagrammatic calculus is very useful.

Proposition 2.36 For C ∈ MCat the space EndC(�) is a commutative monoid.
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Proof. The diagrammatic equation

gf =
g

f
=

g

f
=

g

f
=

g

f
= fg

proves commutativity. �

Proposition 2.37 For C ∈ MCat and for any X, Y ∈ C, we have commuting actions

EndC(�)

�

HomC(X, Y) � EndC(�),

given by

f � h

Y

X

:= f h

Y

X

, h

Y

X

� g := gh

Y

X

.

Thus, HomC(X, Y) is an EndC(�)-bimodule.

Proof. Associativity and unitality of the left action reads as

g �


 f � h

Y

X


 = fg h

Y

X

= gf � h

Y

X

, ∅ � h

Y

X

= h

Y

X

.

By reflecting the diagrams right to left, the same follows for the right action. Finally,

f

g
h

Y

X

= f gh

Y

X

=
f

g
h

Y

X

shows that the two actions commute. �

Proposition 2.38 The bimodule structure on HomC(X, Y) from Proposition 2.37 is compatible
with ◦ and ⊗.

Proof. This is Exercise 2.43. �

2K. Exercises.

Exercise 2.39 Explain explicitly what the four opposites from (2-15) are for the monoidal
categories 1Cob, 1Tan and 1State.

Exercise 2.40 Verify that End(C) is a strict monoidal category, cf. Example 2.24.

Exercise 2.41 Show that Vec�(Z/2Z) ��⊗ Vecω
�

(Z/2Z) if ω is the non-trivial 3 cocycle. What
happens for � = F2 compared to � = C?

Exercise 2.42 Verify that End�C(C) is a category, cf. Definition 2.30.
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Exercise 2.43 Prove Proposition 2.38 diagrammatically. Hereby, compatibility means

f � (jh) = (f � j)h = j(f � h), f � (h ⊗ j) = (f � h) ⊗ j,

and vice versa for the right action.

3. Monoidal categories II – more graphical calculus

The next question we will address, which will in particular give a rigorous, non-topological,
construction of 1Cob, 1Tan and 1State, is:

How to construct monoidal categories or algebraic objects using diagrammatic calculus?

3A. A word about conventions. This section is all about the algebra of diagrams.

Convention 3.1 Note the terminology, which we will use several times: “free as an ABC” means
that no relation except the ones forced by “being an ABC” hold, and we will write “generated by
XYZ” for short instead of “generated as an ABC by XYZ”. Moreover, we sometimes do not define
what “generated (as an ABC) by XYZ” means precisely as it will be clear from the context, see
e.g. Example 3.5.(b) for a non-defined phrase.

Convention 3.2 We usually simplify notation involving generators and relations as long as no
confusion can arise. For example, all generators and relations will be elements of sets, but we
omit the set brackets to make the notation less cumbersome.

Convention 3.3 All diagrammatics in this section are defined by generators and relations, in
particular, not topologically. However, to simplify illustrations we draw diagrams sometimes in a
topological fashion, and say some relations are mirrors of one another, e.g. the relations in (3-2)
without mirrors are

= , = , = , = , = .

Convention 3.4 If certain notions only make sense under specific assumptions, then we tend
to not to repeat these assumptions, e.g. we write “algebras” rather than “algebras in monoidal
categories”.

3B. Generator-relation presentation for monoids. Recall the following constructions.

Given a set S, we obtain the free monoid generated (as a monoid) by S, denoted by �S | ∅�,
defined by:

• elements are finite words sir ...si1 , where sij ∈ S are the letters, and r ∈ N;

• composition is concatenation of words;

• the unit is the empty word ∅;

• associativity is the only relation among words.

The elements of S are called generators (of �S | ∅�).
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Similarly, the free group generated (as a group) by S, also denoted by �S | ∅�, is defined
verbatim, but having additional formal letters s−1

i satisfying sis
−1
i = 1 = s−1

i si.

Example 3.5 We stress that being free depends on the adjectives:

(a) The free monoid generated by S = {•} is isomorphic to N, while the free group generated
by S = {•} is isomorphic to Z;

(b) The free commutative monoid generated by S = {•, ∗} is isomorphic to N2, while the free
monoid generated by S = {•, ∗} is not isomorphic to N2.

Moreover, fix two sets S and R, where

R ⊂ �S | ∅� × �S | ∅�.
The elements of R will be written as r = r� for r, r� ∈ �S | ∅� and we call them relations. We
obtain the monoid generated by S with relations R, denoted by �S | R� as the quotient

�S | R� = �S | ∅�/R,

meaning that two words in �S | ∅� are equal in �S | R� if and only if they can be obtained from
one another by using a finite number of relations from R. Said otherwise, taking the quotient by
the congruence generated by R.

If M ∼= �S | R�, then we say S | R give a generator-relation presentation of M.

Example 3.6 Again, this depends on the adjectives:

(a) For S = {•} and R = {•• = 1} we get �S | R� ∼= Z/2Z, regardless of whether we want to
view this as being generated as a monoid or as a group.

(b) The symmetry group of the triangle, i.e. the dihedral group I2(3) of order 6, has the
generator-relation presentations

I2(3) ∼= �a, b | a2 = 1, b3 = 1, aba = b−1� ∼= �s, t | s2 = 1, t2 = 1, sts = tst�,
where the middle expression is read to be as a group, while the right expression can be
either as a monoid or a group.

The set-theoretical issues of the following lemma are as usual ignored.

Lemma 3.7 Every monoid has a generator-relation presentation.

Proof. Take S = M and let R be given by all equations coming from multiplication in M. �

The presentation obtained via Lemma 3.7 is, of course, useless. In general it is hard question
whether one can find a good generator-relation presentation for a given monoid, group etc. But
it is a good question, since we have the following evident, but useful, fact:

Lemma 3.8 To define a morphism f : �S | R� → M to any monoid M it suffices to

• specify f(s) for s ∈ S;

• check that f(r) = f(r�) for r = r� ∈ R. �
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Example 3.9 In the free case we have R = ∅. Thus, every choice f(s) for s ∈ S defines a
morphism, regardless of M.

3C. Generator-relation presentation for monoidal categories. We generalize the above:

Definition 3.10 A set T is called a set of morphism generators if it consists of triples
(f, X, Y). Such a set is compatible with a set S if

X, Y ∈ �S | ∅�,

in which case we call S a set of object generators.

Of course we think of elements of S and T as being objects and morphisms f : X → Y, respectively.

Definition 3.11 We define words as follows.

• An object word (in S) is a word in �S | ∅�, which can be concatenated as for monoids.

• A morphism word (in T) is defined recursively as follows. A morphism word of length
1 is either an element of T or of the form (idX, X, X) for X ∈ �S | ∅�. Suppose all morphism
words of length n ≥ 1 are already defined. A morphism word of length n + 1 is either of
the form

• (gf, X, Z) (◦ concatenation),

• (f ⊗ h, XA, YB) (⊗ concatenation),

where (f, X, Y), (g, Y, Z) and (h, A, B) are morphism words of length n. The two ways to
create new words are also the two possible concatenations of morphism words.

We denote the collections of objects and morphism words by �S | ∅� and �T | ∅�◦,⊗.

Definition 3.12 Given sets S and T of object and morphism generators, we define the free
strict monoidal category (monoidally generated) by S and T, denoted by �S, T | ∅�, as:

• the objects are �S | ∅�;

• the morphisms are �T | ∅�◦,⊗;

• composition is ◦ concatenation of morphism words;

• the monoidal product is ⊗ concatenation of object respectively morphism words;

• the unit is � = 1 ∈ �S | ∅�;

• the relations among object words are

X(YZ) = (XY)Z, �X = X = X�,

where X, Y, Z ∈ �S | ∅�;

• the relations among morphism words are

h(gf) = (hg)f, idYf = f = fidX,



32 DANIEL TUBBENHAUER

f ⊗ (g ⊗ h) = (f ⊗ g) ⊗ h, id� ⊗ f = f = f ⊗ id�,

idX ⊗ idY = idXY, (gf) ⊗ (kh) = (g ⊗ k)(f ⊗ h),

where X, Y ∈ �S | ∅� and f, g, h ∈ �T | ∅�◦,⊗

Remark 3.13 The last two bullet points in Definition 3.12 should be read as follows. The only
relations among object words are those ensuring that �S | ∅� is the free monoid generated by
S. The only relations among morphism words are those ensuring that ◦ is a composition in a
category and ⊗ is a bifunctor, i.e. (2-2), for a strict monoidal category.

Example 3.14 We have �{•}, ∅ | ∅� �⊗ Vec(N), the latter being the evident adaption of
Example 2.12.(a) to the monoid N.

As before we can choose

R ⊂ �T | ∅�◦,⊗ × �T | ∅�◦,⊗.

The elements of R will be written as r = r� for r, r� ∈ �T | ∅�◦,⊗ and we call them relations.

Definition 3.15 We define the strict monoidal category generated by S and T with
relations R, denoted by �S, T | R�, as the quotient

�S, T | R� = �S, T | ∅�/R,

meaning that two morphism words in �S, T | ∅� are equal in �S, T | R� if and only if they can
be obtained from one another by using a finite number of relations from R.

Definition 3.16 If C �⊗ �S, T | R�, then we say S, T | R give a generator-relation pre-
sentation of C.

The following two lemmas can be proven verbatim as for monoids, using beforehand Theorem 2.32
for Lemma 3.17 if the monoidal category of interest is not strict.

Lemma 3.17 Every monoidal category has a generator-relation presentation. �

Lemma 3.18 To define a monoidal functor F: �S, T | R� → C to any strict monoidal category
C it suffices to

• specify F(X) for X ∈ S;

• specify F(f) for f ∈ T;

• check that F(r) = F(r�) for r = r� ∈ R. �

Example 3.19 In the free case again any choice works, regardless of C.

3D. Examples for generator-relation presentations. Recall that we write Xk = X...X.
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Remark 3.20 We stress that all diagrams we will use below are not topological objects, but
rather formal symbols. However, as we will see, one should think of them as being topological
objects, see also Convention 3.3.

Example 3.21 The category of symmetric groups Sym can be defined as follows. We let
Sym = �S, T | R� with

S : •, T : : •2 → •2, R : = , = .(3-1)

Remark 3.22 There are extra relations which are implicit, e.g.

= .

We do not need to add this relation to (3-1) since it follows from the interchange law, cf. (2-8).

It is a (non-trivial) fact that Sym �⊗ Symtop ⊂ 1Cob, see Example 1.50, and the above can be
seen as a purely algebraic construction of the (topologically defined) category Symtop.

Example 3.23 The (generic) Rumer–Teller–Weyl category TL (also known as the generic
Temperley–Lieb category, hence the notation) is defined as follows. We let

S : •, T : : � → •2, : •2 → � R : = = .

Again, its non-trivial, but visually clear, that TL is a monoidal subcategory of 1Cob.

Example 3.24 The (generic) Brauer category Br is defined as follows. We let
S : •, T : : •2 → •2, : � → •2, : •2 → �

R :





= , = , = =

= , = , = , = .

(3-2)

Example 3.25 With Lemma 3.18 it is easy to define monoidal functors

IBr
Sym : Sym → Br, • �→ •, �→ ,

IBr
TL : TL → Br, • �→ •, �→ , �→ .

These are dense by construction, and with a bit more work one can show that they are faithful.
Thus, Sym and TL are (non-full) monoidal subcategories of Br.

The punchline is that Br �⊗ 1Cob. Let us state this as a theorem, whose proof we will sketch,
highlighting what is easy and what is non-trivial about this statement.

Theorem 3.26 There exists a monoidal functor

R: Br → 1Cob, • �→ •, �→ , �→ , �→ .(3-3)
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The functor R is dense and fully faithful, thus, Br �⊗ 1Cob.

Crucial: the left diagrams in (3-3) are just algebraic symbols, while the right diagrams are just
placeholder symbols for topological objects.

Proof. There are several things to check, namely:

(a) The functor R is a well-defined monoidal functor. Using Lemma 3.18, this is just the
observation that the Brauer relations (3-2) hold in 1Cob, which is easy.

(b) That R is dense is clear.

(c) That R is full is not hard: Every 1 dimensional cobordism in 1Cob has locally a Morse
point, or not. But Morse points in this situation are just caps or cups. Moreover, taking
the immersion (into the plane) of the cobordism into account, locally a 1 dimensional
cobordism in 1Cob is of the form

generically: , immersion: , Morse: , .

In particular, we have a Morse positioning of such cobordisms. Here is an example:

,(3-4)

where the horizontal and dashed lines indicate height levels. Said otherwise, crossings,
caps and cups generate 1Cob, so R is full as all generators of 1Cob appear in its image.
(Note that already here one would need to be precise what one means by a “1 dimensional
cobordism”. But this is not the hard part.)

(d) The proof that R is faithful is hard and painful, because one needs to show that the
topologically defined 1Cob has the Brauer relations (3-2) as generating relations. (See
also Exercise 3.45.) �

Remark 3.27 By the same reason as in (d) in the proof of Theorem 3.26, it is hard to write
down any functor 1Cob → Br. That is, the inverse of R is of course

R−1 : 1Cob → Br, • �→ •, �→ , �→ , �→ .

But showing that this is well-defined boils down to (d).

There are several variations of the Brauer category Br, e.g. with orientations, which we will
revisit later. For now we are brief:



QUANTUM TOPOLOGY WITHOUT TOPOLOGY 35

Example 3.28 The (generic) quantum Brauer category qBr, the (generic) oriented
Brauer category oBr and the (generic) oriented quantum Brauer category oqBr are
defined verbatim as the Brauer category, with a few differences:

• the adjective “oriented” means that one has two object generators • and •� and one has
oriented caps and cups generators, i.e.

: ••� → �, : (•�)• → �, : � → ••�, : � → (•�)•;(3-5)

• the adjective “quantum” means that one distinguishes over- and undercrossings, i.e.

overcrossing: , undercrossing: .(3-6)

All of these have analogs of Theorem 3.26, e.g. qBr �⊗ 1Tan.

Example 3.29 We also have qSym, the category of braids, being the analog of Sym with
crossing as in (3-6), but as a subcategory of qBr. Similarly, we also have oTL, the oriented
version of TL, with oriented diagrams as in (3-5).

3E. Algebras in monoidal categories. Next, we aim to generalize the notion of an algebra.

Definition 3.30 An algebra A = (A, m, i) in a monoidal category C consists of

• an object A ∈ C;

• a multiplication, i.e. a morphism m: AA → A;

• a unit, i.e. a morphism i : � → A;

such that

(i) we have a commuting diagram

A(AA) (AA)A

AA A AA

αA,A,A

idA⊗m m⊗idA

m m

;(3-7)

(ii) we have commuting diagrams

A

�A AA

λA

i⊗idA

m ,

A

A� AA

ρA

idA⊗i

m .

A coalgebra C = (C, d, e) in a monoidal category C is, by definition, an algebra in Cop.

Of course, the three commuting diagrams in Definition 3.30 are associativity (recall that (3-7)
implies honest associativity) and unitality, but in the context of (not necessary strict) monoidal
categories. Similarly for coalgebras. The Feynman diagrams can be simplified:

m

A

A A

�

A

A A

, i

A

A A

�

A

A

, d

A A

A

�

A

A A

, e

A A

A

�

A

A

,
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are the structure maps and

A

A AA

=

A

A AA

,

A

A

=

A

A

=

A

A

,

present associativity and counitality, respectively.

Example 3.31 In any monoidal category � has the structure of a (co)algebra.

Example 3.32 Algebras and coalgebras generalize many notions:

(a) Algebras and coalgebras in Set are monoids and comonoids.

(b) Algebras and coalgebras in Vec� are algebras and coalgebras over �.

Example 3.33 The object •2 ∈ Br (the Brauer category, see Example 3.24) is an algebra with
structure maps

m =


= m

A

A A


 , i = .

Associativity and unitality are topologically clear:

= , = = .

Similarly, the object •2 ∈ Br is also a coalgebra, by mirroring the diagrams.

Definition 3.34 A Frobenius algebra A = (A, m, i, d, e) in C is an algebra (A, m, i) and a
coalgebra (A, d, e) in C satisfying a compatibility condition, i.e. we have commuting diagrams

A(AA) (AA)A

AA A AA

αA,A,A

m⊗idAidA⊗d

m d

,

(AA)A A(AA)

AA A AA

α−1
A,A,A

idA⊗md⊗idA

m d

.(3-8)

Diagrammatically (3-8) is

A

A

A

A
=

A A

A A
=

A

A

A

A
.

Example 3.35 Frobenius algebras in Vec� are classical Frobenius algebras over �.

Lemma 3.36 Let A be a Frobenius algebra in a strict monoidal category. Define

A A
=

A A
,

A A
=

A A
.
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Then the following hold, including mirrors:

A

A

=

A

A

,
A

=
A

,

A

A A

=

A

A

A

.

Thus, Frobenius algebras are topologically in nature since Lemma 3.36 shows that the diagrams
for Frobenius algebras satisfy all planar isotopies.

Proof. This is Exercise 3.46 �

Remark 3.37 There is of course also a non-strict version of Lemma 3.36 which looks almost
exactly the same.

3F. Modules of algebras. Arguably modules of algebras are more interesting than the algebras
themselves. So:

Definition 3.38 Let A be an algebra. A right A module M = (M, �−) in C consists of

• an object M ∈ C;

• a right action, i.e. a morphism �− : MA → M;

such that

(i) we have a commuting diagram

M(AA) (MA)A

MA M MA

αM,A,A

idM⊗m (�−)⊗idA

�− �−

;

(ii) we have a commuting diagram

M

M� MA

ρM

idM⊗i

�− .

Definition 3.39 Let M and N be right A modules. A morphism f : M → N is said to be A
equivariant if it intertwines the right A action, i.e. f(�−) = (�−)f.

In pictures these notions are again nice:

�− �

M

M A

,

M

M AA

=

M

M AA

,

M

M

=

M

M

, f

N

M

= f

N

M

.

Lemma 3.40 The composition of A equivariant morphisms is A equivariant.
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Proof. The proof in diagrams is easy:

f

g

N

M

K

=
f

g

N

M

K

=
f

g

N

M

K

.

The non-strict version is thus also true. �

Since the identity is always A equivariant, we get another category:

Example 3.41 We have a category ModC(A), the category of right A modules, whose
objects are right A modules and morphisms are A equivariant morphisms.

Example 3.42 All of these notions generalize the classical notions of algebras, modules and
their categories if we work in Vec�.

We leave it to the reader to write down the definitions of other classical notions from algebra
in the categorical sense, see also Exercise 3.47. Let us instead finish with a diagrammatic proof
generalizing a classical fact which is actually messy to prove classically.

Proposition 3.43 Let A be a Frobenius algebra in C. Then every right A module has a
compatible structure of a right A comodule and vice versa.

Proof. We can assume that C is strict. Let M be a right A module. Then we define the coaction
(�−)co via

(�−)co =

M

M A

=

M

M

A

.

This defines a right A comodule since, by Lemma 3.36, we have e.g.

M

M A A

=

M

M A A

=

M

M A A

=

M

M A A

,

and unitality follows mutatis mutandis. By mirroring the diagrams we can get from comodules
to modules. �

3G. Exercises.

Exercise 3.44 Let Symn be the symmetric group of the set {1, ..., n} for n > 2. Show that

Symn
∼= �s1, ..., sn−1 | s2

i = 1, sisi±1si = si±1sisi±1, sisj = sjsi for |i − j| > 1�

as groups. Deduce that EndSym(•n) ∼= Symn.
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Exercise 3.45 Recall the construction of Brauer category Br from Example 3.24. Prove that
the defining relations (3-2) imply that the following hold in Br:

= = ,

where the thick red strands represent an arbitrary number of straight strands.

Exercise 3.46 Prove Lemma 3.36.

Exercise 3.47 Think about how to define right, left, bi(co)modules, their homomorphisms,
subalgebras, ideals, submodules, etc. in the categorical setting, and choose your favorite notion
and write down its categorical definition.

Exercise 3.48 Verify that •2 is a Frobenius algebra in Br, cf. Example 3.33.

4. Pivotal categories – definitions, examples and graphical calculus

Recall that Feynman diagrams for monoidal categories in general need to be upwards oriented,
i.e. they do not have Morse points. So:

What kind of categories allow Morse points in their graphical calculus?

4A. A word about conventions. This section is all about duals.

Convention 4.1 We will use the symbol � for duality. Because it is always confusing, let us
state right away that right duals will have their � on the right, and left duals on the left, e.g.

object X, right dual X�, left dual �X.

If the left and the right dual agree, then we use the right dual −� as the notation, and similar
conventions for traces and dimensions.

Convention 4.2 Again, there will be several choices which we tend to omit when no confusion
can arise. Moreover, whenever we write e.g. X� we implicitly assume existence of the right dual.

Convention 4.3 For pivotal categories we use the convention that strands labeled X are directed
upwards, and those labeled with duals are oriented downward, see (4-13). In particular, it suffices
to label each strand once and in contrast to the general situation, cf. Convention 1.3, we usually
orient diagrams.

Convention 4.4 From now on we will use diagrammatics most of the time, and leave it to the
reader to work out some of the non-strict versions of definitions and statements. For diagrams we
use the terminology “taking mirrors” as before, but this also includes orientation reversals, e.g.

original: , mirrors: , , .

Convention 4.5 If EndC(�) is e.g. � , then we often identify the endomorphisms with actual
elements, e.g. instead of “multiplication by a ∈ �” we just write a.
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4B. Duality in monoidal categories. Since duality is a powerful concept, we start with:

Definition 4.6 A right dual (X�, evX, coevX) of X ∈ C in a category C ∈ MCat consists of

• an object X� ∈ C;

• a (right) evaluation evX and a (right) coevaluation coevX, i.e. morphisms

evX : XX� → ��
X
ev

X X�

, coevX : : � → (X�)X �
X
coev

X� X
;(4-1)

such that they are non-degenerate, i.e.

ev

X

X�

X

coev
=

X

X

,
ev

X�

X

X�

coev
=

X�

X�

.(4-2)

Similarly, a left dual (�X, evX, coevX) of X ∈ C in a category C ∈ MCat consists of

• an object �X ∈ C;

• a (left) evaluation evX and a (left) coevaluation coevX, i.e. morphisms

evX : �XX → ��
X
ev

�X X

, coevX : : � → X(�X) �
X
coev

X �X
;(4-3)

such that they are non-degenerate, i.e.

ev

�X

X

�X

coev
=

�X

�X

,
ev

X

�X

X

coev
=

X

X

.(4-4)

We call (4-2) and (4-4) the zigzag relations.

Remark 4.7 Note that we do not distinguish the right and left (co)evaluation in coupons since
the position of � will determine whether its right or left, cf. (4-1) and (4-3).

The following justifies to say “the” right and left dual.

Lemma 4.8 Right and left duals, if they exist, are unique up to unique isomorphism.
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Proof. Let X� and X� be two right duals of X. These come with evaluation and coevaluation
morphisms, evX and coevX, and evX and coevX, respectively. We use these to define two morphisms

f =
ev

X�

X

X�

coev
, f−1 =

ev

X�

X

X�

coev
,

which are inverses by the zigzag relations. Moreover, it is easy to check that f is the only
isomorphism which preserves the (co)evaluation. The proof for left duals is similar. �

Lemma 4.9 Fix C ∈ MCat.

(i) The monoidal unit is self-dual, meaning

� ∼= �
� ∼= �

�.

(ii) For any X ∈ C which has a right and a left dual we have
�(X�) ∼= X ∼= (�X)�.(4-5)

(iii) If X ∈ C has a right dual, then X ∈ Cco has a left dual, and vice versa.

Proof. (i). This follows since we can take the unitors as (co)evaluation morphisms.

(ii). The isomorphisms are similar to the ones in the proof of Lemma 4.8, where we again use the
zigzag relations to show that they invert one another.

(iii). Clear by comparing (4-1) and (4-3). �

Lemma 4.9.(iii) is the first instance of what we call right-left symmetry. It says in words that
“Every statement about right duals has a left counterpart and vice versa.”.

4C. Some first examples of duals. The following can be taken as an example or as our
definition of adjoint functors:

Example 4.10 In the monoidal category End(C), cf. Example 2.24, the right dual F� of a
functor is called its right adjoint, while the left dual �F is called its left adjoint.

Duals in general might not exist, e.g. not every functor has adjoints. A more down to earth
example is:

Example 4.11 Not every objects in Vec� has duals. However, if X is finite dimensional, then
X� = �X is the vector space dual with the (co)evaluations being the usual maps, e.g.

evX : XX� → �, (x, y�) �→ y�(x), coevX : � → (X�)X, 1 �→ �n
i=1 x�

i ⊗ xi,

where {x1, ..., xn} and {x�
1, ..., x�

n} are choices of dual bases of X and X�.

Example 4.12 Most of the diagrammatic categories which we have seen have duals. For
example, in TL or Br the generating object • is self-dual. More precisely,

• = •� = �•, ev• = ev• = , coev• = coev• = ,
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where the evaluation and the coevaluation are cap and cup morphisms, as illustrated. In the
algebraic model of 1State, the oriented quantum Brauer category oqBr, we have •� = �• with
(3-5) being the four (co)evaluations.

Note that duals, if they exist, are unique, but the evaluation and coevaluation are not unique. In
particular, they usually can be scaled if we are in a � linear setting. The crucial example where
scaling will matter later on is:

Example 4.13 Let us consider Vecω
C(Z/2Z) for the non-trivial 3 cocycle ω. In this category

all objects are self-dual, i.e. 1 = 1� = �1 and

11� = 0, (1�)1 = 0.

But the object 1 admits several (co)evaluations, which we explain for the right duality, the left
being similar by right-left symmetry. The (hidden) associativity constrains in (4-2) are

1 1(11) (11)1 1id1⊗coev1 α1,1,1 ev1⊗id1 , 1 (11)1 1(11) 1coev1⊗id1 α−1
1,1,1 id1⊗ev1

.

Thus, recalling that α1,1,1 gives a sign, whatever non-zero scalar a ∈ C∗ we like to scale ev1 with,
we then need to scale coev1 by −a−1. The minus sign is the crucial part here: one can also scale
the (co)evaluations for 0, but then only with a and a−1.

Duality is actually a functor, as we will see next.

Definition 4.14 For (f : X → Y) ∈ C, in a category C ∈ MCat, its right f� : Y� → X� and left
mate �f : �Y → �X are defined as

f� = f

ev

coev

Y

Y�

X

X�

, �f = f

ev

coev

Y

�Y

X

�X

.

Lemma 4.15 Fix any C ∈ MCat. Then, for all X, Y, f, g ∈ C:

(i) We have (gf)� = (f�)(g�) and �(gf) = (�f)(�g).

(ii) We have (XY)� ∼= (Y�)(X�) and �(XY) ∼= (�Y)(�X).

Proof. This is Exercise 4.67. �

The most useful consequence of having duals in practice is:

Theorem 4.16 Let X, Y, Z ∈ C be objects in any C ∈ MCat. Then we have

HomC(XY, Z) ∼= HomC
�
Y, (X�)Z

�
, HomC(YX, Z) ∼= HomC

�
Y, Z(�X)

�
,

HomC(Y, ZX) ∼= HomC(YX�, Z), HomC(Y, XZ) ∼= HomC(�XY, Z).

(Of course assuming that the corresponding duals exist for X.)
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Proof. Let us construct isomorphisms for the first case, all others cases are similar. We define

f

X Y

Z

�→ f

coev
X

X�

Y

Z

, g

Y

X� Z

�→ g

ev

Y

X�

X

Z

That these are inverses follows from the zigzag relations. �

Proposition 4.17 Let F ∈ Hom⊗(C, D). If X� is a right dual of X ∈ C, then F(X�) is a right
dual of F(X) ∈ D. Similarly for left duals.

Proof. By right-left symmetry, it suffices to define

evF(X) : F(X)F(X�) F(XX�) F(�) �
ξX,X� F(evX) ξ−1

� ,

coevF(X) : � F(�) F((X�)X) F(X�)F(X)ξ� F(coevX) ξ−1
X�,X

.

These are the corresponding (co)evaluations, as a straightforward calculation verifies. �

4D. Rigidity. Recall that duals might not exists. This motivates:

Definition 4.18 A category C ∈ MCat is called rigid if every object has right and left duals.

Example 4.19 Several examples which we have seen are rigid.

(a) fdVec� is rigid, cf. Example 4.11.

(b) Vecω
�
(G) (for the duration, we will always use the � linear incarnation of Vecω(G)) is

rigid with g−1 = g� = �g.

(c) The diagrammatic categories TL and Br are rigid with a self-dual generator •.

(d) The diagrammatic categories oTL and oBr are rigid with •� = �•.

Let X�� = (X�)� and ��X = �(�X) denote the double duals. Note that all the examples in
Example 4.19 satisfy

X� ∼= �X X�� ∼= X ∼= ��X
(4-5)

.(4-6)

This is not always true:

Example 4.20 The free rigid category generated by one object • has

•� �∼= �• •�� �∼= • �∼= ��• .(4-7)

The proof of (4-7) this requires non-trivial arguments, i.e. by constructing models: examples
where (4-6) fails exist, but are not easy to construct.
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Example 4.21 By Proposition 4.17, we see that monoidal functors are already the correct
morphisms between rigid categories, as long as we do not care for the choices of (co)evaluations.
Thus, we get the category of rigid categories RCat.

Lemma 4.22 If C ∈ RCat, then Cop, Cco, Ccoop ∈ RCat

Proof. Immediate by taking mirrors of diagrams. �

Lemma 4.15 shows that we can define important functors between rigid categories:

Definition 4.23 For C ∈ RCat we define right and left duality functors

−� : C → Ccoop, X �→ X�, f �→ f�, �− : Ccoop → C, X �→ �X, f �→ �f.

Proposition 4.24 For C ∈ RCat we have equivalences

−� : C �⊗−−→ Ccoop, �− : Ccoop �⊗−−→ C,(4-8)
�(−�) ∼= IdC, (�−)� ∼= IdCcoop .(4-9)

Proof. As usual it suffices to prove (4-8) for the right duality. By Lemma 4.15 we see that −� is a
well-defined monoidal functor, while Theorem 4.16 shows fully faithfulness of −�. Moreover, (4-5)
proves that −� is dense, thus, an equivalence. The second part (4-9) follows easily from (4-6). �

Remark 4.25 The only reason to define the right duality be a functor from C to Ccoop and
the left duality the other way around is to get a cleaner statement in (4-9), but for the duration
we rather have the left duality also defined to be from C to Ccoop. Furthermore, alternatively
right and left dualities also give equivalences (either way) Cop �⊗ Cco.

Immediate consequences of Proposition 4.24 are:

Proposition 4.26 For C ∈ RCat we have equivalences

−�� : C �⊗−−→ C, ��− : C �⊗−−→ C.(4-10)

Both equivalences can also be stated between Cop and Cop, Cco and Cco, or Ccoop and Ccoop. �

Proposition 4.27 For any rigid category C its Grothendieck classes K0(C) form a monoid,
with multiplication and unit as in Proposition 2.10, and two homomorphisms

[−�] : K0(C) → K0(Ccoop), [X] �→ [X�], [�−] : K0(C) → K0(Ccoop), [X] �→ [�X].

Moreover, they are inverse of one another.

Proof. By Lemma 4.15 we have

[(XY)�] = [Y�X�] = [Y�][X�]

and we get the left analog by right-left symmetry. They are inverses by (4-5). �

Example 4.28 On K0(fdVec�), cf. Example 1.45, the two homomorphisms [−�] and [�−] agree
and are the identities.
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Let us now take care of the choice of (co)evaluations:

Definition 4.29 A functor F ∈ Hom⊗(C, D) for C, D ∈ RCat is called rigid if

F(evX) = evF(X), F(coevX) = coevF(X), F(evX) = evF(X), F(coevX) = coevF(X),

holds for all X ∈ C.

The following lemma is immediate.

Lemma 4.30 The identity functor on a rigid category is rigid. Moreover, if F and G are rigid
functors, then so is GF. �

Example 4.31 We get a (dense, in the monoidal sense, but non-full) subcategory R+Cat ⊂
RCat, the category of rigid categories and rigid functors. Also, we have a (non-dense,
but full) subcategory Hom�(C, D) ⊂ Hom⊗(C, D), the category rigid functors.

Definition 4.32 C, D ∈ RCat are called equivalent as rigid categories, denoted by C ��

D, if there exists an equivalence F ∈ Hom�(C, D).

Example 4.33 Recall that Vecω
C(Z/2Z) allowed several choices of (co)evaluations, some of

which differ by signs. A monoidal functor does not take these choices into account, so they are
all monoidally equivalent. However, Lemma 4.62 below will show that not all of these choice give
�� equivalent rigid categories.

4E. Categorical groups. In some sense, see also Example 4.19.(b) or Exercise 4.69, rigid
categories are like categorical versions of groups. Let us make this a bit more precise.

Definition 4.34 Let C ∈ RCat. Then X ∈ C is called invertible if evX : XX� → � and
coevX : � → (X�)X are isomorphisms.

That Definition 4.34 seems to favor right over left is a mirage:

Lemma 4.35 If X, Y ∈ C are invertible, then:

(i) We have X� ∼= �X.

(ii) The object X� is invertible.

(iii) The object XY is invertible.

Proof. (i). Note that we have XX� ∼= � ∼= (X�)X by invertibility of X. Thus, taking duals we also
have �XX ∼= � ∼= X(�X), which we can put together to get X� ∼= (X�)X(�X) ∼= �X.

(ii). Clear by (4-5).

(iii). This follows since evXY, respectively coevXY, can be defined as compositions of evX with evY,
respectively of coevX with coevY. �
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Example 4.36 Lemma 4.35 says that we get a monoidal category Inv(C) as well as a group
Inv(C) = Inv

�
K0(C)

�
of invertible objects.

Definition 4.37 Let C ∈ RCat. Then C is called a categorical group if Inv(C) = C.

Example 4.38 With respect to the examples in Example 4.19:

(i) Inv(fdVec�) has, up to isomorphisms, only the object �. Hence, Inv(fdVec�) ∼= 1, which
is the submonoid of invertible elements in K0(fdVec�) ∼= N.

(ii) For Vecω
�
(G) one clearly has Inv

�
Vecω

�
(G)

� ∼= K0
�
Vecω

�
(G)

� ∼= G, and Vecω
�
(G) is a

categorical group.

(iii) For the diagrammatic categories à la Brauer one always has Inv(Br) ∼= 1.

4F. Pivotality. Note that Example 4.20 shows that the equivalences from (4-10) might not be
trivial. In fact, they can be of infinite order. This motivates the following definition.

Definition 4.39 A category C ∈ RCat is called pivotal if −� ∼=⊗ �−. A pivotal structure
on a pivotal category is a choice of an isomorphism π : −�

∼=⊗=⇒ �−.

In other words, in a pivotal category we have (4-6). Thus:

Proposition 4.40 For any pivotal category C we have IdC ∼=⊗ −�� ∼=⊗ ��−, and hence the
functor −� ∼=⊗ �− is of order two. �

On the other hand, a pivotal structure on a pivotal category is a further choice of isomorphisms

πX : X� ∼=−→ �X,(4-11)

natural in X, satisfying πXY = πX ⊗ πY. Alternatively, a pivotal structure on a pivotal category is a
further choice of isomorphisms

πX : X
∼=−→ X��,(4-12)

satisfying exactly the same conditions.

Remark 4.41 It is more natural to define a pivotal structure as isomorphisms identifying right
and left duals, i.e. using (4-11). However, in practice the choice of isomorphisms as in (4-12)
turns out to be more useful, and we will use both interchangeable.

Example 4.42 All examples in Example 4.19 are pivotal. More precisely:

(a) fdVec� has a pivotal structure coming from the classical � vector space duality V ∼= V��.

(b) For Vec�(G) one can choose the pivotal structure to be the identity.

(c) The diagrammatic categories à la Brauer usually have •� = �• or even • = •� = �•, which
gives them an evident pivotal structure.

Example 4.43 Note the difference between being free:
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(a) The free rigid category generated by one object •, cf. Example 4.20, is not pivotal.

(b) The free pivotal category generated by one object • is oTL.

(c) The free pivotal category generated by one self-dual object • is TL.

In these notes we tend to omit to choose a pivotal structure. To be precise, we take the one in
(4-17) which only involves choices of (co)evaluations, so:

Example 4.44 We also have the category PCat ⊂ R+Cat, the category of pivotal cate-
gories, whose morphisms are rigid functors.

Lemma 4.45 In a pivotal category right and left mates are conjugate, i.e. πXf� = �fπY, where
π : −�

∼=⊗=⇒ �− is a choice of pivotal structure.

Proof. The claim follows directly from −� ∼=⊗ �− and its commuting diagram. �

Definition 4.46 A category C ∈ PCat is called strict, if −� = �− as functors.

Thus, we can write f� for the mate in case C ∈ PCat is strict.

Similarly as in Theorem 2.32 we have the pivotal strictification, which we will use in all diagram-
matics:

Theorem 4.47 For any pivotal category C there exists a strict pivotal category Cst which is
pivotal equivalent to C, i.e. C �� Cst.

Proof. It is not hard, but also not trivial, to generalize the arguments in Theorem 2.32 to
pivotal categories by constructing an appropriate functor category, see e.g. [NS07, Theorem 2.2].
Alternatively, this can be deduced from a version of the monoidal coherence theorem for pivotal
categories similarly as the proof of Theorem 2.32 can be deduced from Theorem 2.19. (Such a
pivotal coherence theorem is stated in [BW99, Theorem 1.9].) Details are omitted for brevity. �

4G. Feynman diagrams for pivotal categories. The diagrams we can draw for strict pivotal
categories are now topological in nature, as well will see. The diagrammatic conventions are the
ones for monoidal categories, see e.g. (2-7), together with diagrammatic rules for duals:

X �
X

X
, X� �

X

X
=

X�

X�

=

�X

�X

 ,

evX �
X X�

, coevX � X� X
, evX �

XX�
, coevX � X�X

.

(4-13)
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Note our reading conventions for duals, see also Convention 4.3. The zigzag relations (4-2) and
(4-4) in these diagrams are

X

X

=

X

X

,

X

X

=

X

X

,(4-14)

including mirrors, which imply:

X X�
,

X� X
,

XX�
,

X�X are invertible operations.(4-15)

Let us prove some lemmas using these diagrammatics.

Lemma 4.48 For all f ∈ C, where C ∈ PCat, we have

f

Y

X

= f

Y

X

.(4-16)

Proof. We calculate

f

Y

X

= f�

X

Y

= �f

X

Y

= f

Y

X

,

which is an application of Lemma 4.45. �

Lemma 4.49 For all f ∈ C, where C ∈ PCat, we have

f

X Y

= f�

YX

,

including mirrors.

These relations are called sliding.
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Proof. Using (4-15) this is easy:

f

X Y

f

Y

X

f�

X

Y

f�

YX

X

(4-14)

X

where we have used (4-14). �

Recall that a pivotal structure was an additional choice of an isomorphism πX : X
∼=−→ X��. One

such choice, sometimes called the canonical choice, is

πcan
X : X → X��, πX = idX�

X

X�

=

X

X�

.(4-17)

The colored marker is a shorthand notation for the corresponding identity morphism, which we
also use below for different identities.

Lemma 4.50 For all X ∈ C, where C ∈ PCat, the morphism πcan
X is invertible and

πcan
X =

X

X�

=

X

X�

, (πcan
X )−1 =

X�

X

=

X�

X

.

Proof. Note that, by definition, markers are identities and just turn orientations on diagrams
around. Moreover, they are morphisms, so they slide. Hence, we have the diagrammatic equations

X

X

=

X

X

,
X X

=
X X

,

including mirrors. Now

X

X

=

X

X

=

X

X

=

X

X

,

is one of the equalities we need to check; the others being similar. �

Example 4.51 The canonical pivotal structure in examples is as follows.
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(i) Using the choice and notation from Example 4.11 for fdVec�, we see that

X

X�

: X → X��, x �→ �n
i=1 x ⊗ x�

i ⊗ x��
i �→ x��,

which is independent of the choice of dual bases.

(ii) Recall from Example 4.13 that for Vecω
C(Z/2Z) the (co)evaluations are basically multipli-

cation with ±1, giving the two possible choices

πcan
1 : 1 → 1, 1 �→ 1, πcan

1 : 1 → 1, 1 �→ −1.

The formal rule of manipulation of these diagrams is:
“Two diagrams are equivalent if they are related by scaling

or by a planar isotopy.”
.(4-18)

Theorem 4.52 The graphical calculus is consistent, i.e. two morphisms are equal if and only if
their diagrams are related by (4-18).

Proof. Note that it is crucial to have X ∼= X�� which is key to have well-defined diagrammatics:

X��

X��

=
X�

X�

=
X

X
,(4-19)

and the isomorphism between the left and right sides in (4-19) is the choice of pivotal structure,
see e.g. (4-17). Moreover, the zigzag relations in terms of diagrams (4-14) and the identification
of functors −� = �−, which gives (4-16), ensure that one has all planar isotopies. �

4H. Generalizing traces. Let us continue with a motivating example.

Example 4.53 Take Mat�, the skeleton of Vec�, which is pivotal with

n = n� = �n, evn = evn : nn → 1, evn = ( e1 ... en ), coevn = coevn : 1 → nn, coevn =
� e1

...

en

�
.

Here {e1, ..., en} denotes the standard basis of �n (which is secretly n, of course) . Thus, given
any f = (aij)i,j=1,...,n ∈ EndMat�(n), we can calculate, keeping Convention 4.5 in mind, that

f n = fn =
�n

i=1 aii.

This is the classical trace of the matrix f. Very explicitly, if n = 2 and f =
�

a b
c d

�
, then the

calculation boils down to the matrix multiplication

( 1 0 0 1 )� �� �
ev2

�
a b 0 0
c d 0 0
0 0 a b
0 0 c d

�

� �� �
f⊗id2

� 1
0
0
1

�

� �� �
coev2

= a + d.

Moreover, we get the dimension of n via

n = n = n.
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Definition 4.54 For f ∈ EndC(X), where C ∈ PCat, we define the right trC(f) and left trace
Ctr(f) as the endomorphisms trC(f), Ctr(f) ∈ EndC(�) given by

trC(f) = f X , Ctr(f) = fX .

Definition 4.55 For X ∈ C, where C ∈ PCat, we define the right dimC(X) and left dimen-
sion Cdim(X) as the endomorphisms dimC(X), Cdim(X) ∈ EndC(�) given by

dimC(X) = trC(idX) = X , Cdim(X) = Ctr(idX) = X .

Definition 4.56 A category C ∈ PCat is called spherical if

f X = fX ,

for X ∈ C and all f ∈ EndC(X).

Remark 4.57 The name “spherical” comes from the idea that we can also see Feynman
diagrams for endomorphisms as living on a sphere rather than being planar. Then

f X = fX

is just an isotopy which moves the strand around the sphere, a.k.a. the lasso move.

Example 4.58 We have already seen in Example 4.53 that traces and dimensions generalize
traces and dimensions for matrices. Here are a few more examples.

(a) The category fdVec� with the standard (co)evaluations is spherical and traces and
dimensions are the basis free definitions of the ones for Mat�.

(b) The category Vecω
�
(G) with the standard (co)evaluations is spherical and one has

dimVecω
�

(G)(g) = 1 for all g ∈ Vec�(G).

(c) The category TL with its generators being the (co)evaluations is spherical. The dimension
of its generating object • is the morphism

dimTL(•) = ∈ EndTL(�).

As a warning, being spherical or not depends on choices:

Example 4.59 For G = Z/3Z, take ζ ∈ C to be a complex primitive third root of unity, and let

d(i) = ζi, i ∈ {0, 1, 2}.
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Then there is a choice of (co)evaluations on VecC(Z/3Z) given by

i i
= 1,

i i = 1,
ii

= d(i), ii = d(i)−1.

This gives

1 = ζ2 �= ζ = 1 , 2 = ζ �= ζ2 = 2 .

Thus, with this choice VecC(Z/3Z) is pivotal, but not spherical.

Remark 4.60 By definition and Example 4.20 as well as Example 4.59 we have

rigid ⇐ pivotal ⇐ spherical,
rigid �⇒ pivotal �⇒ spherical.

We now discuss the generalization of the well-known properties of traces of matrices.

Proposition 4.61 For any C ∈ PCat the following hold.

(i) We have

trC(f) = Ctr(f) = f,

for all f ∈ EndC(�). In particular,

dimC(�) = Cdim(�) = id�.

(ii) Traces are EndC(�)-linear, i.e.

trC(f � g) = f � trC(g), trC(g � f) = trC(g) � f, Ctr(f � g) = f � Ctr(g), Ctr(g � f) = Ctr(g) � f,

for all f ∈ EndC(�) and g ∈ EndC(X).

(iii) Traces are cyclic, i.e.

trC(gf) = trC(fg), Ctr(gf) = Ctr(fg),

for all f ∈ HomC(X, Y) and g ∈ HomC(Y, X).

(iv) We have

trC(f) = Ctr(f�), Ctr(f) = trC(f�)

for all f ∈ EndC(X). In particular, for all X ∈ C, we get

dimC(X) = Cdim(X�) = dimC(X��), Cdim(X) = dimC(X�) = Cdim(X��).

Proof. (i) and (ii). The short argument is that f is a floating bubble, cf. Proposition 2.36.

(iii). By right-left symmetry, we only need to calculate

gf X =
f

g
XY = g f�

X

Y
=

g

f
YX = fg Y .



QUANTUM TOPOLOGY WITHOUT TOPOLOGY 53

(iv). Sliding immediately gives

f X = f�X ,

which proves the claim by right-left symmetry. �

Lemma 4.62 For F ∈ Hom�(C, D) and all X ∈ C and f ∈ EndC(X) we have

trD�
F(f)

�
= F

�
trC(f)

�
, Dtr

�
F(f)

�
= F

�Ctr(f)
�
,

dimD�
F(X)

�
= F

�
dimC(X)

�
, Ddim

�
F(X)

�
= F

�Cdim(X)
�
.

Proof. Note that rigid functors preserve (co)evaluations. �

In words, rigid functors preserve traces and dimensions, which motivates:

Definition 4.63 C, D ∈ PCat are called equivalent as pivotal categories, if they are
equivalent as rigid categories.

Example 4.64 Back to Example 4.33: there are sign choices for Vecω
C(Z/2Z) such that:

choice 1:
1 1

= 1,
1 1 = −1,

11
= −1,

11 = 1,

choice 2:
1 1

= 1,
1 1 = −1,

11
= 1,

11 = −1.

This gives

choice 1: 1 = 1 = 1 , choice 2: 1 = −1 = 1 .

This shows, by Lemma 4.62, that these choices do not give pivotal categories which are equivalent
as pivotal categories.

4I. Algebras and coalgebras revisited. We conclude with (co)algebras in rigid categories,
whose modules have a right-left symmetry:

Proposition 4.65 Let A ∈ C for C ∈ RCat be an algebra.

(i) For every M ∈ ModC(A) its right dual M� has the structure of a left A module.

(ii) For every N ∈ (A)ModC its left dual �N has the structure of a right A module.

Similarly for coalgebras.

Proof. By symmetry, it suffices to prove (i).

(i). We define a left action on M� via

M�

M�

A

=
ev

M�

M

M�

coev
A

.
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To show that this satisfies associativity and unitality is an easy zigzag argument. �

Thus:

Proposition 4.66 Let A ∈ C for C ∈ PCat be an algebra. Then, for every M ∈ ModC(A) its
dual M� has the structure of a right and left A module. In particular, M itself has the structure of a
left A module. Similarly for coalgebras. �

4J. Exercises.

Exercise 4.67 Prove Lemma 4.15.

Exercise 4.68 Show that Theorem 4.16 implies that the functors

X ⊗ − : C → C, − ⊗ X : C → C

have duals (a.k.a. adjoints) given by

(X ⊗ −)� ∼= X� ⊗ −, �(X ⊗ −) ∼= �X ⊗ −, (− ⊗ X)� ∼= − ⊗ �X, �(− ⊗ X) ∼= − ⊗ X�,

assuming the existence of duals of X ∈ C, where C ∈ MCat, of course.

Exercise 4.69 Show that Vec�(M) ∈ RCat if and only if M is a group.

Exercise 4.70 Show that Vec� is not rigid.

Exercise 4.71 Verify the claims in Example 4.59.

5. Braided categories – definitions, examples and graphical calculus

Recall that the difference between 1Cob and 1Tan was a choice of embedding. So how can we
distinguish between these two categories using categorical algebra, i.e.:

What categorical framework can detect embeddings?

5A. A word about conventions. This section is all about crossings.

Convention 5.1 We will have over- and undercrossings, which are algebraic and not topological
in nature. Our diagrammatic conventions for these are

overcrossing: β � , undercrossing: β−1 � .

These will come in various incarnations, e.g. with orientations, and our preferred choice will be to
use overcrossings, and the undercrossings will be the inverses of the overcrossings.

Convention 5.2 We use the same conventions as in Convention 4.2 for the various choices
involved in the notions which we will see in this section. Moreover, and also as before, since we
will use diagrammatics most of the time we usually omit the associators and unitors.
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Convention 5.3 Our terminology “taking mirrors” includes also crossing reversals of all
displayed crossings, e.g.

original: = , mirror: = , not a mirror: = .

All of these are valid relations, but the right equation is not a mirror of the left equation.

5B. Braided categories. First, the main definition of this section:

Definition 5.4 A braided category (C, β) consists of

• a category C ∈ MCat;

• a collection of natural isomorphisms

βX,Y : XY
∼=−→ YX,(5-1)

for all X, Y ∈ C, called braiding;

such that

(i) the braided equalities hold, i.e. we have commuting diagrams

(XY)Z Z(XY)

X(YZ) (ZX)Y

X(ZY) (XZ)Y

βXY,Z

αZ,X,YαX,Y,Z

idX⊗βY,Z

αX,Z,Y

βX,Z⊗idY

,

X(YZ) (YZ)X

(XY)Z Y(ZX)

(YX)Z Y(XZ)

βX,YZ

α−1
Y,Z,Xα−1

X,Y,Z

βX,Y⊗idZ

α−1
Y,X,Z

idY⊗βX,Z

,

(5-2)

for all X, Y, Z ∈ C.

Remark 5.5 Similarly as in Remark 2.5, there is a hidden braided equality:

ZX AY

XZ YA

g⊗f

f⊗g

βX,Z βY,A ,(5-3)

which holds for all for all X, Y, Z, A ∈ C and all (f : X → Y), (g : Z → A) ∈ C.

Lemma 5.6 In any braided category C we have the Reidemeister 2 moves, i.e. for all
X, Y ∈ C there exist a natural isomorphism β−1

Y,X : YX
∼=−→ XY such that

β−1
Y,XβX,Y = idXY, βX,Yβ−1

Y,X = idYX
�
⇔ β−1

Y,XβX,Y = idXY = βY,Xβ−1
X,Y

�
(5-4)
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Proof. (5-1) implies that βX,Y has an inverse, and we denote by β−1
Y,X . Note that β−1

Y,X is natural in
X and Y because βX,Y is. �

Lemma 5.7 In any braided category C we have the Reidemeister 3 move, i.e.

(XY)Z (YX)Z Y(XZ) Y(ZX) (YZ)X

X(YZ) (ZY)X

X(ZY) (XZ)Y (ZX)Y Z(XY) Z(YX)

βX,Y⊗idZ α−1
Y,X,Z idY⊗βX,Z αY,Z,X

βY,Z⊗idXαX,Y,Z

idX⊗βY,Z

αX,Z,Y βXZ⊗idY α−1
Z,X,Y

idZ⊗βX,Y

αZ,Y,X

(5-5)

commutes for all X, Y, Z ∈ C.

Proof. The diagrammatic proof is easy as we will see in Lemma 5.14 below, so we are done after
strictification, cf. Theorem 5.24 stated below. �

Definition 5.8 A braided category C is called symmetric, if βY,XβX,Y = idXY holds for all
X, Y ∈ C.

Example 5.9 The motivating examples are the usual ones:

(a) The category Set with ⊗ = × and � = {•} can be endowed with a symmetric braiding
by using the swap map

τX,Y : XY → YX, (x, y) �→ (y, x).

(b) Similarly, Vec� or fdVec� with ⊗ = ⊗� and � = � can be endowed with a symmetric
braiding by also using (the � linear incarnation of) the swap map.

As usual with choices, they are often not unique:

Example 5.10 The category VecC(Z/2Z) with its standard monoidal structure can be endowed
with two braidings (note that braidings βi,j ∈ EndVecC(Z/2Z)(ij) ∼= C are scalars):

• by using the so-called standard braiding βst
1,1 = 1;

• by using the so-called super braiding βsu
1,1 = −1.

Proposition 5.11 For any braided category C its Grothendieck classes K0(C) form a commu-
tative monoid with multiplication and unit

[X][Y] = [XY] = [Y][X], 1 = [�].

Proof. The only thing we need to observe in addition to Proposition 2.10 is that the existence of
the braiding gives [X][Y] = [Y][X] because we have (5-1). �

Example 5.12 The category Vec�(G) with its standard monoidal structure can only be braided
if G is abelian. To see this observe that K0

�
Vec�(G)

� ∼= G as groups, and thus Proposition 5.11
applies.
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5C. Feynman diagrams for braided categories. Example 5.15 already suggests the following
diagrammatic conventions. We take the ones for monoidal categories, see e.g. (2-7), together
with diagrammatic rules for braidings:

βX,Y �
Y

Y

X

X
, β−1

X,Y �
X

X

Y

Y
,(5-6)

where (5-1) implies that βX,Y has an inverse. Being inverses gives the Reidemeister 2 moves,
i.e. the diagrammatic analogs of (5-4):

Y

Y

X

X

=

X

X

Y

Y

,

Y

Y

X

X

=

Y

Y

X

X

⇔

Y

Y

X

X

=

X

X

Y

Y

=

Y

Y

X

X

(5-7)

hold for all X, Y ∈ C.

Remark 5.13 We usually, following history, use the right-hand side in (5-7) as the Reidemeister
2 moves. Further, beware that β−1

Y,X is the inverse of βX,Y and not β−1
X,Y .

The diagrammatic incarnations of the braided and equalities in (5-2) and (5-3) are

Z

Z

X

X

Y

Y

=

Z

Z

XY

XY

,

Y

Y

Z

Z

X

X

=

YZ

YZ

X

X

,

Z

g

A Y

X

f =

Z

g

A

X

f

Y

.(5-8)

Similarly as in Lemma 4.49, we call the right relation sliding. We also have the Reidemeister
3 move, i.e. the diagrammatic analog of (5-5):

Lemma 5.14 In any braided category C we have the Reidemeister 3 move, i.e.

Z

Z

Y

Y

X

X

=

Z

Z

Y

Y

X

X

(5-9)

holds for all X, Y, Z ∈ C.

Proof. We use (5-8) for a specific choice, i.e.

X = XY, Y = YX, Z = A, Y = A,

YX

XY

f =
Y

Y

X

X
,

Z

Z

g =
Z

Z
,

with the right-hand sides of all equations being the choices. This shows (5-9). �
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In the symmetric braided case we have βY,XβX,Y = idXY, which implies that

βX,Y = β−1
X,Y �

Y

Y

X

X
=

X

X

Y

Y
=

Y

Y

X

X
,

where the right-hand side is thus an appropriate shorthand notation. Hence, in symmetric braided
categories the Reidemeister moves (5-7) and (5-9) then become

Y

Y

X

X

=

X

X

Y

Y

,

Z

Z

Y

Y

X

X

=

Z

Z

Y

Y

X

X

.

Example 5.15 Again, we have the notions of being “free as an XYZ”:

(a) The free braided category generated by one object • is qSym from Example 3.29. This
category is important, so let us be completely explicit. We let qSym = �S, T | R� with

S : •, T : : •2 → •2, R : = = , = .(5-10)

(We do not take mirrors.)

(b) The free symmetric braided category generated by one object • is Sym from Example 3.21.

To see that this we observe that for one object (5-7) and (5-9) are equivalent to the braided
and equalities in (5-2) and (5-3).

Remark 5.16 Note that qSym has only overcrossings appearing in its definition. The under-
crossings come into the game via invertibility. In particular,

= , = ,

and all other versions of Reidemeister 3 moves are consequences and need not to be imposed.

The formal rule for braided Feynman diagrams is thus:

“Two diagrams are equivalent if they are related by scaling,
by a planar isotopy, or braided and equalities (5-8).”

.(5-11)

Theorem 5.17 The graphical calculus is consistent, i.e. two morphisms are equal if and only if
their diagrams are related by (5-11).

Proof. The statement of the theorem just summarizes the discussion above: we have the Reide-
meister 2 and 3 moves for strands, see (5-7) and (5-9), and we can slide coupons (5-8). �
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5D. Braided functors. As usual, we want the notion of functors between braided categories.
To this end, recall that a monoidal functor (F, ξ, ξ�) was a functor with an additional choice of
data, cf. Definition 2.20. In contrast, being braided is a property:

Definition 5.18 A functor F ∈ Hom⊗(C, D) between braided categories is called braided if

F(X)F(Y) F(Y)F(X)

F(XY) F(YX)

βF(X),F(Y)

ξX,Y ξY,X

F(βX,Y)

,

commutes for all X, Y ∈ C.

We proceed as usual:

Lemma 5.19 The identity functor on a braided category is braided. Moreover, if F and G are
braided functors, then so is GF. �

Example 5.20 We get the category of braided categories BCat and the category of
braided functors Homβ(C, D), whose natural transformation are monoidal natural transfor-
mations.

Definition 5.21 C, D ∈ BCat are called equivalent as braided categories, denoted by
C �β D, if there exists an equivalence F ∈ Homβ(C, D).

Example 5.22 We also have the category of braided pivotal categories BPCat and the
notion of equivalence for these is denoted by C �β,� D. These equivalences use braided rigid
functors which also form the category of braided rigid functors Homβ,�(C, D).

Definition 5.23 A category (C, β) is called strict, if it is strict as a monoidal category.

As usual:

Theorem 5.24 For any braided category C there exists a strict braided category Cst which is
braided equivalent to C, i.e. C �β Cst.

Proof. This is an almost immediate consequence of Theorem 2.32, see [JS93, Thoerem 2.5] for a
detailed argument. �

5E. Classifying braidings. Classifying braidings, meaning finding all possible braidings
on C ∈ MCat up to braided equivalence, is very difficult. So Theorem 5.26 below is quite
remarkable. Before we state it we need some preparation.

Lemma 5.25 Let G be abelian. Then the braidings on Vecω
�
(G) (with its usual monoidal

structure) are classified by twisted group homomorphisms β : G × G → �
∗, i.e. maps satisfying

ω(k, i, j)β(ij, k)ω(i, j, k) = β(i, k)ω(i, k, j)β(j, k)

ω(j, k, i)−1β(i, jk)ω(i, j, k)−1 = β(i, k)ω(j, i, k)−1β(i, j).
(5-12)
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In particular, if ω is trivial, then braidings are classified by group homomorphisms β : G×G → �
∗.

Such maps as in Lemma 5.25 are also known as (twisted) bicharacters. The above thus says
that every braiding has an associated twisted bicharacter, which we denote by the same symbol.

Proof. By comparing (5-2) and (5-12) we see that each such β can be used to define a braiding,
and vice versa. �

A general philosophy, which we already have seen in Remark 2.27, is that “Some cohomology
theory should measure the obstruction of two braiding to be equivalent.”. In fact, it is easy to
see that functions satisfying (5-12) for fixed ω form an abelian group Z3

ω(G,�∗) , which are the
3 cocyles of a cohomology group H3

ω(G,�∗), see e.g. [EGNO15, Section 8.4] for the definition.
Indeed:

Theorem 5.26 Let G be abelian and fix a 3 cocycle ω. Then
�
Vecω

�
(G), β

� ∼=β

�
Vecω

�
(G), β��

if and only if β and β� are cohomologically equivalent.

Proof. In the end this is just a careful, but demanding, check of the involved definitions and
commuting diagrams. Details are discussed in [EGNO15, Section 8.4]. �

Example 5.27 Via Theorem 5.26 we get the following, always using the standard monoidal
structures.

(a) The G = 1 case of Theorem 5.26 implies that fdVec� allows only one braiding if one
fixes its standard monoidal structure since one can check that H3

1 (1,�∗) ∼= 1. See also
Example 6.23 later on.

(b) For G = Z/2Z and non-trivial ω, has only two braidings:

β±
0,0 = β±

0,1 = β±
1,0 = 1, β±

1,1 = ±i ∈ C.

The crucial calculation hereby is

ω(1, 1, 1)β(11, 1)ω(1, 1, 1) = (−1)1(−1) = β(1, 1)(−1)β(1, 1) = β(1, 1)ω(1, 1, 1)β(1, 1)

⇒ β(1, 1)2 = −1.

It turns out that these are equivalent, i.e. H3
ω(Z/2Z,C∗) ∼= 1, and has only one (non-trivial)

braiding up to equivalence.

(c) For G = Z/2Z and trivial ω, we find precisely two possible solutions to (5-12) and recover
Example 5.10.(a) and (b), since H3

1 (Z/2Z,C∗) ∼= Z/2Z.

5F. The Reidemeister calculus. Recall that Theorem 3.26 identifies 1Cob algebraically. We
are now ready to state the analogs for 1Tan and 1State.

But first things first, let us be clear about the definitions of qBr and oqBr:

Example 5.28 The (generic) quantum Brauer category qBr is the braided pivotal cate-
gory generated by one self-dual object • with relations

R : = , = ,(5-13)
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including mirrors, with structure maps

: ••→••, : •• → �, : � → ••.

Example 5.29 The (generic) oriented quantum Brauer category oqBr is the braided
pivotal category generated by one object • with relations

R : = , = ,(5-14)

including mirrors, with structure maps

: ••→••, : ••� → �, : (•�)• → �, : � → ••�, : � → (•�)•.

The category qBr is also called BMW (Birman–Murakami–Wenzl) category in the litera-
ture, while oqBr is sometimes called quantum walled Brauer category.

Remark 5.30 Note that (5-13) and (5-14) are not all defining relations as some are hidden in
the phrase “generated as an XYZ”. For example,

=

holds in both categories (with upward orientations for oqBr) and is part of being braided.

Clearly, 1Tan and 1State are braided and pivotal with the evident structures. Recall also that
we have the Reidemeister theorem:

“Two (oriented) tangles in three space are isotopic if their projections
(also known as tangle diagrams)

are related by planar isotopies and Reidemeister moves 1-3, see (5-16).
.(5-15)

The topological Reidemeister 1, 2 and 3 moves are all versions (not just mirrors) of

1: = , 2: = = , 3: = .(5-16)

Remark 5.31 Traditionally the topological Reidemeister 1 moves are usually illustrated verti-
cally as in (5-16), while their analogs in the Brauer calculus are traditionally sideways, see e.g.
(5-14), as it is a shorter composition of the generators. By (4-15), these are the same data, and
we will call the both the Reidemeister 1 moves.

In our language, the categorical version of the Reidemeister theorem (5-15) is:

Theorem 5.32 There exist braided rigid functors

qR: qBr → 1Tan, • �→ •, �→ , �→ , �→ ,

oqR: oqBr → 1State, • �→ •, �→ , �→ , �→ , �→ , �→ .

Both functors are dense and fully faithful, thus, qBr �β,� 1Tan and oqBr �β,� 1State.
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Proof. Let us sketch a proof. Exactly as for Theorem 3.26, the main problem is to prove that
these functors are faithful. To show faithfulness one needs to identify the generating relations of,
say, 1Tan. In words, one needs to identify what “isotopies of tangles” means for their projections.

To this end, the first step is to show that any tangle, appropriately defined, has a piecewise linear
Morse presentation. A Morse presentation was already needed for the proof of fullness and has
exactly the same meaning as in (3-4), while piecewise linear basically is

� .

Here the � denotes the boundary points of the piecewise linear parts. (Note that all pictures in
this proof are meant to represent topological objects.)

Then one needs to identify what isotopies are on these piecewise linear presentations and one
gets the notion of � equivalence ∼� via � moves:

� move : ∼� .

Here the triangle is not part of the link, but rather an illustration that no other strand is allowed
to pass through it while performing the � move. In words, two piecewise linear tangles are
isotopic if and only if they are � equivalent.

The first consequence of � equivalence to notice is subdivision, i.e.

∼� ∼� ∼� .

Thus, it remains to analyze how � moves generically and locally project. In fact, the main upshot
is that there are only finitely many possibilities one needs to check and one ends with precisely
all possible versions (not just mirrors) of the Reidemeister moves e.g.:

∼� ∼� ∼� � = = .

This established the Reidemeister theorem that two tangles are isotopic (in three space) if and
only if their projections are related by planar isotopies and Reidemeister moves.

The final thing to check is that oqBr has enough relations to obtain all versions of the Reidemeister
moves as well as all possible planar isotopies. Again, this is non-trivial as we e.g. imposed only
certain types of Reidemeister relations such as only upwards oriented Reidemeister 2 moves. �

5G. Twists. Recall that the Reidemeister 2 and 3 moves (5-7) and (5-9) are consequences of the
axioms of a braided category. For a braided pivotal category a good question would be whether
the Reidemeister 1 moves as in (5-16) follows from the combined axioms. Let us address this
question.



QUANTUM TOPOLOGY WITHOUT TOPOLOGY 63

Definition 5.33 For X ∈ C with C ∈ BPCat the right tX and left tX twists are defined via

tX =

X

X

, tX =

X

X

.

There are three possible version of Reidemeister 1 moves. To explain them fix X ∈ C for
C ∈ BPCat. First, the (classical) Reidemeister 1 moves are

X

X

=

X

X

=

X

X

(5-17)

Second, the ribbon equation is

X

X

=

X

X




(5-20)⇐⇒

X

X

=

X

X

=

X

X



.(5-18)

Finally, the framed Reidemeister 1 moves are

X

X

=

X

X

=

X

X

.(5-19)

Example 5.34 Clearly, (5-17) ⇒ (5-18) ⇒ (5-19). But:

(a) In fdVec� with its standard monoidal structure, pairing and braiding we have

tX : X → X, xj �→ �n
i=1 xj ⊗ xi ⊗ x�

i �→ �n
i=1 xi ⊗ xj ⊗ x�

i �→ xj ,

tX : X → X, xj �→ �n
i=1 x�

i ⊗ xi ⊗ xj �→ �n
i=1 x�

i ⊗ xj ⊗ xi �→ xj .

(Recall hereby our notation from Example 4.11.) Thus, (5-17) holds.

(b) For VecC(Z/2Z) we have discussed two pivotal structures in Example 4.64. If we take
the second pivotal strucutre therein together with the trivial braiding, then

t1 : 1 → 1, t1 = −1, t1 : 1 → 1, t1 = −1.

Thus, (5-19) and (5-18) hold, but (5-17) fails to hold.
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(c) For VecC(Z/3Z) and ζ ∈ C a primitive third root of unity we have discussed a pivotal
structure in Example 4.59. Taking this structure together with the trivial braiding we get

t1 : 1 → 1, t1 = ζ2, t2 : 2 → 2, t2 = ζ,

t1 : 1 → 1, t1 = ζ, t2 : 2 → 2, t2 = ζ2.

Thus, (5-19) holds, but neither do (5-17) or (5-18).

Lemma 5.35 Fix X ∈ C for C ∈ BPCat.

(i) The right and left twists are invertible with inverses

(tX)−1 =

X

X

, (tX)−1 =

X

X

.(5-20)

(ii) We have sliding, i.e.

X X

=

XX

,

including mirrors.

(iii) With respect to duality we have

(tX)� = tX� =

X

X

, (tX)� = tX� =

X

X

.

(iv) All of the above maps are natural, i.e. they assemble into natural transformations.

Proof. (i) See [TV17, Lemma 3.2].

(ii). Using (i) and Reidemeister moves we get

X X

=

XX

=

XX

.

(iii). This is a direct application of sliding (ii) and zigzag.

(iv). The naturality of the twists is a direct consequence of the naturality of the braiding and the
dualities. �

Lemma 5.35 immediately implies:
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Proposition 5.36 For C ∈ BPCat and all X ∈ C the equation (5-19) holds. �

Remark 5.37 By definition and Example 5.34 we have

Framed Reidemeister 1 ⇐ ribbon equation ⇐ Reidemeister 1,

framed Reidemeister 1 �⇒ ribbon equation �⇒ Reidemeister 1.

Example 5.38 The (generic) oriented framed quantum Brauer category ofqBr is the
braided pivotal category generated by one object • with relations

R : = ,(5-21)

including mirrors, with structure maps

: ••→••, : ••� → �, : (•�)• → �, : � → ••�, : � → (•�)•.

Note that Proposition 5.36 implies that (5-19) holds in ofqBr. In fact, a non-trivial argument
shows that ofqBr is the free braided pivotal category generated by one object.

Example 5.39 Without further definition, there are of course also a non-oriented fqBr, non-
quantum ofBr and only framed fBr versions of ofBr.

5H. Ribbon categories. We have seen that the Reidemeister 1 moves (5-17) are motivated
from the topology of tangles in three space. As we will see, the framed Reidemeister 1 moves
(5-19) are also related to topology, but only in the form as in (5-18). This motivates:

Definition 5.40 A category C ∈ BPCat is called ribbon if (5-18) holds for all X ∈ C.

Example 5.41 The two categories in Example 5.34.(a) and (b) are ribbon, while Exam-
ple 5.34.(c) is not. It will also follow from Lemma 5.43 that the non-spherical category from
Example 5.34.(c) can not be ribbon.

Example 5.42 Note that being ribbon is a property and not a structure. So we can let the
category of ribbon categories RiCat be the corresponding full subcategory of BPCat.

Lemma 5.43 Let C ∈ RiCat. Then C is spherical.

Proof. Using the Reidemeister calculus and sliding this is the calculation

f X = X f = X f = X

f

= fX ,

where the last step uses (5-18). �
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Remark 5.44 The name ribbon comes from the following. If one takes a strip of paper (a thin
and long strip works best) and performs the following

= = �= ,(5-22)

then we get the ribbon equation (5-18). However, the paper strip is twisted, so (5-17) does not
hold. This motivates the definition of an important category in low-dimensional topology, called
the category of ribbons (a.k.a. paper strips) 1Ribbon, which is, of course, a ribbon category.
This category consists of oriented ribbons embedded in three space, e.g.

� , � .

By making them arbitrary thin, these ribbons can be identified with the usual diagrams in the
Reidemeister calculus with (5-22) being the difference between ribbons, which have two sides, say
green and white colored, and strings, which do not have any sides.

Example 5.45 The (generic) oriented ribbon quantum Brauer category orqBr is the
braided pivotal category generated by one object • with relations

R : = , = ,

including mirrors. The structure maps are the usual ones, see e.g. Example 5.38.

The following is the point, but again non-trivial to prove.

Theorem 5.46 There exist a braided rigid functor

orqR : orqBr → 1Ribbon, • �→ •,

�→ , �→ , �→ , �→ , �→ .

The functor is dense and fully faithful, thus, orqBr �β,� 1Ribbon.

Proof. A version of this theorem, which can be used to prove the formulation of it as above, is
proven in [CP95, Section 5.3]. �

5I. Algebras in braided categories. Let us conclude this part with an continuation of Sec-
tion 3E. A classical problem which we will address is to determine what condition on an algebra
A ∈ Vec� ensures that ModC(A) is monoidal. Two known answers are:

• The category ModC(A) is monoidal if A is commutative.

• The category ModC(A) is monoidal if A is a bialgebra.

We will now discuss the categorical versions of these facts.
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Definition 5.47 A commutative algebra A = (A, m, i) in a braided category C ∈ BCat is
an algebra in C such that

AA

A

=
A

A A
.(5-23)

A cocommutative coalgebra C = (C, d, e) in a braided category C is, by definition, a commu-
tative algebra in Cop.

By up-down symmetry, we can focus on algebras, since all constructions and statements for
coalgebras are similar.

Example 5.48 Definition 5.47 generalizes the notions of (co)commutative (co)algebras, which
can be recovered by taking C = Vec�. More generally, as we will see later, commutative algebras
in

�
Vec�(Z/2Z), βsu

1,1
�
, see Example 5.10, are supercommutative algebras.

A classical result is that for commutative algebras the notions of left, right and bimodules agree.
Categorically this is also the case:

Proposition 5.49 Let A ∈ C be a commutative algebra.

(i) Every M ∈ ModC(A) has the structure of a left A module.

(ii) Every N ∈ (A)ModC has the structure of a right A module.

(iii) We have equivalences of categories

ModC(A) � (A)ModC � (A)ModC(A).

Consequently, ModC(A) is a monoidal category with ⊗ = ⊗A and � = A.

Proof. (i). We can define a left action on M via

M

M

A

=

M

M

A

.

We now need to check associativity and unitality using the Reidemeister calculus as well a the
diagrammatics for right actions:

M

M

AA

=

M

M

AA

=

M

M

AA

=

M

M

AA

=

M

M

AA

=

M

M

AA

=

M

M

AA

.

Note that the forth equality uses commutativity (5-23). Similarly, we compute

M

M

=

M

M

=

M

M

=

M

M

.
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This shows (i).

(ii). By symmetry.

(iii). The following verifies that right and left action commute:

M

M

AA

=

M

M

AA

=

M

M

AA

=

M

M

AA

=

M

M

AA

=

M

M

AA

=

M

M

AA

.

Thus, we can define a bimodule structure on M ∈ ModC(A) and also, by symmetry, on N ∈
(A)ModC. Moreover, we can also match the equivariant morphisms, e.g.

f

N

M

= f

N

M

= f

N

M

= f

N

M

.

One then easily verifies that one gets the claimed equivalences of categories. �

We can also define the monoidal structure on ModC(A) diagrammatically:

M

M

⊗

N

N

=

M

M

N

N

, right A action:

M

M

AN

N

A

, g

P

O

⊗ f

N

M

= g

P

O

f

N

M

.(5-24)

Thus, a good question would be whether ModC(A) is also braided. This is not quote the case:

Definition 5.50 For any commutative algebra A ∈ C let Modβ
C(A) ⊂ ModC(A) denote the

full subcategory with objects satisfying

AM

M

=

M

M

A

.(5-25)

The right A modules satisfying (5-25) are also sometimes called braided for the following reason.

Proposition 5.51 For any commutative algebra A ∈ C the category Modβ
C(A) is braided with

braiding inherited from C.

Proof. This is Exercise 5.64. �
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Example 5.52 If C ∈ BCat is symmetric, then, using Reidemeister calculus, we see that
(5-25) becomes

M

M

A

=

M

M

A

,

which holds for all objects, i.e. Modβ
C(A) = ModC(A). Furthermore, we have ModC(A) ∈ BCat

is also symmetric. In particular, classically, the module categories of any commutative algebra in
Vec� are symmetric.

Another answers is that ModC(A) is monoidal if A is a bialgebra. We will see that the same is
true categorically. Since this is important let us be precise:

Definition 5.53 A bialgebra A = (A, m, i, d, e) in a category C ∈ BCat consist of

• an algebra A = (A, m, i) ∈ C;

• a coalgebra A = (A, d, e) ∈ C;

such that

(i) we have the unitality conditions

A

A A
=

A

A A
,

A

A A
=

A

A A
, A = ∅;

(ii) we have the compatibility condition

A A

A A

=

A A

A A

.

Proposition 5.54 For any bialgebra A ∈ C the assignment as in (5-24) but

right A action:

M

M

AN

N

(5-26)

defines a monoidal structure on ModC(A).

Proof. First note that (5-26) is a well-defined right A action. For example,

M

M

N

N

=

M

M

N

N

=

M

M

N

N

=

M

M

N

N

,
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verifies unitality, where the first equality is using Definition 5.53.(i). Moreover,

g

P

O

N

AM

f =
g

P

O

N

AM

f
,

shows that A equivariant morphisms go to A equivariant morphisms under ⊗, showing that the
assignment is well-defined, i.e. ⊗ stays within ModC(A). Verifying that this assembles into a
monoidal structure works then exactly in the same way as for any horizontal juxtaposition. �

5J. Hopf algebras in braided rigid categories. To get our examples later on, we do some
diagrammatics again.

Definition 5.55 A pre Hopf algebra A = (A, m, i, d, e, s) in a category C ∈ BCat consist of

• a bialgebra A = (A, m, i, d, e) ∈ C;

• an antipode (s : A → A) ∈ C, illustrated by

A

A
;

such that

(i) we have the antipode condition

A

A

=

A

A

=

A

A

.(5-27)

If s is invertible, then we call A a Hopf algebra.

Hopf algebras kind of generalize commutative algebras, e.g. compare (5-23) to:

Lemma 5.56 For any pre Hopf algebra A ∈ C for C ∈ BCat we have sliding, i.e.
A

A A

=

A

A A

,

including its horizontal mirror.

Proof. Via the Reidemeister calculus and (5-27), see e.g. [Ma94, Lemma 2.3]. �

Further, the following should be compared to Proposition 5.49:

Proposition 5.57 Let A ∈ C for C ∈ BCat be a pre Hopf algebra.
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(i) Every M ∈ ModC(A) has the structure of a left A module.

(ii) Every N ∈ (A)ModC has the structure of a right A module.

Proof. Of course, (i) and (ii) are equivalent up to right-left symmetry, and it suffices to prove (i).

(i). We can define a left action on M via

M

M

A

=

M

M

A

.(5-28)

Using sliding Lemma 5.56, we see that (5-28) satisfies associativity:

M

M

AA

=

M

M

AA

=

M

M

AA

=

M

M

AA

=

M

M

AA

=

M

M

AA

=

M

M

AA

.

(Note that this is almost the same argument as in Proposition 5.49.) The easier proof that (5-28)
also satisfies unitality is omitted. �

Let us say right rigid and left rigid in case only the right respectively left duals need to exist.

Theorem 5.58 For any pre Hopf algebra A ∈ C where C ∈ BRCat we have:

(i) The category ModC(A) is right rigid with duality inherited from C.

(ii) The category (A)ModC is left rigid with duality inherited from C.

(iii) If A is a Hopf algebra, then both, ModC(A) and (A)ModC, are rigid with duality inherited
from C.

Proof. (i). First, Proposition 5.54 shows that we get a monoidal structure, and by Proposition 4.65
we then get that right duals, using this monoidal structure, have an action of A, but from the
wrong side. However, by Proposition 5.57 we can swap sides of the actions.

(ii) By (i) via symmetry.

(iii). To define a left action on the left dual �M we first denote the inverse of the antipode by

s−1 �
A

A
.

In order to define a right action on �M recall from (5-28) that M has a left action. Thus, we can
define a right action on �M via

�M

�M

A

=
ev

�M

M

�M

coev
A

.
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The invertibility comes into play since one needs e.g.

M

M

A

=

M

M

A

=

M

M

A

.

The second claim in (iii) follows again by symmetry. �

Example 5.59 Again, this generalizes several notions:

(a) Hopf algebras in Vec� are classical Hopf algebras. A particular example is �[G]. Thus,
we recover the classical result that fdMod

�
�[G]

�
is rigid.

(b) Hopf algebras in VecC(Z/2Z) with its super braiding could be called super Hopf algebras.

5K. Summary of the interplay between topology and categorical algebra. Some (the
most important) Brauer categories we have seen are summarized in the following table.

monoidal braided pivotal symmetric self-dual • Reidemeister 1 topology
Br Y Y Y Y Y Y 1Cob

qBr Y Y Y N Y Y 1Tan
oqBr Y Y Y N N Y 1State
orqBr Y Y Y N N N 1Ribbon

.

We leave it to the reader to fill in all the various versions using the adjectives “oriented”, “quantum”
and “ribbon”. Let us use the placeholder −, which can be filled in with these adjective.

The point is that they are all equivalent to their topological incarnations while “free XYZ with
properties ABC”. Thus, we “define”:

A quantum invariant Q is a structure preserving functor

Q: −Br → C,

where C is “a linear algebra like category”.

The aim of the following lectures is to make precise what “a linear algebra like category”, a.k.a.
“a category where we can compute”, might mean, the guiding example being fdVec�.

5L. Exercises.

Exercise 5.60 Prove that
�
VecC(Z/2Z), βst

1,1
�

��β

�
VecC(Z/2Z), βsu

1,1
�
, where the standard and

super braidings are defined in Example 5.10.

Exercise 5.61 Verify the claims in Example 5.15 and Remark 5.16.

Exercise 5.62 For any C ∈ BCat show that Cop, Cco, Ccoop ∈ BCat by defining braidings on
them using the braiding of C.
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Exercise 5.63 With respect to Remark 5.30, write down all only implicitly stated relations for
qBr and oqBr. What about e.g.

= ?

Exercise 5.64 Prove Proposition 5.51 and verify the missing claims in Proposition 5.54.

6. Additive, linear and abelian categories – definitions and examples

A topological invariant should be computable, i.e. within the realm of linear or homological
algebra. So:

What is the analog of linear or homological algebra in a categorical language?

6A. Conventions. We keep all conventions from before, including all abbreviations which we
used. Let us stress one:

Convention 6.1 Similarly as in Convention 2.3, we will write e.g. ⊕ instead of ⊕C.

Convention 6.2 We will see a lot of objects defined via some universal property. By a very
general type of argument, which we will call a universality argument, see Section 6D, such
objects are unique up to unique isomorphism. Since these arguments are very similar, we usually
omit the corresponding proofs. Moreover, these objects usually are objects together with extra
data such as a morphism, but we tend to treat them as objects if no confusion can arise.

Convention 6.3 Recall from Section 3E that a � algebra is an algebra in Vec�. Similarly, a
ring for us is an algebra object in VecZ (the category of abelian groups, see Example 1.8), in
particular, associative and unital. Moreover, throughout, S denotes commutative ring, i.e. a
commutative algebra in VecZ.

6B. A motivating example. As we have already seen, the “multiplication” ⊗� of Vec� gener-
alizes to the notion of monoidal categories. Let us now focus on the “addition” ⊕ of Vec�.

• First, we note that HomVec�(X, Y) ∈ Vec�. Or in words, hom spaces between � vector
spaces are, of course, � vector spaces again. In particular, they are abelian groups,
meaning that we can add and subtract morphisms f , g ∈ HomVec�(X, Y) and the results
f ± g are still in HomVec�(X, Y). There is also an additive unit, the zero map 0, additive
inverses and composition is biadditive.

Remark 6.4 We can, of course, also use scalars from �, and this property will below be
called � linear. However, for now the condition of being an abelian group or, equivalently,
Z linear is relevant for us.

• Second, we have a zero object, the zero � vector spaces 0, which satisfies:

For all X ∈ Vec� there exist unique morphisms 0: X → 0, 0: 0 → X.(6-1)

The morphisms in (6-1) are called the zero morphisms and they are the zero maps.
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• Finally, we consider the pair category (see Definition 1.12) Vec�×Vec� and we have a
bifunctor

⊕ : Vec�×Vec� → Vec�, ⊕
�
(X, Y)

�
= X ⊕ Y, ⊕

�
(f, g)

�
= f ⊕ g,

called the direct sum, using again abbreviations of the form X ⊕ Y instead of ⊕
�
(X, Y)

�
.

We note that the object X⊕Y has a universal-type property, namely: there exist morphisms
iX, iY, pX, pY ∈ Vec� such that

X ⊕ Y

X Y
pX pY

iX iY , pXiX = idX, pYiY = idY, iXpX + iYpY = idX⊕Y.(6-2)

The two morphisms iX and iY are called inclusions, the other two pX and pY projections
(of X and Y, respectively).

6C. An even more down to earth motivating example. Let us be completely explicit and
consider the situation of Mat�. In this case the three observations above take the following form.

• Matrices can be added and this is bilinear with respect to multiplication ◦, e.g.
�

s ·
�

a b

c d

��
◦
�

t ·
�

e f

g h

��
= st ·

��
a b

c d

�
◦
�

e f

g h

��
.

• There exists a zero 0 and a zero matrix 0 = ( 0 ).

• We can add numbers and there exist block matrices and corresponding inclusions and
projections of blocks, e.g.

2 ⊕ 2 = 4, i←2 =




1 0
0 1
0 0
0 0


 , i→2 =




0 0
0 0
1 0
0 1


 , p←

2 =
�

1 0 0 0
0 1 0 0

�
, p→

2 =
�

0 0 1 0
0 0 0 1

�
.

6D. A brief reminder on universality. Let F ∈ Hom(C, D) be a functor between categories
C, D ∈ Cat. Then a pair

�
X, f : Y → F(X)

�
in D satisfies a universal property for Y and F if

for any g : Y → F(Z) there exist a unique u: X → Z making

Y F(X) X

F(Z) Z

f

g F(u) u∃!

commutative. A universal property for F and Y is defined similarly, with Cop and Dop instead
of C and D.

Example 6.5 Let D = Set. Then the product X1×X2 comes with the two coordinate projections
p1 and p2 and satisfies a universal property. This universal property will take place in Set×Set
(the pair category from Definition 1.12) can be formulated as follows. First, let F: Set → Set×Set
be the diagonal functor. Then the pair

�
X1 × X2, (p1, p2)

�
satisfies a universal property from F to
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(X1, X2), i.e. we have

(X1, X2) (X1 × X2, X1 × X2) X1 × X2

(Z, Z) Z

(p1, p2)

(u, u)
f� ∃! u .

Lemma 6.6 A pair (X, f) satisfying a universal property for Y and F, if it exists, is unique up
to unique isomorphism, i.e. if (X�, f �) is another pair, then there exists a unique isomorphism
h: X

∼=−→ X� such that f � = F(h)f. Similarly for pairs F and Y.

Proof. It follows by substituting (X�, f �) into the definition for (X, f) that h exists uniquely, i.e.

Y F(X)

F(X�)

f

f� ⇒
Y F(X) X

F(X�) X�

f

f� F(h) h∃! .

By symmetry, we also get a unique h� : X� → X, which we paste together with h:

Y F(X) X

Y F(X�) X�

F(X) X

f

f� F(h)

F(idX)

h∃!

idX∃!f�

f F(h�) h�∃!

.

However, there already exists a morphisms X → X making the outer part above commutative,
namely idX. Thus, h�h = idX and, by symmetry, hh� = idX� . �

Notions defined by universal properties are unique if they exist, but they do not have to exist in
general. Nevertheless, recall from Convention 3.4 that we do not write “assuming that XYZ exists”
below, and these will be implicit assumption for e.g. statements such as the ones in Lemma 6.31
to make sense.

6E. Linear algebra in categories. We generalize the situations of Vec� and Mat�.

Definition 6.7 A category C ∈ Cat is called S linear if the space HomC(X, Y) is an S module
for all X, Y ∈ Cat and composition is S bilinear.

Definition 6.8 A category C ∈ Cat is called additive if

• it is Z linear;

• there exists a zero object 0 ∈ Cat (meaning an object satisfying (6-1));

• for all X, Y ∈ Cat there exists an object X ⊕ Y called direct sum, which satisfies the
universal property in (6-2).

Example 6.9 The properties of being S linear and additive are parallel to each other: one asks
for linearity of hom spaces, the other for existence of direct sums.



76 DANIEL TUBBENHAUER

(a) The category Set is neither S linear nor additive.

(b) The categories Vec� and fdVec� are � linear additive.

(c) The categories of the form Vecω
�
(G) are � linear, but not additive.

(d) The category VecZ is additive, but not � linear (but, of course, Z linear).

Example 6.10 Additive categories need to be closed under ⊕. For example, the full subcategory
evenVec� ⊂ fdVec� of even dimensional � vector spaces is � linear additive, while the full
subcategory oddVec� ⊂ fdVec� of odd dimensional � vector spaces is only � linear.

The following is (almost) immediate.

Lemma 6.11 Let C ∈ Cat be additive. Then there exists a bifunctor ⊕ : Cat×Cat → Cat
called direct sum. �

We again can say “the” direct sum, justified by the following lemma whose proof is a universality
argument:

Lemma 6.12 Up to unique isomorphisms, X ⊕ Y is the only object in C satisfying (6-2). �

Definition 6.13 An S linear functor F ∈ Hom(C, D) between S linear categories is a functor
such that the induced map

HomC(X, Y) → HomD
�
F(X), F(Y)

�

is S linear for all X, Y ∈ C.

On the first glance Definition 6.13 looks like the “wrong definition” for additive categories since
it does not involve the direct sums. However, the slogan is “linear implies additive”:

Lemma 6.14 Let F ∈ Hom(C, D) be Z linear, and let C and D be additive. Then there exists
a natural isomorphism F(X ⊕ Y) ∼= F(X) ⊕ F(Y).

Proof. Note that being Z linear gives us the equality

F(f + g) = F(f) + F(g).

Thus, all of the equations in (6-2) are preserved by F which implies that F(X ⊕ Y) is a direct sum
of F(X) and F(Y), and the claim follows from Lemma 6.12. �

The following is as usual not hard to see:

Lemma 6.15 The identity functor on an S linear category is S linear. Moreover, if F and G
are S linear functors, then so is GF. �

Example 6.16 By Lemma 6.14, we get the categories of S linear categories CatS and the
category of additive categories Cat⊕ at the same time, morphism being the appropriate
linear functors. Also important is the category CatS⊕ of S linear additive categories, the
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morphisms being S linear functors, as well as the corresponding functor categories HomS(C, D),
Hom⊕(C, D) and HomS⊕(C, D).

Definition 6.17 C, D ∈ CatS⊕ are called equivalent as S linear additive categories,
denoted by C �S⊕ D, if there exists an equivalence F ∈ HomS⊕(C, D). Similarly in the S linear
and additive setup, using the appropriate linear functors.

6F. The linear extension and the additive closure. The following constructions allow us
to perform linear algebra in almost all categories.

Definition 6.18 The S linear extension of C ∈ Cat, denoted by CS, is the category with
Ob(CS) = Ob(C) and

HomCS(X, Y) = S
�

HomC(X, Y)
�

,

and the composition being the evident S linear extension of the composition in C.

In words, the hom spaces of CS are the free S modules with basis set being the corresponding
hom space in C.

Example 6.19 To match our previous conventions, let S = �.

(a) We have Set� �� Vec�.

(b) We have Vec(G)� �� Vec�(G).

Example 6.20 For diagrammatic categories such as the Brauer category Br, taking the S
linear extension amounts to taking formal sums of pictures with the same endpoints, e.g.

55
12 · − 2

3 · ∈ BrQ, + /∈ BrQ.

Since each diagram is a basis element, by definition, simplification of scalars is only allowed if the
diagrams are the same. Moreover, composition is bilinear, meaning e.g.

12 · ◦
�55

12 · − 2
3 ·

�
= 55 · − 8 · = 55 · − 8 · ,

where we have used one of the Brauer relations (3-2) in the last step.

Recall our notation for free monoids from Section 3B.

Definition 6.21 The additive closure of C ∈ CatS, denoted by C⊕, is the category with
Ob(C⊕) = �Ob(C) | ∅� (the composition is written ⊕) and

HomC⊕(X1 ⊕ ... ⊕ Xc, Y1 ⊕ ... ⊕ Yr) =
�

(fij)j=1,...,r
i=1,...,c | fij ∈ HomC(Xj , Yi)

�
,

and the composition being matrix multiplication.
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In words, the objects of C⊕ are formal (finite) direct sums of objects of C and the hom spaces of
C⊕ are matrices whose entries are morphisms of C:

(fij)j=1,...,r
i=1,...,c �




f11 ... f1c

... ... ...

fr1 ... frc


 .

In particular, the following is clear, saying that the additive closure is a closure:

Lemma 6.22 For all C ∈ CatS we have C⊕ �⊕ (C⊕)⊕. �

Example 6.23 With respect to Vec(G) we have interesting examples:

(a) In Vec�⊕(G), which is defined as first taking the � linear extension and then the additive
closure of Vec(G), objects are formal direct sums of group elements, while morphisms are
honest matrices with a restriction on entries coming from HomVec�(G)(i, j) = 0 if i �= j.

(b) The category Vec�⊕(G) is called the category of G-graded � vector spaces. Impor-
tant special cases are:

• For G = 1 we have Vec�⊕(1) � fdVec�. In particular, Theorem 5.26 implies that,
after choosing the monoidal structure, fdVec� has only one structure of a braided
category.

• For G = Z/2Z another common name is the category of (finite dimensional)
super vector spaces. This category has two braidings by Theorem 5.26, the
non-symmetric one is called the super braiding.

As in Example 6.23 the notation S⊕ means taking first the S linear extension, and then the
additive closure.

Example 6.24 For diagrammatic categories we get a diagram calculus of matrices. For example

� �
◦
� �

= + ,

� �
◦
� �

=





 ,

are computations in oBrS⊕.

Proposition 6.25 We have the following.

(i) For any C ∈ Cat we have CS ∈ CatS.

(ii) There is a dense and faithful functor L: C �→ CS given by S linearization.

(iii) If C ∈ Cat is monoidal (or rigid or pivotal or braided etc.), then so is CS with its
structure induced from C.

Similarly for C⊕, except that the corresponding functor in (ii) is fully faithful, but not dense.

Proof. This is Exercise 6.93. �

Here is the analog of Proposition 6.26.
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Proposition 6.26 Let F ∈ Hom(C, D). Then there exists a unique FS ∈ HomS(CS, DS) such
that we have a commuting diagram

CS DS

C D.

∃!
FS

F

L L

Similarly for additive closures.

Proof. The functor FS is the S linear extension of F. �

Proposition 6.25 and Proposition 6.26 in words say that we can do linear algebra in categories
without loosing our original category: one can check that “all properties we care about behave
nicely with S linear extensions and additive closures”, e.g. if F is monoidal, then so is FS.

6G. The first steps towards homological algebra in categories. First, the generalization
of a kernel:

Definition 6.27 For a category C ∈ Cat⊕ and f ∈ C we say Ker(f) =
�
Ker(f), k : Ker(f) → X

�

is a kernel of f if it has the universal property of the form
X

Ker(f) Y

K�

f

0

k

∃!
u

k�

0

.(6-3)

A cokernel of f, denoted by Coker(f) =
�
Coker(f), c

�
, is a kernel of f in Cop.

Universality gives:

Lemma 6.28 Up to unique isomorphisms, Ker(f) is the only object in C satisfying (6-3).
Similarly for the cokernel. �

Example 6.29 As usual with universal objects, they might not exist:

(a) In Vec� and fdVec� (co)kernels exist and are the usual (co)kernels.

(b) The category evenVec� does not have (co)kernels in general since the morphisms in
evenVec� might be of odd rank.

(c) Diagrammatic categories such as Br�⊕ usually do not have (co)kernels.

The usual convention to identify kernels with their objects Ker(f) is a bit misleading, in particular
in skeletal categories:

Example 6.30 In MatQ (co)kernels exist and can be described as follows. Take e.g. the matrix
f = ( 1 2

2 4 ). Then, for any a ∈ Q∗, the pairs

Ker(f) =
�
1,

� 2a
−a

��
, Coker(f) =

�
1, ( 2a −a )

�
,
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are kernels and cokernels of f, respectively. The unique isomorphism u in (6-3) for different scalars
is the corresponding scaling map.

The following should remind the reader of a classical fact from linear algebra and gives us a
good way to describe monic and epic morphisms, isomorphisms, subobjects, quotient objects etc.
(Recall that these notions as defined in Section 1F.)

Lemma 6.31 Let f ∈ C with C ∈ Cat⊕.

(i) We have Ker
�
Ker(f)

�
= 0 and Coker

�
Coker(f)

�
= 0.

(ii) Ker(f) = 0, respectively Coker(f) = 0, if and only if f is monic, respectively epic.

(iii) The morphism k of Ker(f) is monic, and the morphism c of Coker(f) is epic.

(iv) Ker(f) = 0 = Coker(f) = 0 if and only if f is monic and epic if and only if f is an
isomorphism.

(v) If f is monic, then Y/X = Coker(f) is a quotient object of Y.

Proof. By symmetry, it suffices to prove the claims for the kernels.

(i). We write

Ker(f)

0 X

k

0

0

and observe that the zero object clearly satisfies the universal property of a kernel.

(ii). For fh = fi we calculate fh − fi = f(h − i) = 0. Hence, letting k� = h − i, we see that h − i = 0
by (6.27). Conversely, if f is monic, then fg = 0 gives g = 0, which implies that the zero object is
the kernel of f.

(iii). By combining (i) and (ii).

(iv). We already know by (ii) that the first two statements are equivalent, and one direction of
the last statement is always true, see Lemma 1.32. So suppose that f monic and epic. Then
f = Coker

�
Ker(f)

�
= Coker(0), the latter always being an isomorphism.

(v). By the definition, we have a morphism c: Y → Y/X, which is epic by (iii). �

Note that we use the notation Y/X in Lemma 6.31.(v) for quotient objects since there is a natural
choice for the epic morphisms in this case. The same notation will be used below, and we will
also write Y ⊂ X for subobjects, partially justified by Theorem 6.44.

Definition 6.32 An epic-monic factorization (f, m, e) of f ∈ C with C ∈ Cat⊕ consists of

• a kernel
�
ker(f), k

�
and a cokernel

�
coker(f), c

�
for f;

• a kernel for c and a cokernel for k;

• an object I and two morphisms e : X → I and m: I → Y;
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such that

(i) f = me;

(ii) we have (I, e) = coker(k) and (I, m) = ker(c) giving a sequence

ker(f) X I Y coker(f)k e

f

m c .(6-4)

Using Lemma 6.31 we get:

Lemma 6.33 In (6-4), the morphism e is epic and the morphism m is monic. �

Definition 6.34 For f ∈ C with C ∈ Cat we say Im(f) =
�
Im(f), m: Im(f) �→ Y

�
(thus, we

assume that m is monic) is an image of f if it has the universal property of the form

X

Im(f) Y

I�

f∃e
e�

m

u
∃!

i�

A coimage of f, denoted by Coim(f) = (Coim(f), e : Coim(f) → Y), is an image of f in Cop.

Example 6.35 Images in Vec� (in its various incarnations) are the classical images of mor-
phisms. To be completely explicit, take f = ( 1 2

2 4 ) ∈ MatQ. Then we can let

Im(f) =
�
1, ( 1

2 )
�
, e = ( 1 2 ), f = ( 1

2 ) ◦ ( 1 2 ) = me.

An epic-monic factorization is also illustrated above.

Lemma 6.36 For f ∈ C with C ∈ Cat⊕ we have:

(i) For an image (Im(f), m) the morphism e is unique and epic. Similarly for coimages.

(ii) Im(f) ∼= Ker
�
Coker(f)

�
and Coim(f) ∼= Coker

�
Ker(f)

�
.

(iii) If f has an epic-monic factorization, then Im(f) ∼= I in (6-4).

Proof. This is Exercise 6.94. �

Consequently, by universality:

Lemma 6.37 For f ∈ C with C ∈ Cat⊕ with an epic-monic factorization and an image, this
factorization is unique up to unique isomorphism. �

Remark 6.38 Since we will later almost always work � linearly, let us stress that, clearly, all
the statements above have analogs for C ∈ CatS⊕ instead of C ∈ Cat⊕. Similarly, all statements
below can be (appropriately) linearized. For example, Theorem 6.44 holds verbatim with A then
being a � algebra, called a presenting algebra of C.
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6H. Abelian categories. Most invariants of classical topology take place in the following type
of categories.

Definition 6.39 A category C ∈ Cat⊕ is called abelian if every morphism f ∈ C has a
epic-monic factorization.

Example 6.40 Abelian categories are in some sense “rare” as we will see in Theorem 6.44.

(a) The names comes from the fact that VecZ, see Example 1.8, is abelian.

(b) Of course, Vec� and fdVec� are abelian.

(c) The categories Vecω
�⊕(G) are all abelian.

(d) Diagrammatic categories such as Br�⊕ are usually not abelian.

Remark 6.41 In Section 6F we have seen linear and additive closures of categories, which
allowed us to extend the power of linear algebra basically to any category. There are also several
notions of an abelian envelope (one classical reference is [Fr65]). However, they always come
with some form of catch: either they do not preserve structures one might care about, e.g. of
being monoidal, or they do not exist in general. In words: we can not naively abelianize our
favorite categories.

Definition 6.42 Let A be a ring, which we view as an algebra in VecZ. Then category of
right A modules is defined to be Mod(A) = ModVecZ(A), cf. Section 3F.

The prototypical example of an abelian category is Mod(A) as well will see in Theorem 6.44.

Remark 6.43 Note that Definition 6.39 implicitly assumes that kernels and cokernels exist.
(This, by Lemma 6.36, implies that images exist.) In fact, there are many equivalent definitions of
abelian categories. However, all of these are meant to be intrinsic descriptions of the “definition”
of the concrete abelian categories in Theorem 6.44.

The following, called the Freyd–Mitchell theorem, is the reason why all of the above looks
very familiar. Note that some of the involved notions will be defined later, but we want to have
the theorem stated as soon as possible:

Theorem 6.44 We have the following.

(i) For every abelian category C ∈ Cat⊕ there exist a ring A such that

C Mod(A)exact ,

i.e. C is equivalent, as an abelian category, to a full subcategory of Mod(A).

(ii) If C is additionally finite, then one can find a finite dimensional A such that

C fdMod(A)�e ,

i.e. C is equivalent, as an abelian category, to fdMod(A).
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Proof. We will sketch a proof later, for now see e.g. [Fr64, Theorem 7.34 and Exersice F]. �

The ring A in Theorem 6.44 is called a presenting ring of C.

Remark 6.45 The psychologically useful statement in Theorem 6.44 in words says that we
can think of objects of an abelian category as being A modules and of the notions we have seen
above, such as e.g. kernels, as being the ones from linear algebra. However, the statement has
two drawbacks: neither is A unique nor easy to compute in practice.

Example 6.46 For Vec� one can let A = � in Theorem 6.44, but A = Mn×n(�), the � algebra
of n × n matrices with values in �, works as well for any n ∈ N. (This is a special case of Morita
equivalence. Roughly, both, � and Mn×n(�) have only one simple module, which is either �
or �n with the evident action.) In this case Vec� ��⊕ Mod(A) for any such A, and these are
equivalences of abelian categories.

In order to define appropriate versions of functors between abelian categories (these are called
exact in Theorem 6.44) we need to understand abelian categories better.

6I. Exact sequences and functors. Recall that in homological algebra one always has certain
sequences satisfying exactness properties. Here is the analog:

Definition 6.47 A cohomologically written sequence, or sequence for short, in C ∈ Cat⊕
is a collection of objects Xi and morphisms fi : Xi → Xi+1 for i ∈ Z. We write (Xi, fi)• ∈ C for such
sequences, with zero objects being sometimes omitted. A homologically written sequence in
C ∈ Cat⊕ is a cohomologically written sequence in Cop.

The usual way to illustrate these is

... Xi−1 Xi Xi+1 ...fi−2 fi−1 fi fi+1
, ... Xi−1 Xi Xi+1 ...fi−2 fi−1 fi fi+1

.

By symmetry, we can focus on cohomologically written sequences from now on.

Definition 6.48 A sequence (Xi, fi)• ∈ C is called exact in i if Ker(fi) = Im(fi−1), and exact
if its exact in i for all i ∈ Z.

Example 6.49 A so-called short exact sequence (SES) is an exact sequence

X Y Zi p = ... 0 0 X Y Z 0 0 ...0 0 0 i p 0 0 0 ,

where i is monic and p is epic by exactness and Lemma 6.31. Note also that Z ∼= Y/X.

(a) To be completely explicit, here is a SES in MatQ:

2 3 1
i=

� 1 0
0 1

−1 −2

�
p=( 1 2 1 )

, 2 3 1
p�=

� 1 0 0
0 1 0

� i�=
� 0

0
1

�

.(6-5)

The right sequence is a so-called splitting of the left sequence, meaning that

p�i = id2, pi� = id1, ip� + i�p = id3.(6-6)

By comparing (6-6) to (6-2) we thus, not surprisingly, get that 3 ∼= 2 ⊕ 1.
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(b) A SES in VecC is

C{X} C[X]/(X2) ∼= C{1, X} C{1}X �→ X 1 �→ 1, X �→ 0
,

C{X} C[X]/(X2) ∼= C{1, X} C{1}1 �→ 0, X �→ X 1 �→ 1 .

(6-7)

The bottom sequence is a splitting of the top, and thus C[X]/(X2) ∼= C{1} ⊕ C{X}.

There are a few things to check: First, we have to make sure that the used morphisms are in
the correct category. (This sounds obvious, but is crucial: a lot of categories we will see are
subcategories of Vec�, but not all � linear maps are in general in such subcategories.) Second,
we need to make sure that the left morphism is monic and the right morphisms epic. Third, we
have to check Ker(g) = Im(f). (All of this is easy to see for (6-5) and (6-7).)

Definition 6.50 A functor F ∈ Hom⊕(C, D) is called exact if
�

X Y Zi p SES
�

⇒
�

F(X) F(Y) F(Z)F(i) F(p) SES
�
.

As usual:

Lemma 6.51 The identity functor on an additive category is exact. Moreover, if F and G are
exact functors, then so is GF. �

Example 6.52 We have a (non-dense, but full) subcategory Home(C, D) ⊂ Hom⊕(C, D),
the category exact functors.

Exact functors are the correct functors between abelian categories:

Lemma 6.53 Let F ∈ Home(C, D) be a functor between abelian categories. Then:

(i) If (Xi, fi)• ∈ C is exact, then
�
F(Xi), F(fi)

�• ∈ D is also exact.

(ii) If
�
Ker(f), k

�
∈ C is a kernel, then

�
F
�
Ker(f)

�
, F(k)

�
∈ D is also a kernel. Similarly for

cokernels.

(iii) If
�
Im(f), m

�
∈ C is an image, then

�
F
�
Im(f)

�
, F(m)

�
∈ D is also an image. Similarly for

coimages.

(iv) If f is monic, respectively epic, then F(f) is monic, respectively epic.

(v) If

ker(f) X I Y coker(f)k e

f

m c

is an epic-monic factorization in C, then

F
�
ker(f)

�
F(X) F(I) F(Y) F

�
coker(f)

�F(k) F(e)

F(f)

F(m) F(c)

is also an epic-monic factorization in D.
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Proof. (i). Note that being an exact sequence implies that we have

Ker(fi−1) Im(fi)

Xi−1 Xi Xi+1

Im(fi−1) Coker(fi+1)

fi−1

fi

which commutes and has SES diagonals. Applying F yields a commuting diagram

F
�
Ker(fi−1)

�
F
�
Im(fi)

�

F(Xi−1) F(Xi) F(Xi+1)

F
�
Im(fi−1)

�
F
�
Coker(fi+1)

�

x

F(fi−1)

u

F(fi)

w

v

with still has SES diagonals. Then

Im
�
F(fi−1)

�
= Im(vu) = Im(v) = Ker(w) = Ker(xw) = Ker

�
F(fi)

�
,

shows the claim.

(ii). Kernels and cokernels are special cases of exact sequences.

(iii). We use (ii) and Lemma 6.36.(iii).

(iv). By (ii) and Lemma 6.31.(iii).

(v). Clear by the other statements. �

Example 6.54 We get a (non-full) subcategory CatA ⊂ Cat⊕, the category of abelian
categories with morphisms being exact functors.

Definition 6.55 C, D ∈ CatA are called equivalent as abelian categories, denoted by
C �e D, if there exists an equivalence F ∈ Home(C, D).

Recall hom functors from Example 1.22, which will now again play a crucial role.

Example 6.56 As we have seen, any C ∈ CatA is equivalent as an abelian category to some
full subcategory of Mod(A) for some appropriate ring A. The additive versions of the Yoneda
embedding, cf. Proposition 1.56, almost do the job:

Y: C → Hom⊕(Cop, VecZ), Yop : Cop → Hom⊕(C, VecZ)

is fully faithful, and thus, C is equivalent as an additive category to a full subcategory of right
C modules. (Here we think of Hom⊕(Cop, VecZ) as right C modules.) However, an SES is in
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general not preserved since

HomC(−, X) HomC(−, Y) HomC(−, Z)HomC(−, i) HomC(−, p)
,

HomC(X, −) HomC(Y, −) HomC(Z, −)HomC(i, −) HomC(p, −)
,

(6-8)

are not exact in the rightmost, respectively leftmost, position, even if one starts with an SES.

So the Yoneda embedding is not exact and does not prove Theorem 6.44, at least not directly:

Proof. (Sketch of a proof of Theorem 6.44.(i).) It is easy to see that HomC(−, X) is an additive
and right exact functor, meaning that it sends a SES to a sequence as in the first row of (6-8),
which is exact except at the far left. Such functors form a category Homre

�
Cop, VecZ

�
, and one

shows the following (non-trivial) statements:

• The category Homre(Cop, VecZ) is abelian.

• The adjusted Yoneda embedding Yre : C → Homre

�
Cop, VecZ

�
with X �→ HomC(−, X) is

additive exact and fully faithful.

• There exists an object I ∈ Homre

�
Cop, VecZ

�
whose endomorphism ring

A = EndHomre(Cop,VecZ)op(I)

provides an abelian category Mod(A) equivalent to Homre(Cop, VecZ) as an abelian
category. �

The projective, respectively injective, objects correct the “failure” in (6-8) (in fact, the object I
from the above sketch of proof is a certain nice injective object called a cogenerator):

Definition 6.57 Let C ∈ Cat⊕.

(i) P ∈ C is called projective if we have

HomC(P, −) ∈ Home

�
C, VecZ

�
.

(ii) I ∈ C is called injective if we have

HomC(−, I) ∈ Home

�
Cop, VecZ

�
.

The following are (almost) immediate.

Lemma 6.58 If C ∈ CatA, then P ∈ C is projective if and only if it has the universal property
of the form

P

Y X

pu
∃!

f

,

for any epic morphism p. Similarly for injective objects in abelian categories. �

Lemma 6.59 Being projective is an additive property: two objects P, P� ∈ C are projective if
and only if P ⊕ P� is projective. Similarly for injective objects. �
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Example 6.60 By Lemma 6.59 we have two additive full subcategories Proj(C), the category
of projective objects, and Inj(C) the category of injective objects, for all C ∈ CatA.

Note also that we can define the same notions (projective, injective and their categories) for any
C ∈ Cat⊕.

Definition 6.61 Let C ∈ CatA and X ∈ C. We say P(X) =
�
P(X), f : P(X) � X

�
is a projective

cover of X if P(X) is projective and has the universal property of the form

P

P(X) X

pu
∃!

f

, where P is projective.(6-9)

An injective hull of f, denoted by I(X) = (I(X), i : X �→ I), is a projective cover of X in Cop.

The philosophy is a bit that every object is a quotient of a projective object and a subobject of
an injective object, and the projective cover and the injective envelope are the universal objects
achieving that. Thus, not surprisingly:

Lemma 6.62 Up to unique isomorphisms, P(X) is the only object in C satisfying (6-9). Similarly
for the injective hull. �

6J. The “elements” of additive and abelian categories. There are (at least) two competing
ways to define “elements”: Either these are objects without substructure, called simple (the
words “simple” is meant in the sense that they are “as simple as possible”, and not meaning they
are easy). Or these are objects that can not be decomposed further, called indecomposable.

Definition 6.63 Let C ∈ Cat⊕.

(i) A non-zero object L ∈ C is called simple if

(X ⊂ L) ⇒ (X = 0 or X ∼= L).

(ii) A non-zero object Z ∈ C is called indecomposable if

Z ∼= X ⊕ Y ⇒ (X = 0 or Y = 0).

We also say a decomposition X� ∼= X ⊕ Y is non-trivial if neither X nor Y are zero. Similarly, a
subobject Y ⊂ X is non-trivial if it is neither 0 nor (isomorphic to) X.

Remark 6.64 Note that indecomposable means that an object has no non-trivial decomposition,
while simple means that an object has no non-trivial subobjects.

The following lemma is clear and it enables us to define the set of simples Si(C) ⊂ Ob(C)/ ∼=
respectively indecomposables In(C) ⊂ Ob(C)/ ∼= (up to isomorphism). We, abusing notation,
write e.g. L ∈ Si(C) for simplicity.

Lemma 6.65 The properties of being indecomposable or simple are preserved under isomor-
phisms. �
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Note that being projective or injective is also preserved under isomorphism. Hence, by Lemma 6.59
we also have the sets of projective indecomposables Pi(C) ⊂ Ob(C)/ ∼= and injective indecom-
posables Ii(C) ⊂ Ob(C)/ ∼=, respectively.

Lemma 6.66 Every simple object L ∈ C is indecomposable.

Proof. Clearly, any non-trivial decomposition L ∼= X ⊕ Y gives non-trivial subobjects X and Y. �

Example 6.67 Being simple or indecomposable depends on the ambient category, compare
(6-10) and (6-12):

(a) For Vec� it is easy to see that Si(Vec�) = In(Vec�) = Pi(Vec�) = Ii(Vec�) = {�}.
Thus, A = C[X]/(X2) ∈ VecC is neither simple nor indecomposable and we have

A ∼= C ⊕ C,
�
in VecC

�
,(6-10)

cf. (6-7). Moreover, every object in Vec� is projective and injective.

(b) Consider now A = C[X]/(X2) as a C algebra. Then A acts on itself by multiplication,
thus A can be seen as an object A of (the C linear abelian category) Mod(A). The C
algebra A also acts on C via evaluation, and we hence have two objects C, A ∈ Mod(A).
Choose {1, X} as a basis of A. Looking at the action matrices on this basis gives

1 �→
�

1 0
0 1

�
, X �→

�
0 0
1 0

�
,

lower right block entry � C,

upper left block entry � C.
(6-11)

This shows that C is a subobject of A (indicated in (6-11)), and hence A is not simple.
However, the very same action matrices show that the complement space C{1} is not a
subobject (the entry 1 in the lower left ruins this). However, one easily sees that A is
(projective injective) indecomposable and

0 ⊂ C� �� �
C

= C ⊂ A� �� �
C

A �∼= C ⊕ C,
�
in Mod(A)

�
,(6-12)

with the right copy of C being the upper left block entry and the left copy of C being the
lower right block entry in (6-11).

The difference between Vec� and Mod(A) is that the maps defining the decomposition from
(6-10) are not A equivariant, i.e. they are not morphisms in Mod(A). Precisely, we still have

C ∼= C{X} C[X]/(X2) C{1} ∼= CX �→ X 1 �→ 1, X �→ 0 SES ,

but it does not split in contrast to (6-7).

Thus, Lemma 6.66 and Example 6.67 give:

indecomposable ⇐ simple,

indecomposable �⇒ simple.

The following is known as Schur’s lemma (or at least (i) of it).

Lemma 6.68 Let C ∈ Cat⊕.
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(i) If C has kernels and cokernels, then, for any L, L� ∈ Si(C) with L �∼= L�:

EndC(L) is a division ring, HomC(L, L�) = 0.

(ii) For any Z ∈ In(C) we have

EndC(Z) is a local ring.

Proof. This is Exercise 6.96. �

Schur’s lemma, part II:

Lemma 6.69 Let C ∈ CatKA with K being algebraically closed. Then, for any L, L� ∈ Si(C)
with L �∼= L�, we have

EndC(L) ∼= K, HomC(L, L�) = 0.(6-13)

Proof. This is also Exercise 6.96. �

Example 6.70 With respect to Example 6.67 we have

EndVecC(C) ∼= C ∼= EndMod(A)(C),

EndVecC

�
C[X]/(X2)

� ∼= Mat2×2(C), EndMod(A)
�
C[X]/(X2)

� ∼= C[X]/(X2),

and the idempotents ( 1 0
0 0 ), ( 0 0

0 1 ) ∈ Mat2×2(C) give the decomposition in (6-10).

Note that any (“finite”) X ∈ C with C ∈ Cat⊕, by definition, decomposes additively into
indecomposables. However, Example 6.67 shows that it is too much to hope that X decomposes
additively into simples. We rather need the analog of (6-12):

Definition 6.71 Assume that C ∈ Cat⊕ has kernels and cokernels. For a non-zero X ∈ C a
sequence of subobjects of the form

0 = X0 ⊂ X1 ⊂ ... ⊂ Xn−1 ⊂ Xn = X(6-14)

is called a filtration by simples or a composition series if Xi/Xi−1 ∼= Li ∈ Si(C). A non-zero
X ∈ C is called of finite length if it has such a filtration, and in this case the appearing Li are
called the simple factors of X.

We stress that the main point in (6-14) is that successive quotients are simple:

0 = X0 ⊂ X1� �� �
L1

⊂ ... ⊂� �� �
...

Xn−1 ⊂ Xn� �� �
Ln

= X.

Definition 6.72 For a non-zero X ∈ C with C ∈ Cat⊕ a decomposition of the form

X ∼= Z1 ⊕ ... ⊕ Zn(6-15)

is called a decomposition by indecomposables if Zi ∈ In(C). A non-zero X ∈ C is called of
finite decomposition length if it has such a decomposition, and in this case the appearing Zi

are called the indecomposable summands of X.
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Example 6.73 In Vec� an object is of finite length if and only if it is finite dimensional.
Moreover, for finite dimensional � vector spaces (6-14) and (6-15) agree.

The following theorem is our justification for using the analogy to elements in chemistry, where
Theorem 6.74.(i) is known as the Jordan–Hölder theorem, and (ii) as the Krull–Schmidt
theorem.

Theorem 6.74 Let C ∈ Cat⊕.

(i) Assume that C ∈ Cat⊕ has kernels and cokernels. Let X ∈ C be of finite length. Then a
filtration as in (6-14) is unique up to reordering and isomorphisms of subobjects.

(ii) Let X ∈ C be of finite decomposition length. Then a decomposition as in (6-15) is unique
up to reordering and isomorphisms of summands.

In particular, we can define the following numerical invariants of such X.

• The length �(X) of X can be defined to be n in (6-14), and the decomposition length
d(X) of X can be defined to be n in (6-15).

• The multiplicities of L (simple) respectively Z (indecomposable) in X denoted by

[X : L] = #{i | Xi/Xi−1 ∼= L}, (X : Z) = #{i | Zi
∼= I}.

• The sets
�

(L, m) | L is a simple factor of X with multiplicity m
�

,
�

(Z, m) | Z is an indecomposable summand of X with multiplicity m
�

.

Remark 6.75 We will use the notion “numerical” quite often and this is to be understood
as reducing notions from categorical algebra to “something easier” such as classical algebra,
combinatorics, linear algebra etc. Thus, a “numerical invariant” for us is not necessarily a number,
but simply something that is “easier” than the problem at hand.

Proof. We only prove (i), the arguments for (ii) are similar. The proof works by induction over
n ≥ 1, with n being the smallest possible length of a filtration by simples. For n = 1 there
is nothing to show since X is then itself simple. So assume that n > 1 and that we have two
filtrations

0 = X0 ⊂ X1 ⊂ ... ⊂ Xn−1 ⊂ Xn = X, simple factors L1, ..., Ln,

0 = X�
0 ⊂ X�

1 ⊂ ... ⊂ X�
n�−1 ⊂ X�

n� = X, simple factors L�
1, ..., L�

n� ,

with n being minimal. There are now two cases. First, if X1 ∼= X�
1

∼= L1 ∼= L�
1 we are done

by induction since X/X1 ∼= X/X�
1 has a shorter filtration with simples factors being either Li for

i = 2, ..., n, or L�
j for j = 2, ..., n�, and we can use the induction hypothesis to see that these

simples agree up to reordering and isomorphisms. Otherwise, X1 �∼= X�
1 and Schur’s lemma implies

that X1 ⊕ X�
1 is a subobject of X and we can consider Y = X/(X1 ⊕ X�

1). It is easy to see that Y has
a filtration by simples, say with simple factors LY

k, for k = 1, ..., r < n. We then observe that:

• X/X1 has a filtration with simple factors X�
1, LY

k for k = 1, ..., r, but also one with the
original simple factors Li except X1 ∼= L1.
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• X/X�
1 has a filtration with simple factors X1, LY

k for k = 1, ..., r, but also one with the
original simple factors L�

j except X�
1

∼= L�
1.

By the induction assumption, this means that the collection of simples X1, X�
1 and LY

i for i = 1, ..., r

coincides (up to reordering and isomorphisms) on the one hand with Li for i = 1, ..., n and on the
other hand with the L�

j for j = 1, ..., n�. �

6K. Finiteness assumptions. For what will follow we need and want to go to the finite
dimensional world:

Definition 6.76 Let fdVecZ ⊂ VecZ be the full subcategory of torsion free abelian groups
of finite rank.

Without harm we can think of Definition 6.76 as being the Z linear version of fdVec� ⊂ Vec�,
and the “fd” refers to finite dimensional: having always an underlying field in mind, we say “finite
dimensional” instead of the mouthful “torsion free of finite rank”.

Definition 6.77 Let C ∈ Cat⊕, and assume that HomC(X, Y) ∈ fdVecZ for all X, Y ∈ C.

(i) If C is abelian and any X ∈ C is of finite length, then we call C locally (abelian) finite.

(ii) If any X ∈ C has a decomposition as in (6-15) satisfying the Krull–Schmidt theorem
Theorem 6.74.(ii), then we say that C is locally additively finite.

Example 6.78 Here are some prototypical examples:

(a) Not all objects in Vec� have finite length and hom spaces are not finite dimensional, thus
Vec� is not locally finite.

(b) The full subcategory fdVec� ⊂ Vec� is locally finite.

(c) For any group (it may be infinite) G and any ω, the category Vecω
�⊕(G) is locally finite,

because in the additive closure we only allow finite direct sums.

Note that we have

locally additively finite ⇐ locally (abelian) finite,

locally additively finite �⇒ locally (abelian) finite,

the latter being justified by Example 6.81. Before we can state it, we need the analog of
Definition 6.42 in this finite setting:

Definition 6.79 An algebra A in fdVecZ is called a finite dimensional algebra. The
category of finite dimensional right A modules for such an algebra is defined to be
fdMod(A) = ModfdVecZ(A). We also have full subcategories fdProj(A) ⊂ fdMod(A) and
fdInj(A) ⊂ fdMod(A) of finite dimensional projectives and finite dimensional injec-
tives, respectively.
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Definition 6.80 For any algebra A ∈ VecZ let fdMod(A) = ModfdVecZ(A) ⊂ ModVecZ(A)
denote the corresponding full subcategory of finite dimensional modules. Similarly for finite
dimensional projective and injective modules.

Example 6.81 Let us come back to Example 6.67. The C, A ∈ fdMod(A), and fdMod(A)
is locally finite. However, C is neither projective nor injective. Hence, A does not have any
composition series in terms of projectives or injectives. Thus, neither fdProj(A) nor fdInj(A)
are locally finite, but one can show that both are locally additively finite.

The following are the abelian categories which we will use most of the time.

Definition 6.82 A category C ∈ CatA is called (abelian) finite if

• C is locally finite;

• the set Si(C) is finite;

• every simple L ∈ C has a projective cover.

For any such C we have the full subcategories fProj(C) and fInj(C) of finite projective
respectively finite injective objects. We also have the category of finite abelian categories
being the corresponding full subcategory CatfA ⊂ CatA.

Example 6.83 Back to Example 6.78:

(a) The abelian category fdVec� is finite.

(b) For any group G and any ω, the abelian category Vecω
�⊕(G) is finite if and only if G is

finite.

We have already seen the explicit description of finite abelian categories, see Theorem 6.44.(ii).
We now sketch a proof.

Proof. (Sketch of a proof of Theorem 6.44.(ii).) Since Si(C) is finite by assumption, we can
number the simples therein Li for i = 1, ..., n. Also by assumption, they have projective covers
Pi = P(Li). Take

A = EndC
��n

i=1 Pi

�
,

with
�n

i=1 Pi usually called a projective generator. Note that A is finite dimensional because
the hom spaces are, again by assumption, finite dimensional. Also fdMod(A) is finite abelian,
by classical representation theory. It is then not hard to see that this is the category we need, i.e.

HomC
��n

i=1 Pi, −
�

: C fdMod(A)�e .

Note hereby that the hom functor is exact since
�n

i=1 Pi is projective. Finally, HomC
��n

i=1 Pi, X
�

for all X ∈ C is a right A module via precomposition. �

Remark 6.84 Let C ⊂ CatfA. Note that the indecomposable projectives in fProj(C) are the
projective covers of the simples in C, while the indecomposable injectives in fInj(C) are their
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injective hulls. In particular,

#Si(C) = #Pi(C) = #Ii(C).

In fact, in view of the Freyd–Mitchell theorem Theorem 6.44.(ii), as a right A module

A ∼=
�n

i=1 dim(Li)Pi(6-16)

Example 6.85 Let us discuss the above proof in two examples.

(a) In fdVec� a projective generator is for example �, and EndfdVec�(�) ∼= �, so that
fdVec� �e fdMod(�). However, �⊕� is also a projective generator and in this case one
gets fdVec� �e fdMod

�
Mat2×2(�)

�
.

(b) In Example 6.67 the only simple object is C itself, and P(C) = A. Clearly the corresponding
algebra A = EndfdMod(C[X]/(X2))(P(C)) is isomorphic to C[X]/(X2).

These are, of course, rather boring examples as the abelian categories already are of the form
fdMod(A). However, what we want to stress is that the above proof is a generalization of the
fact that every monoid M is isomorphic to the monoid End�M(M), which we have already seen in
the proof of Theorem 2.32.

Finally, recall the Grothendieck classes, see Definition 1.44.

Definition 6.86 Let C ∈ CatfA, and let D = C or D ∈ {fProj(C), fInj(C)}.

(i) We endow K0(C) with the structure of an abelian group via
�
[Y] = [X] + [Z]

�
⇔

�
∃ X Y Zi p SES

�
.

(ii) We endow K0(D) with the structure of an abelian group via
�
[Y] = [X] + [Z]

�
⇔

�
Y ∼= X ⊕ Z

�
.

In order to distinguish the two structures we write Ke
0(−) for the one involving SES and K⊕

0 (−)
for the additive version.

The following are easy and omitted.

Lemma 6.87 Let C ∈ CatfA, and let D ∈ {CatfA, fProj(C), fInj(C)}. Enumerate the
simples in C or D by Li for i = 1, ..., n, and let Pi and Ii for i = 1, ..., n be their respective
projective covers or injective hulls. Then:

(i) Definition 6.86 endows Ke
0(C) and K⊕

0 (D) with the structures of finite dimensional
abelian groups.

(ii) The set Si(C) is a basis of Ke
0(C). We have

[X] =
�n

i=1 [X : Li] · [Li] ∈ Ke
0(C).

(iii) The sets Pi(D) and Ii(D) are bases of K⊕
0 (D). We have

[X] =
�n

i=1 (X : Pi) · [Pi] ∈ K⊕
0 (D),

and similarly with injectives. �
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Lemma 6.88 Let C, C� ∈ CatfA, and let D, D� ∈ {CatfA, fProj(C), fInj(C)}.

(i) Any functor F ∈ Home(C, C�) induces a group homomorphism

Ke
0(F) : Ke

0(C) → Ke
0(C�).

Further, if F is an equivalence, then Ke
0(F) is an isomorphism.

(ii) Any functor F ∈ Hom⊕(D, D�) induces a group homomorphism

K⊕
0 (F) : K⊕

0 (D) → K⊕
0 (D�).

Further, if F is an equivalence, then K⊕
0 (F) is an isomorphism. �

The final definition in this section which is well-defined by Lemma 6.87.

Definition 6.89 Keeping the notation from Lemma 6.87, the projective and injective Car-
tan matrices are the n × n matrices

Cp(C) =
�
[Pi : Lj ]

�n

i,j=1, Ci(C) =
�
[Ii : Lj ]

�n

i,j=1.

Let us finish this subsection with a bigger example. Before that, let us recall:

Remark 6.90 Let p� ∈ N be a prime and n ∈ N>0. Recall that there exist a unique, up to
isomorphism, finite field Fq of order q = (p�)n explicitly constructed by:

• If n = 1, then Fp� = Z/p�Z;

• if n > 1, then Fq = Fp� [X]/(Xq − X).

The algebraic closure of Fq is Fq =
�

m∈N>0
Fqm . (Finite fields can not be algebraically closed by

the folk argument: “If F = {z1, ..., zr}, then p(X) = 1 +
�r

i=1(X − zi) has no root in F.”.)

Let further m ∈ N>0 and consider the polynomial p(X) = Xm − 1. Then:

p(X) has gcd(m, q − 1) roots in Fq.(6-17)

In particular, if m = p is itself a prime, then there are primitive mth root of unity in Fp� if and
only if p �= p�. Explicitly, and easy to generalize, if p = 5, k ∈ N>0 and p� = 5 or p� = 7, then

gcd(5, 5k − 1) = 1, gcd(5, 7k − 1) =
�

5 if k ≡ 0 mod (p − 1),
1 else.

Example 6.91 Let us consider A = F5[Z/5Z] and let C = fdMod(A).

As already stated, see Remark 6.84, the sets Si(C), Pi(C) and Ii(C) have all the same size in
general, while In(C) might be bigger. Let us see this explicitly.

For A we can determine a module structure on a F5 vector space by specifying the action of the
generator 1 ∈ Z/5Z since Z/5Z ∼= �s | s5 = 1� and the isomorphism is given by sending 1 to s.

We define five modules

Z1 = L1 :
�

1
�

, is simple

Z2 :
�

1 0
1 1

�
, filtration 0 − L1 − L1 − Z2,
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Z3 :




1 0 0
1 1 0
0 1 1


 , filtration 0 − L1 − L1 − L1 − Z3,

Z4 :




1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1


 , filtration 0 − L1 − L1 − L1 − L1 − Z4,

Z5 = P1 :




1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1




, filtration 0 − L1 − L1 − L1 − L1 − L1 − Z5,

where we gave the action matrices of 1 and the filtrations by simples, where we give the successive
simple quotients. In this case the characteristic 5 version of the Jordan theorem gives

Si(C) = {L1}, Pi(C) = {P1} = Ii(C), In(C) = {Z1, Z2, Z3, Z4, Z5},

Ke
0(C) ∼= K⊕

0
�
fProj(C)

� ∼= K⊕
0
�
fInj(C)

� ∼= Z.

However, the evident group homomorphism

K⊕
0
�
fProj(C)

�
→ Ke

0(C), [X] �→ [X] � Z → Z, 1 �→ 5,

is not a group isomorphism since [P1] = 5[L1] in Ke
0(C), and it corresponds, as indicated, to

multiplication by 5. We also have Cp(C) = ( 5 ). Similarly for the injectives.

6L. Exercises.

Exercise 6.92 Show that the two morphisms

e+ = 1
2 ·

�
+

�
, e− = 1

2 ·
�

−
�

,

are orthogonal idempotents in BrQ⊕, meaning that e2
± = e± and e±e∓ = 0.

Exercise 6.93 Prove Proposition 6.25 and Lemma 6.36.

Exercise 6.94 Describe (co)kernels, images, the epic-monic factorizations, simples, projective
and injectives in Vec�⊕(G). Moreover, find a presenting algebra A, cf. Theorem 6.44.

Exercise 6.95 Prove Schur’s lemma(s) Lemma 6.68 and Lemma 6.69, and find an example for
� = Q where (6-13) does not hold.

Exercise 6.96 For a, b, c ∈ C let A = C[X]/(X − a)(X − b)(X − c). Consider the cases (a)
a = b = c = 0, (b) a = b = 0, c = 2 and (c) a = 0, b = 1, c = 2 and show (e.g. via the Chinese
reminder theorem) that

A ∼=





C[X]/(X3) case (a),
C[X]/(X2) ⊕ C[X]/(X − 2) case (b),
C[X]/(X) ⊕ C[X]/(X − 1) ⊕ C[X]/(X − 2) case (c),
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(What could the general statement for C[X]/
�n

i=1 (X − ai) be?) Then compute the Cartan
matrix of fdMod(A) in the above cases.

7. Fiat and tensor categories – enrich the concepts from before

Recall that the Grothendieck classes of an additive or abelian category have an addition. So, in
some sense, they categorify abelian groups. Thus, a natural question would be:

What are suitable categorifications of ring or algebras?

7A. A word about conventions. We keep the previous conventions and use additionally:

Convention 7.1 From now on we have categories with several structures, and we “stack” the
notation; being careful with the hierarchy of the notions. For example, C ∈ RCat�A means
that C is a rigid (for which C needs to be monoidal) � linear abelian (for which C needs to be
additive) category.

Convention 7.2 Note that “topological properties” of categories are usually written in front
e.g. RCat means rigid categories, while “algebraic properties” are usually in subscripts, e.g.
CatlA means locally finite abelian categories.

Convention 7.3 We tend to drop the “up to isomorphism” if no confusion can arise. For
example, “has one simple” is to be read as “has one simple up to isomorphism”.

Convention 7.4 We write k · X short for X ⊕ ... ⊕ X (k summands). We also use the symbol
X � Y for “X is isomorphic to a direct summand of Y”.

7B. “The philosophy of idempotents.” Before we can answer the main question of this
section, we want to be able to take Grothendieck classes of a bigger class of categories. To this
end, here is some motivation.

First, let us come back to (6-2), say for Vec�. We write eX = iXpX and eY = iYpY. Let us also
write Z = X ⊕ Y. There are now several crucial observations:

• We have eY = idZ − eX, and Im(eX) ∼= X and Im(idZ − eX) ∼= Y.

• We have idempotency, i.e.

e2
X = eX, (idZ − eX)2 = id2

Z − 2eX + e2
X = idZ − eX.(7-1)

The property in (7-1) means that eX is an idempotent. We also have

eX(idZ − eX) = eX − e2
X = 0 = eX − e2

X = (idZ − eX)eX,(7-2)
eX + (idZ − eX) = idZ,(7-3)

with (7-2) and (7-3) being called orthogonality and completeness, respectively.
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• We calculate that we have a commuting diagram

Z Im(eX) ⊕ Im(idZ − eX) Z Im(eX) ⊕ Im(idZ − eX)( eX idZ−eX )

idZ

� eX
idZ−eX

�

idIm(eX)⊕Im(idZ−eX)

( eX idZ−eX )
,(7-4)

which implies that Z ∼= Im(eX) ⊕ Im(idZ − eX). The isomorphisms, in the corresponding
directions, are the two matrices in (7-4).

• Note also that the above works both ways: Having a decomposition Z ∼= X ⊕ Y we get
the idempotent eX satisfying all the above properties. Conversely, having an idempotent
e : Z → Z we get a diagram as in (7-4).

• The algebra above is very basic and only uses the existence of images and no other specific
properties of Vec�.

All of this together is called “The philosophy of idempotents.”, i.e. idempotents decompose objects
into direct sums. This is, of course, most useful if the object one might care about does not
come directly as X ⊕ Y, but rather in some disguise. Here we do not want to take the trivial
idempotents 0 and idZ, and idempotents not of this form are called non-trivial.

Example 7.5 Let A = C[X]/(X2) and B = C[X]/(X2 − 1). We claim that these are quite
different algebras in the following sense. An element in either A or B is of the form a + bX =
a · 1 + b · X, where a, b ∈ C. We calculate that

(a + bX)2 = a2 + 2abX + b2X2 =
�

a2 + 2abX in A,

a2 + b2 + 2abX in B.

Thus, trying to solve the equation (a + bX)2 = a + bX for A gives only the trivial solutions
a = b = 0 and a = 1, b = 0, and hence there is no non-trivial idempotent in A. In contrast, in B
we get two non-trivial solutions

e+ = 1
2(1 + X), e− = 1

2(1 − X),

which satisfy (7-1), (7-2) and (7-3). Thus, as C algebras, we get:

C[X]/(X2 − 1) ∼= Im(e+) ⊕ Im(e−) ∼= C[X]/(1 + X) ⊕ C[X]/(1 − X) ∼= C ⊕ C.

7C. The idempotent closure. The above says that we might want images, but we only need
them for idempotents.

Definition 7.6 The idempotent closure of C ∈ Cat, denoted by C�, is the category with

• objects being pairs

Ob(C�) =
�

(X, e) | X ∈ C, e : X → X idempotent
�

;
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• morphisms being f : (X, e) → (Y, e�) with (f : X → Y) ∈ C such that we have a commuting
diagram

Y Y

X X

e�

e

f f ;

• the identities are id(X,e) = e;

• composition is composition in C.

Good news, this works well:

Proposition 7.7 Let C ∈ Cat. Then we have:

(i) C� is a category.

(ii) There exists a well-defined fully faithful functor

K: C → C�, X �→ (X, idX), f �→ f.

(iii) If e ∈ C is an idempotent, then it has an image Im(e) ∼= (X, e) in C�.

(iv) We have C� � (C�)� and one can find an equivalence preserving images of idempotents.

(v) If C ∈ Cat is S linear (or additive or monoidal or rigid or pivotal or braided etc.), then
so is C� with its structure induced from C.

(The notation K comes from the alternative name of C�: it is sometimes called Karoubi
completion.)

Proof. We only prove (iii), the rest is Exercise 7.58. To see that Im(e) ∼= (X, e) we just observe
that

(X, e)

(X, e) (X, e)

ee

e

commutes, since e is an idempotent and e = id(X,e). �

We use Proposition 7.7.(iii) to write Im(e) for the objects of C�, and we also write X instead of
(X, idX). Moreover, we call a category C idempotent complete if C � C�. Let us also write
C�� = (C�)� etc.

Example 7.8 The idempotent closures is a technology for non-module-like categories:

(a) We have Vec� �e Vec��, which is thus idempotent complete. The same is true for any
abelian category, or any category having images.

(b) Categories of the form fdMod(A), fProj
�
Mod(A)

�
or fInj

�
Mod(A)

�
for a finite dimen-

sional algebra A are idempotent complete.
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(c) Categories of the form Vecω
�⊕(G) are idempotent complete.

Example 7.9 Diagrammatic categories are almost never idempotent complete and we like to
think about the idempotent completion of them as coloring with idempotents: Recall the
category Sym, see Example 3.21, and let us make it Q linear additive. Then

e+ = 1
2 ·

�
+

�
, e− = − e+ = 1

2 ·
�

−
�

,

are orthogonal and complete idempotents in SymQ⊕, see also Exercise 6.92. Thus,

•• ∼= Im(e+) ⊕ Im(e−), (in SymQ⊕�).(7-5)

We can think of this as coloring the diagrams with the idempotents e+ and e−, illustrated say red
(and dashed) and green, and (7-5) becomes

∼= ⊕ .

Note that SymQ⊕� is idempotent complete, but non-abelian.

Remark 7.10 Example 7.8.(a) and Example 7.9 show that, for additive categories,

idempotent complete ⇐ abelian,

idempotent complete �⇒ abelian.

Here is the analog of Proposition 6.26.

Proposition 7.11 Let F ∈ Hom(C, D). Then there exists a unique F� ∈ Hom(C�, D�) such
that we have a commuting diagram

C� D�

C D.

∃!
F�

F

K K

Proof. The functor F� is defined by

F� : C� → D� (X, e) �→
�
F(X), F(e)

�
, f �→ F(f),

which satisfies all required properties. �

As for S linear extensions and additive closures, as one can check, “all properties we care
about behave nicely with idempotent closures”, e.g. if F ∈ Hom⊗(C, D), then so is F� ∈
Hom⊗(C�, D�). In particular, we basically get direct sum decompositions for free:

Lemma 7.12 Let C ∈ Cat⊕. Then

X ∼= Im(e) ⊕ Im(idX − e)

holds in C�.

Proof. The proof is verbatim (7-4). �
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Example 7.13 Being idempotent complete is a property, and thus, additive functors are the
correct maps between additive idempotent complete categories. Hence, we have the category of
additive idempotent complete categories Cat⊕�.

7D. Tensor and fiat categories. Before going on, we need the additive analog of Definition 6.82:

Definition 7.14 A category C ∈ Cat⊕ is called (additively) finite if

• C is locally additively finite;

• the set In(C) is finite.

We have the category of additively finite categories being the corresponding full subcategory
Catf⊕ ⊂ Cat⊕.

The following are either additive or abelian categorifications of S algebras, as we will see below.
(The rigidity is strictly speaking not needed to categorify algebras, but it makes life easier.) Here
“w=weakly”, “m=multi” and “l=locally”.

Definition 7.15 A category C ∈ Cat is called wml fiat (over S) if

• C ∈ RCatS⊕�;

• C is locally additively finite in the sense of Definition 6.77.(b);

• The bifunctor ⊗ is S bilinear.

If additionally

• C ∈ PCat, then we drop the “weakly”;

• EndC(�) ∼= S, then we drop the “multi”;

• C is finite in the sense of Definition 7.14, then we drop the “locally”.

Definition 7.16 A category C ∈ Cat is called a wml tensor category (over S) if

• C ∈ RCatSA;

• C is locally finite in the sense of Definition 6.77.(b);

• The bifunctor ⊗ is S bilinear.

If additionally

• C ∈ PCat, then we drop the “weakly”;

• EndC(�) ∼= S, then we drop the “multi”;

• C is finite in the sense of Definition 6.82, then we drop the “locally”.
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Remark 7.17 The above terminology is not linearly ordered. For example, a wm fiat category
can not directly compared to an l tensor category. However, we clearly have e.g. that w fiat is a
stronger notion that wl fiat.

Example 7.18 We have already seen plenty of examples:

(a) The category fdVec� is a tensor category. More generally, the categories of the form
Vecω

�⊕(G) are l tensor categories, where we can drop the l if and only if G is finite.

(b) Closures of diagrammatic categories such as Br�� can be made into l fiat categories, see
Section 7E, but not tensor categories.

Example 7.19 All of these should be thought of as generalizing Mod(A) for certain “nice”
algebras A. “Nice” means roughly:

• Bialgebras, see Section 5I, endow Mod(A) with a monoidal structure;

• Hopf algebras, see Section 5J, provide the duality;

• finite dimensional algebras and finite dimensional modules provide the various finiteness
conditions, see Section 7G.

Example 7.19 in words says that fiat and tensor categories should be thought of as generalizations
of fdMod

�
�[G]

�
for G being a finite group. Explicitly:

Example 7.20 Back to Example 6.91, the category C = fdMod
�
F5[Z/5Z]

�
is actually pivotal,

which we will see completely explicitly in (7-14) below. Moreover, we have

Z1P1 ∼= P1, Z2P1 ∼= 2 · P1, Z3P1 ∼= 3 · P1, Z4P1 ∼= 4 · P1, Z5P1 ∼= 5 · P1, (P1)� ∼= P1,(7-6)

so C� = fdProj
�
F5[Z/5Z]

�
is also pivotal (without monoidal unit). The category C is a tensor

category with one simple and five indecomposables. In contrast, the category C� is a fiat category
without monoidal unit but with a pseudo idempotent instead:

P1P1 ∼= 5 · P1 (� e2 = 5e),

and with one indecomposable. Finally, C itself is also a fiat category (by which we mean that we
care about indecomposables rather than simples) with five indecomposables.

Note that we already know the right functors between fiat respectively tensor categories: such
functors should be S linear additive rigid respectively S linear exact rigid. Hence:

Example 7.21 We have the category of fiat categories Fiat, objects being fiat categories
and morphisms being S linear additive rigid functors. We also have the category of tensor
categories Ten, objects being fiat categories and morphisms being S linear exact rigid functors.
Finally, we also have the various versions adding the adjectives “weakly”, “multi” or “locally”.

For a wm fiat category C, by definition, we know that the set In(C) is finite, so we can enumerate
and denote the indecomposables by Zi for i = 1, ..., n. Similarly, we let Li for i = 1, ..., n denote
the simples of a wm tensor category.
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Lemma 7.22 Let C ∈ wmlFiat. Then:

(i) The functors ⊗, −� and �− are S linear additive.

(ii) If C ∈ wlFiat is � linear, then � ∈ In(C).

(iii) If C ∈ wmFiat, then the functor −� induces a bijection

−� : In(C)
∼=−→ In(C).(7-7)

Similarly for �−.

Proof. (i). Since � linear implies additive, see Lemma 6.14, the claim is immediate.

(ii). Note that EndC(�) ∼= � implies that � is indecomposable as its endomorphism � algebra
does not have any non-trivial idempotents.

(iii). This follows since the dualities are S linear additive monoidal functors by (i), so the property
of being indecomposable is preserved by them. Moreover, by Proposition 4.24, they are invertible,
thus, induce bijections. �

Proposition 7.23 Let C ∈ wmfFiat or C ∈ wmfTen and X ∈ C. Then (X ⊗ −), (− ⊗ X) ∈
Ende(C).

Proof. Since we have duals, we can use Theorem 4.16 to see that both functors have right and
left adjoints (in the sense of Example 4.10). It is then not hard to see that such functors preserve
the property of being a SES. �

Here is an interesting fact: projective and injective objects form a monoidal ideal (cf. (7-6) for
an example – tensoring with a projective gives a projective) in the following sense.

Proposition 7.24 Let C ∈ wmfFiat or C ∈ wmfTen. Let further P ∈ Proj(C) and X ∈ C.
Then PX, XP ∈ Proj(C). Similarly for injective objects.

Proof. Using Theorem 4.16 we get e.g.

HomC(PX, Y) ∼= HomC
�
P, Y(�X)

�
,

which shows, using Proposition 7.23, that the hom functor for PX is exact. All other cases follow
by symmetry. �

7E. Semisimplicity. Recall that the elements of, say, an abelian category, are the simples, cf.
Section 6J. The simplest compounds are:

Definition 7.25 An object X ∈ C with C ∈ Cat⊕� is called semisimple if

X ∼= L1 ⊕ ... ⊕ Lr, where Li ∈ Si(C).

Definition 7.26 A category C ∈ Cat⊕� is called semisimple if all of its objects are semisimple.

Example 7.27 Again, we already know several (non-)examples:
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(a) The archetypical example is fdVec�, since every finite dimensional vector space X is
isomorphic to r · � for some r ∈ N.

(b) Let G be a finite group. Clearly, all categories of the form Vecω
�⊕(G) are semisimple since

all objects are direct sums of simple objects, by definition.

(c) Non-examples are the categories fdMod(A) and fdMod
�
F5[Z/5Z]

�
from Example 6.67.(b)

and Example 6.91, respectively. In both cases there is only one simple and its projective
cover is not simple, but indecomposable.

Recalling Schur’s lemma Lemma 6.69, the following says that semisimple categories have control-
lable hom spaces:

Proposition 7.28 Let K be algebraically closed, and C ∈ Cat⊕� be locally additively finite.
Then C is semisimple if and only if, for any X, Y ∈ C, we have an isomorphism

�
L∈Si(C)

�
HomC(X, L) × HomC(L, Y)

� ∼=−→ HomC(X, Y), (f, g) �→ gf.(7-8)

Proof. By decomposing X and Y into their simple components, one direction is a direct consequence
of Lemma 6.69. To see the converse, note that (7-8) is equivalent to saying that the finite
dimensional K vector spaces Z = HomC(X, L) and Z� = HomC(L, X) are duals. In particular,
if these are non-zero, then the evaluation and coevaluation from Example 4.11 provide the
idempotent coevZevZ ∈ ZZ� ∼= EndC(X), showing that L � X. Finally, since EndC(X) is finite,
there are only finitely many L ∈ Si(C) for which HomC(X, L) and HomC(L, X) are non-zero. �

Lemma 7.29 Let C ∈ Cat⊕� be locally additively finite.

(i) If C is semisimple, then Si(C) ⊂ Pi(C).

(ii) If Si(C) ⊂ Pi(C), then C is semisimple.

(iii) If C is semisimple, then Si(C) ⊂ Ii(C).

(iv) If Si(C) ⊂ Ii(C), then C is semisimple.

Proof. (i). Using Schur’s lemma Lemma 6.68 and semisimplicity, we can fill in the universal
diagram as follows. We can only have an epic morphism p : L → X from a simple L to a non-zero
X if L � X. Similarly, we can only have an epic morphism f : Y → X from a non-zero Y to X if X � Y.
In particular, L � Y, and we can define the required u : L → Y by the universal property of the
direct sum.

(ii). Assume that X ∼= Z1 ⊕ ... ⊕ Zn is a Krull–Schmidt decomposition and that f : X � L is a epic
morphism to a simple L. Since L is projective we can use its universal property and get

L

X L
idLu

∃!

f

.

The morphism fu is an idempotent since fufu = fidLu, so L � X. This implies that L ∼= Zi for some
i. Now proceed inductively.

(iii)+(iv). From (i) respectively (ii), by symmetry. �
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In particular, we get:

Lemma 7.30 A locally additively finite category C ∈ Cat⊕� is semisimple if and only if
Si(C) = Pi(C) if and only if Si(C) = Ii(C). �

Clearly, we have the category of semisimple categories CatS ⊂ Cat⊕� being the correspond-
ing full subcategory. More surprisingly:

Theorem 7.31 We have CatS ⊂ CatlA.

In words, semisimple implies locally finite abelian.

Proof. For C ∈ CatS take P =
�

L∈Si(C) L, which is a projective object by Lemma 7.30. We
consider

A = EndC(P).

Then we get an exact equivalence

HomC(P, −) : C �e−−→ Mod(A).

Thus, C is abelian. That it is also locally finite is a direct consequence of the definition of
semisimplicity and Schur’s lemma Lemma 6.69, since each object of C is a finite direct sum of
simples. �

Example 7.32 Example 7.27 and Theorem 7.31 immediately imply that Vecω
�⊕(G) are all

abelian (for G being a finite group).

Definition 7.33 An algebra A ∈ fdVec� is called semisimple if fdMod(A) is semisimple.

Example 7.34 The classical Artin–Wedderburn theorem, see e.g. [Be91, Theorem 1.3],
says that a � algebra A ∈ fdVec� is semisimple if and only if fdMod(A) ∼=

�r
i=1 fdVec�. Thus,

the prototypical examples of semisimple algebras are � and direct sums of it.

Proposition 7.35 A category C ∈ Cat�fA is semisimple if and only if C �e
�r

i=1 fdVec�
for some r ∈ N.

Proof. That
�r

i=1 fdVec� is semisimple is clear. The converse follows from Theorem 6.44.(ii)
and Example 7.34. �

In words, Proposition 7.35 says that semisimple categories are categorically boring. However, this
is not taking e.g. the monoidal structure into account. (The analogy on the Grothendieck classes
is that whenever one has a ring, one should not forget the multiplication.) Thus, let us come back
to fiat and tensor categories. The following is the categorical version of Maschke’s theorem:

Theorem 7.36 Let C ∈ wmlFiat or C ∈ wmlTen. Then C is semisimple if and only if
� ∈ Proj(C) if and only if � ∈ Inj(C).

Proof. By combining Proposition 7.24 and Lemma 7.30. �
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Example 7.37 The classical formulation of Maschke’s theorem is the following: “Let G be a
finite group of order m = #G and K be algebraically closed. Then fdMod(G) is semisimple
if and only if char(K)� | m.”. The original proof of Maschke uses Theorem 7.36 in the following
incarnation: First, observe that K[G] ∈ fdMod(G) is projective, and so are its direct summands.
Further, the sum of all group elements

x =
�m

i=1 gi ∈ K[G] ∼= EndfdMod(G)
�
K[G]

�
, G = {g1, ..., gm},

spans a copy of the trivial G module �, which is the monoidal unit in fdMod(G). Now the
crucial calculation:

x2 = m · x.

Thus, if m �= 0 in K, then we get an idempotent 1
m · x showing that � � K[G]. Hence, � is

projective.

Lemma 7.38 For any � linear C ∈ wmfTen the � algebra EndC(�) is semisimple.

Proof. We already know that EndC(�) is a commutative � algebra, cf. Proposition 2.36, which
is also finite dimensional. By Artin–Wedderburn, it thus remains to show that f 2 = 0 implies
f = 0 for all f ∈ EndC(�). So assume that we have such a morphism. We observe that

Im(f)Im(f) ∼= Im(f2) ∼= Im(0) ∼= 0, Im(f)Ker(f) ∼= Ker(f)Im(f) ∼= 0.

Thus, ⊗ multiplying

Ker(f) � Im(f)i p SES

with Im(f) shows, by Proposition 7.23, that Im(f) ∼= 0 and we are done. �

7F. A bit more diagrammatics. Let us revised the categories TL, see Example 3.23, and Br,
see Example 3.24.

Definition 7.39 Let q1/2 ∈ S∗. The Rumer–Teller–Weyl category TLq
S⊕� is the quotient of

TLS⊕� by the circle removal

= −(q + q−1).(7-9)

We further endow TLq
S⊕� with the structure of a braided category by

= q1/2 · + q−1/2 · , = q−1/2 · + q1/2 · .(7-10)

Clearly, (7-10) implies the so-called Kauffman skein relation

− = (q1/2 − q−1/2)
�

−
�

.(7-11)

Lemma 7.40 The category TLq
S⊕� is a braided (with the braiding in (7-10)) l fiat category.

Proof. First note that (7-9) and isotopy invariance shows that the hom spaces of TLq
S⊕� are finite

dimensional. To see this we first observe that diagram bending Theorem 4.16 shows that it is
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enough to verify that endomorphism spaces are finite dimensional. For endomorphism spaces we
have the defining relations

ui =
i

i

, u2
i = −(q + q−1)ui, uiujui = ui if |i − j| = 1, uiuj = ujui if |i − j| > 1,

which we wrote in algebraic notation, where the subscript indicates the position, reading left-to-
right, of the left strand. The above implies that

EndTLq
S⊕�

(�) ∼= S,

(this follows because the Skein relations imply that every link can be reduced to a linear
combination of circles) showing that we can drop the “multi”. The claim that (7-10) is a braiding
is Exercise 7.61. �

A calculation shows that

= −q−3/2 = ,

holds in TLq
S⊕�, and thus, TLq

S⊕� satisfies (5-18). Hence, we get our first quantum invariant,
which is ribbon:

Proposition 7.41 There exists a well-defined functor

RTA
r=2 : 1rTan → TLq

S⊕�, • �→ •, �→ , �→ , �→ ,

of braided pivotal categories.

Proof. By construction, there is almost nothing to show: 1rTan is the free braided pivotal category
generated by one self-dual object, and thus there exists the claimed functor by Lemma 7.40. �

Example 7.42 The value RTA
r=2(l) of a link l, which, by definition, is a morphism l ∈

End1rTan(�), is an element of S, and an invariant of the link. To be completely explicit, take
S = Z[q1/2, q−1/2] and q being the corresponding formal variable. Then RTA

r=2(l) is a (Laurent)
polynomial, which is (up to normalization) the so-called Jones polynomial. For instance, take
l to be the Hopf link:

l = ∈ End1rTan(�).

Then we calculate

RTA
r=2(l) = = q · + + + q−1 ·

= q(q + q−1)2 − 2(q + q−1) + q−1(q + q−1)2 = q3 + q + q−1 + q−3,

which, up to normalization, is the Jones polynomial of the Hopf link.
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Similarly:

Definition 7.43 Let q, a ∈ S∗, with q �= q−1. The quantum Brauer category rqBra,q
S⊕� is the

quotient of qBrS⊕� by the the circle removal

=
�

a−a−1

q−q−1 + 1
�
,(7-12)

and the Kauffman skein and twist relations

− = (q − q−1)
�

−
�

, = a−1 · , = a · .(7-13)

The following can be proven analogously as Lemma 7.40 and omitted for the time being.

Lemma 7.44 The category rqBrq
S⊕� is a braided (with the braiding in (7-13)) l fiat category. �

Note that we have

= a · = a · = a ·apply to the left apply to the right .

This implies that rqBrq
S� is indeed ribbon since it satisfies (5-18). Hence, we get another quantum

invariant, the proof being the same as before:

Proposition 7.45 There exists a well-defined functor

RTBCD
∞ : 1rTan → rqBra,q

S⊕�, • �→ •, �→ , �→ , �→ ,

of braided pivotal categories. �

Example 7.46 For the Hopf link as in Example 7.42 we get

RTBCD
r=∞ (l) = = + (q − q−1)


 −




=
�

a−a−1

q−q−1 + 1
�2 + (q − q−1)(a − a−1)

�
a−a−1

q−q−1 + 1
�

a=q2
= (q + q−1)(q3 + 1 + q−3),

where we substituted a = q2 in the last equation to get a nice and short formula.

Remark 7.47 Actually, adding orientations would give quantum invariants of 1Ribbon.
Moreover, one can normalize the two invariants above and similar invariants to get a quantum
invariant of 1State, i.e. with honest Reidemeister 1 moves (5-17).

7G. Multiplicative structures on Grothendieck classes. Let us come back to Defini-
tion 6.86.
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Definition 7.48 Let C ∈ Fiat and D ∈ Ten. Then we define the additive Grothendieck
classes K⊕

0 (C) of C respectively the SES Grothendieck classes Ke
0(D) of D verbatim as in

Definition 6.86.

Clearly, we have the analogs of Proposition 4.27 and Lemma 6.87:

Proposition 7.49 Let C ∈ Fiat and D ∈ Ten. Then:

(i) Definition 7.48 endows K⊕
0 (C) and Ke

0(D) with the structures of finite dimensional
abelian groups.

(ii) The set In(C) is a basis of K⊕
0 (C). We have

[X] =
�n

i=1 (X : Zi) · [Zi] ∈ K⊕
0 (C).

(iii) The set Si(D) is a basis of Ke
0(D). We have

[X] =
�n

i=1 [X : Li] · [Li] ∈ Ke
0(D).

(iv) For both, K⊕
0 (C) and Ke

0(D), the additional structures in Proposition 4.27 are compatible
with the S linear and additive structures. In particular, K⊕

0 (C) and Ke
0(D) are finite

dimensional Z algebras. �

By Lemma 2.28 and Lemma 6.88 we also have:

Proposition 7.50 Let C, C� ∈ Fiat, and let D, D� ∈ Ten.

(i) Any functor F ∈ Hom�⊕�(C, C�) induces a Z algebra homomorphism

K⊕
0 (F) : K⊕

0 (C) → K⊕
0 (C�), [X] �→ [F(X)].

Further, if F is an equivalence, then K⊕
0 (F) is an isomorphism.

(ii) Any functor F ∈ Hom�e�(D, D�) induces a Z algebra homomorphism

Ke
0(F) : Ke

0(D) → Ke
0(D�), [X] �→ [F(X)].

Further, if F is an equivalence, then Ke
0(F) is an isomorphism. �

This gives a (coarse) numerical invariant:

Proposition 7.51 Let C ∈ Fiat, and let D ∈ Ten. The the ranks rk(C) and rk(D), i.e. the
dimensions of K⊕

0 (C) and Ke
0(D), respectively, are invariants of C respectively D �

Remark 7.52 All of the above finiteness condition prevent that we run into the Eilenberg
swindle: If X ∼= Y ⊕ Y ⊕ Y ⊕ Y ⊕ ... would be an allowed object, then X ⊕ Y ∼= X which gives [Y] = 0.
This would then hold for any object, as Y was arbitrary.

Example 7.53 In Example 7.20, we have isomorphisms of rings

[P1] �→ 5 � K⊕
0 (C�)

∼=−→ 5Z ⊂ Z
∼=←− Ke

0(C) �1 ←� [L1].
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Further, the endofunctor − ⊗ P1 : C → C gives

[− ⊗ P1] : Z → Z, 1 �→ 5.

Moreover, L1 = Z1 is the monoidal unit of C, P1 = Z5 a “big pseudo idempotent” and

⊗ Z1 Z2 Z3 Z4 Z5

Z1 Z1 Z2 Z3 Z4 Z5
Z2 Z2 Z1 ⊕ Z3 Z2 ⊕ Z4 Z3 ⊕ Z5 2 · Z5
Z3 Z3 Z2 ⊕ Z4 Z1 ⊕ Z3 ⊕ Z5 Z2 ⊕ Z5 ⊕ Z5 3 · Z5
Z4 Z4 Z3 ⊕ Z5 Z2 ⊕ Z5 ⊕ Z5 Z1 ⊕ Z5 ⊕ Z5 ⊕ Z5 4 · Z5
Z5 Z5 2 · Z5 3 · Z5 4 · Z5 5 · Z5

.(7-14)

(One can check this using the Jordan decomposition over F5.) Thus, we have an isomorphism of
rings

K⊕
0 (C)

∼=−→ Z, [Zi] �→ i.

Finally, note that (7-14) also shows clearly the pivotal structure, since Z1 = � � ZiZj if and only if
i = j and i < 5. This shows that all indecomposables are self-dual (since Z5 is the projective cover
of Z1, the monoidal product Z5Z5 has a map to Z1 regardless whether Z1 appears as a summand
of it).

Remark 7.54 All of the above have appropriate versions in the “weakly” and “multi” setup.

7H. Finite dimensional algebras in vector spaces. Here is the main source of examples of
tensor categories:

Theorem 7.55 Let A ∈ fdVecS be a Hopf algebra. Then fdMod(A) ∈ mTen.

Proof. Combining Theorem 6.44.(ii), showing that fdMod(A) is finite abelian, and Theorem 5.58,
showing that fdMod(A) is rigid, and observing that everything is compatible with the � linear
structure. �

So Hopf algebras play a crucial role in the construction of quantum invariants. As an aside,
another nice fact about Hopf algebras is that they are “group-like”. Let us make this precise. To
this end, let SAlg denote the category of S algebras, objects being S algebras and morphisms
S algebra homomorphisms. Further, let Gr ⊂ Mon (recall Mon being the category of monoids,
cf. Example 1.6.(a)) denote the full subcategory whose objects are groups, i.e. the category of
groups.

Definition 7.56 We call F ∈ Hom(SAlg, Gr) representable if Forget◦F ∈ Hom(SAlg, Set)
is representable in the sense of Example 1.37.

Proposition 7.57 Let F ∈ Hom(SAlg, Gr) be represented by A ∈ SAlg. Then:

(i) For all A ∈ SAlg, the set HomSAlg(A, A) has a group structure.

(ii) The multiplication and unit in (i) come from a comultiplication and an antipode on A,
making A into a Hopf algebra.



110 DANIEL TUBBENHAUER

For this reason one can say that Hopf algebras are cogroup objects in SAlg.

Proof. This is Exercise 7.62. �

7I. Exercises.

Exercise 7.58 Prove the missing points in Proposition 7.7.

Exercise 7.59 Try to make Remark 7.17 precise by drawing a hierarchy chart and by giving
examples whenever Notion A �⇒ Notion B.

Exercise 7.60 Understand Example 7.20 and make all claims made in that example precise,
e.g. the monoidal structure.

Exercise 7.61 Show that (7-10) defines the structure of a braided category on TLq
S⊕�. Compute

the quantum invariant RTA
r=2(−) for

l = , l� = ∈ End1Tan(�).

This is the trefoil knot and its mirror image. Deduce that they are not equivalent.

Exercise 7.62 Prove Proposition 7.57. Hint: Yoneda.

8. Fiat, tensor and fusion categories – definitions and classifications

Fiat and tensor categories categorify algebras, and, in some sense, as we will see, when they are
semisimple they categorify finite groups. A first thing one would try when studying finite groups
is to classify them, maybe after fixing some numerical invariant such as the size of the group. (A
statement of the form “All finite groups of prime order are cyclic.” comes to mind.) So:

Can one hope to classify (semisimple) fiat and tensor categories, maybe after fixing some
numerical invariant?

The answer will turn out to be “Yes and no.”.

8A. A word about conventions. Of course, we keep the previous conventions.

Convention 8.1 We will identify directed graphs Γ and their adjacency matrices M , which
we see as matrices with values in N, and we will write Γ for both if no confusion can arise. The
translation between these two notions is best illustrated in an example:

M =

v1 v2

v1 0 1
v2 2 3

∈ Mat2×2(N) � Γ = v1 v2
2

3

,

where labels mean parallel edges, with the label 1 being omitted from illustrations.
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Convention 8.2 Out notation convention for objects is:

X � general object, L � simple object, P � projective inde. object,
I � injective inde. object, Z � indecomposable object,

(We also tend to use projectives instead of the dual notion of injectives.) Recall also that for
semisimple categories

X is simple ⇔ X is projective inde. ⇔ X is injective inde. ⇔ X is indecomposable.

Although we are mostly concerned about indecomposables, we will use the notation L in the
semisimple case to stress that this case is easier than the general situation.

8B. Representations of groups and Hopf algebras. We start by discussing a very nicely
behaved case in details: Let G be a finite group of order #G = m, and let p be the characteristic
of the algebraically closed ground field K. Recall that �[G] = (K[G], m, i, d, e, s) is a Hopf algebra
in VecK. The explicit structure maps are the multiplication and unit in K[G], and

d(g) = g ⊗ g, e(g) = 1, s(g) = g−1.

Thus, fdMod
�
K[G]

�
is K linear abelian rigid (actually, it is even pivotal). Moreover, by (6-16)

we have
�n

i=1 dim(Li)2 ≤ �n
i=1 dim(Li)dim(Pi) = dim

�
�[G]

�
= m.(8-1)

We also know by Lemma 7.29 that equality holds in (8-1) if and only if fdMod
�
K[G]

�
is semisimple.

The latter, by Maschke’s theorem Example 7.37, happens if and only if p� | m.

Remark 8.3 In fact, (8-1) holds for any finite dimensional � algebra A, i.e.
�n

i=1 dim(Li)2 ≤ �n
i=1 dim(Li)dim(Pi) = dim(A),

with equality if and only if A is semisimple.

Example 8.4 Let us perform the calculation

(X − 1)5 = X5 − 5 · X4 + 10 · X3 − 10 · X2 + 5 · X − 1 p=5= X5 − 1,

which is called Freshman’s dream. Hence, in characteristic 5 there is only the trivial 5th root
of unity ζ = 1. In all other cases there are five primitive roots of unity {1 = ζ0, ζ1, ζ2, ζ3, ζ4}, e.g.
for K = C we could let ζ = exp(2πi/5). (See also (6-17) and the text below.) Let us now come
back to G = Z/5Z, see also Example 6.91, where




ζ0 0 0 0 0

0 ζ1 0 0 0

0 0 ζ2 0 0

0 0 0 ζ3 0

0 0 0 0 ζ4




p�=5←−−




0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




p=5−−→




1 0 0 0 0

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1




,

is the matrix for the multiplication action of 1 on K[Z/5Z], which has the characteristic polynomial
X5 − 1. We also gave the corresponding Jordan decompositions. Thus, we get two different cases:
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• If K is not of characteristic 5, then

L1 = � :
�

ζ0
�

, L2 :
�

ζ1
�

, L3 :
�

ζ2
�

, L4 :
�

ζ3
�

, L5 :
�

ζ4
�

,

defines five simples, all of dimension 1. (They, of course, correspond to the five elements
of Z/5Z, as indicated by ζi.) They are also projective, the idempotents splitting them
from K[Z/5Z] can be obtained by using the change-of-basis matrices from the action
matrix to its Jordan decomposition. Hence, formula (8-1) takes the form

12 + 12 + 12 + 12 + 12 = 5.

• We have already seen the case where K is of characteristic 5, say K = F5, in detail,
see e.g. Example 6.91. In this case we have one simple L1 = � and its projective cover
P1 ∼= F5[Z/5Z]. Thus, (8-1) takes the form

1 = 12 ≤ 1 · 5 = 5.

Note that (8-1) implies that the set of simples Si
�
fdMod

�
K[G]

��
(or of projectives indecompos-

ables or of injectives indecomposables) of fdMod
�
K[G]

�
is always finite. What about the additive

version, i.e. what about the set of indecomposables In
�
fdMod

�
K[G]

��
? We have already seen in

the case G = Z/5Z that #Si
�
fdMod

�
K[G]

��
≤ #In

�
fdMod(�[G])

�
with equality if and only if

we are in the semisimple situation. Actually, the difference can get arbitrary big:

Example 8.5 Klein’s group of order four is V4 = Z/2Z × Z/2Z = �s, t | s2 = t2 = 1, st = ts�,
with its defining action on the complex plane C2 = {a + ib | a, b ∈ R} given by reflections:

s

t

s � (a + ib) = −a + ib,

t � (a + ib) = a − ib.

For K not of characteristic 2 the category fdMod
�
K[V4]

�
is semisimple with four simples of

dimension one. The case K = F2 is very different, and we will discuss it now. In this case we have

F2[V4]
∼=−→ A = F2[X, Y ]/(X2, Y 2), s �→ X + 1, t �→ Y + 1,

by Freshman’s dream.

Let us first discuss the simples and projectives of A. It is easy to see that A has one simple L1
whose projective cover P1 is A itself:

L1 = � : • , P1 :

•

• •

•

X Y

Y X

.(8-2)

Here we use a graph to indicate the modules. This is to be read as follows: the vertices correspond
to basis elements while the arrows indicate the non-zero actions of X and Y .

In contrast, there are infinitely many indecomposables, which are not projective. Here is the list
of all of them, using the same notation as in (8-2):
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• For all 2l + 3, where l ∈ N (thus, 2 · 0 + 3 = 3 is the smallest case), there are two
indecomposables Z2l+1 and Z�

2l+1, which are duals:

Z2l+1 : • • • • • ... •YX YX X Y ,

Z�
2l+1 : • • • • • ... •Y YX X Y X .

Here and below, the subscript indicates the dimension, i.e. the number of vertices.

• For all 2l + 2, where l ∈ N, there is a self-dual indecomposable Z2l:

Z2l : • • • • • ... • •YX YX X Y X .

• For j, l ∈ N with j|l, and an irreducible polynomial f ∈ F2[Z] of degree l/j, let Θf,j,l =�n
i=0 ΘiZ

i = f(Z)j with Θn = 1. For all 2l + 2, where l ∈ N, and any Θ = Θf,j,l there is
another self-dual indecomposable ZΘ

2l:

ZΘ
2l : • • • • • ... • •

0 l+1 1 l+2 2 ... l 2l+1
YX YX X Y X Y

Θ ,

where at one end, as indicated, Y acts by Y (2l + 1) =
�n

i=0 Θii.

(An explicit example of this family of modules is the case f(Z) = 1 + Z + Z2, j = 1 and
l = 3. Then ZΘ

6 is six dimensional, of the form

ZΘ
6 : • • • • • •

0 3 1 4 2 5
YX YX X Y

Θ ,

and Y acts on the vertex 5 as Y (5) = 1 · 0 + 1 · 1 + 1 · 2.)

The above discussion summarized is:

Proposition 8.6 Let G be a finite group of order #G = m, and let p be the characteristic of
the algebraically closed ground field K. Then:

(i) We have fdMod
�
K[G]

�
∈ CatS if and only if p� | m.

(ii) We have fdMod
�
K[G]

�
∈ Ten.

(iii) We have fdMod
�
K[G]

�
∈ Fiat if and only if p� | m or the p Sylow subgroup of G is cyclic.

Proof. The only things we have not addressed above are: First, whether EndfdMod(K[G])(�) ∼= K.
However, since � is the trivial module, Schur’s lemma Lemma 6.69 provides the result. And
second, the if and only if condition in (iii) which follow from a classical result giving an if and
only if condition for whether #In

�
K[G]

�
< ∞, see [Hi53]. �

Remark 8.7 The proof in [Hi53] is effective: Let H be a p-Sylow subgroup of G. Then
Higman shows that every indecomposable K[G] module Z can be obtained as a direct summands
Z � K[G]⊗K[H]Z� for some indecomposable K[H] module Z�. Because the dimension of K[G]⊗K[H]Z�

is |G/H| dim(Z�) there can thus only be finitely many indecomposables if K[H] has only finitely
many indecomposables.

Example 8.8 The two cases of G being either Z/4Z or Klein’s four group V4 in characteristic
2 are fundamentally different: For Z/4Z the 2-Sylow subgroup is cyclic and the representation
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theory of F2[Z/4Z] can be treated verbatim as for F5[Z/5Z], see Example 6.91. For V4 the 2-Sylow
subgroup not cyclic and F2[V4] has infinitely many indecomposables as listed in Example 8.5.

Recall that a finite dimensional Hopf algebra A is, by definition, a Hopf algebra A = (A, m, i, d, e, s)
in fdVecS, and fdMod(A) is its module category in fdVecS. The version for Hopf algebras,
where finite representation type means that #In

�
fdMod(A)

�
< ∞, is:

Proposition 8.9 Let A be a finite dimensional Hopf algebra. Then:

(a) We have fdMod(A) ∈ wTen.

(b) We have fdMod(A) ∈ wFiat if and only if A is of finite representation type.

Proof. All discussion above works for finite dimensional Hopf algebras in general, not just for
finite groups: By Theorem 5.58 we know that fdMod(A) is rigid, and its also clearly S linear and
abelian with S bilinear ⊗. Moreover, (8-1) holds for any finite dimensional algebra, so fdMod(A)
is always finite, and additively finite if and only if A is of finite representation type, by definition.
Moreover, A has a trivial module � obtained by using the counit e : A → S, and � is the monoidal
unit of fdMod(A) giving EndfdMod(A)(�) ∼= S. �

Thus, fiat and tensor categories can be seen as generalizations of Hopf algebras.

8C. Non-negative integral matrices. The arguably most important numerical invariant as-
sociated to a fiat (or tensor category) C are integral matrices.

Definition 8.10 Let C ∈ wmFiat. Then, for i, j, k ∈ {1, ..., n}, the fusion rules and the
fusion coefficients Nk

i,j ∈ N are

ZiZj
∼=

�n
k=1 Nk

i,j · Zk, where Zl ∈ In(C).

Thus, the fusion coefficients are the structure constants of the Z algebra K⊕
0 (C). These are most

conveniently collected in the fusion matrices:

K⊕
0
�

− ⊗ Zj

�
= M(j) = (Nk

i,j)n
i,k=1 =

Z1 ... Zi ... Zn

Z1

...

Zk Nk
i,j

...

Zn

ZiZj

∈ Matn×n(N).

In words, the fusion matrix M(j) captures the right ⊗ action of Zj on C. Recall further that we
can associate a graph Γ(M) with n vertices to each matrix M ∈ Matn×n(N), see Convention 8.1,
which we identify with M . Thus, we have another numerical invariant of fiat categories which
captures all the fusion rules:

Definition 8.11 Let C ∈ wmFiat. Then, for i ∈ {1, ..., n}, the fusion graphs are the
directed graphs Γi = Γ

�
M(i)

�
, i.e. the graphs associated to the fusion matrices.
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Similarly, the fusion graph of X ∈ C is the directed graph ΓX associated to the right ⊗ action
of X on C.

The following is evident, where the sum of graphs is the graph one gets summing the corresponding
matrices, using the identification of these, cf. Convention 8.1.

Lemma 8.12 Let C ∈ wmFiat. If X ∈ C decomposes as X ∼=
�n

i=1(X : Zi) · Zi, then ΓX =�n
i=1(X : Zi) · Γi. �

The fusion graphs are invariants:

Proposition 8.13 Let F ∈ Hom�⊕�(C, D) be an equivalence of categories C, D ∈ wmFiat.
Then, up to reordering, the fusion graphs of C and D are isomorphic as graphs.

Proof. By Proposition 7.50. �

Note that the fusion graph Γ� associated to the monoidal unit � is always a completely disconnected
graph with one loop per vertex, e.g.

Γ� =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 =

Z1 Z2

Z4 Z3

.

We call these the trivial fusion graphs, and all the others non-trivial. Moreover, in tables
we omit the row and column for the fusion rules of � as they are trivial, see (8-3).

Example 8.14 Let us consider two examples of semisimple fiat categories and their fusion
graphs:

(a) The category fdMod
�
C[Z/4Z]

�
has simples

L1 = � :
�

1
�

, L2 :
�

i
�

, L3 :
�

−1
�

, L4 :
�

−i
�

,

which act on fdMod
�
C[Z/4Z]

�
as the elements, in order, 0, 1, 2 and 3 in Z/4Z. Hence,

the non-trivial fusion graphs are

Γ1 =
� L2

L4 L3

, Γ2 =
� L2

L4 L3

, Γ3 =
� L2

L4 L3

.

(b) The category fdMod
�
C[V4]

�
(Klein’s four group, see Example 8.5) has simples also

corresponding to the elements 1, s, t and st = ts in V4. Hence, the non-trivial fusion
graphs are

Γs =
� Ls

Lt Lts

, Γt =
� Ls

Lt Lts

, Γst =
� Ls

Lt Lts

.

Thus, although fdMod
�
C[Z/4Z]

�
and fdMod

�
C[V4]

�
are equivalent as categories, they are not

equivalent as fiat categories.
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Example 8.15 Let S3 be the symmetric group in three letters, which is of order 6. The
category fdMod

�
C[S3]

�
is a semisimple fiat category with simples L1 = �, Ls and L−1 satisfying

the following fusion rules:

⊗ Ls L1�

Ls L1 ⊕ Ls ⊕ L1� Ls

L1� Ls L1


=

⊗ L1 Ls L1�

L1 L1 Ls L1�

Ls Ls L1 ⊕ Ls ⊕ L1� Ls

L1� L1� Ls L1


 .(8-3)

Thus, we get the non-trivial fusion graphs

Γs =




0 1 0
1 1 1
0 1 0


 = � Ls L1� , Γ1� =




0 0 1
0 1 0
1 0 0


 = � Ls L1� .

Example 8.16 The fusion graphs are certainly not a complete invariant of fiat categories as
they do not involve the morphisms in any way. To be completely explicit, the categories of
the form Vecω

�⊕(G), for G being a finite group, are fiat categories with the same fusion graphs,
independent of ω.

Recall that strongly connected for graphs means connected as a directed graph.

Definition 8.17 Let C ∈ wmFiat. We call X ∈ C a fusion generator of C if ΓX is strongly
connected. In case C ∈ wmFiat has a fusion generator, we call C transitive.

Example 8.18 In Example 8.14.(a) both, L1 and L3, are fusion generators, but L2 is not a
fusion generator. In Example 8.14.(b) none of the simples are fusion generators, but

Ls ⊕ Lt � ΓLs⊕Lt =




0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


 =

� Ls

Lt Lts

is a fusion generator.

The term “generator” is to be understood in this sense:

Lemma 8.19 Let C ∈ wmFiat be transitive, X ∈ C be a fusion generator and Y ∈ C any
object. Then there exist k ∈ N such that Y � Xk.

Proof. If X and Y are indecomposable, then k can be taken to be the length of a shortest path in
ΓX from the vertex corresponding to X to the vertex corresponding to Y. For general X and Y the
claim follows thus by additivity. �

8D. Perron–Frobenius. The classical Perron–Frobenius (PF for short) theorem is one of
the cornerstones of linear algebra, very useful in many areas of mathematics and will turn out to
be of crucial importance for us as well. Here it is:

Theorem 8.20 Let M ∈ Matn×n(R≥0). Then:
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(i) The matrix M has an eigenvalue λpf (M) ∈ R≥0 which satisfies

|λpf (M)| ≥ |µ|, for all eigenvalues µ of M.(8-4)

Moreover, M has an eigenvector vpf (M) with eigenvalue λpf (M), which can be normalized
such that vpf (M) ∈ Rn

≥0.

(ii) If additionally M ∈ Matn×n(R>0), then λpf (M) ∈ R>0, vpf (M) ∈ Rn
>0 (after normaliza-

tion), the eigenvalue λpf (M) is simple, and the inequality in (8-4) is strict. Further, the
eigenvector vpf (M) is the unique (up to scaling) eigenvector of M with values in R>0.

λpf (M) is called the PF eigenvalue of M , and vpf (M) is called the PF eigenvector of M .

Proof. (i)-Existence. The idea is to use Brouwer’s fixed-point theorem. Assume that M does not
have an eigenvector v0(M) ∈ Rn

≥0 of eigenvalue zero. Then, since there are no cancellations due
to non-negativity,

f : Σn → Σn, v �→ Mv�n
i=1 (Mv)i

defines a continuous map from the standard n simplex Σn = {v ∈ Rn
≥0 | �n

i=1 vi = 1} to itself.
Thus, Brouwer’s fixed-point theorem gives us a fixed point w of f , which, by construction, satisfies

Mw = µw, where µ ∈ R≥0, w ∈ Rn
≥0.

We can hence define λpf (M) to be the maximal eigenvalue of M having a non-negative eigenvector
vpf (M). Since this also works in case M does have an eigenvector v0(M) ∈ Rn

≥0 of eigenvalue
zero, we have now constructed the required eigenvalue and eigenvector, and it remains to show
the claimed properties.

(ii)-Positivity. If M ∈ Matn×n(R>0), then the just constructed eigenvalue λpf (M) and eigenvector
vpf (M) are also strictly positive.

(ii)-Simplicity. The eigenvalue λpf (M) is simple: If w ∈ Rn is another eigenvector of λpf (M),
then define z = min{wi − vpf (M)i | i = 1, ..., n}. Now we observe that w − z · vpf (M) ∈ Rn

≥0
is another eigenvector of M with eigenvalue λpf (M). However, this, by positivity, implies that
w − z · vpf (M) = 0 as it has at least one entry being zero. Thus, λpf (M) is simple.

(ii)-Uniqueness. Assume now that there exist another strictly positive eigenvector w with
eigenvalue µ, and let vpf (MT ) denote the PF eigenvector of vpf (MT ). Then λpf (M)vpf (MT )w =
vpf (MT )Mw = µvpf (MT )w, which, by positivity, implies that µ = λpf (M). Hence, we also have
w = vpf (MT ), by simplicity.

(ii)-Inequality. For w ∈ Cn let |w| =
�n

i=1 |wi|vpf (M)i. Then one checks that |Mw| ≤ λpf (M)|w|
and equality holds if and only if all non-zero entries of w have the same argument. Hence, if w is
an eigenvector of M with eigenvalue µ, then |µ||w| ≤ λpf (M)|w|, which implies that |µ| ≤ λpf (M).
Finally, if |µ| = λpf (M), then all non-zero entries of w have the same argument and we can
normalize w to be strictly positive. Hence, µ = λpf (M), by uniqueness.

(i)-Rest. Using (ii) and

MN = M + 1
N




1 ... 1

... ... ...

1 ... 1


 ∈ Matn×n(R>0), lim

N→∞
MN = M,

this is an easy limit argument. �
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Remark 8.21 If one works over Q≥0 instead of R≥0, then there is an alternative and constructive
proof of the PF theorem. (This is a consequence of Barr’s theorem [Ba74].)

Example 8.22 Note the difference between strictly positive and positive, and various other
properties as e.g. “converting to zero” or “nilpotent”:

M1 =
�

1
3

1
3

1
3

1
3

�
, M2 =

�
1
3 0
1
3

1
3

�
, M3 =

�
0 0
1
3 0

�
,

Let us call them “Case 1”, “Case 2” and “Case 3”, respectively. Then:

Case 1 :
�

λpf = 2
3 , vpf = (1, 1),

µ1 = 0, v1 = (−1, 1),
Case 2 :

�
λpf = 1

3 ,

vpf = (0, 1),
Case 3 :

�
λpf = 0,

vpf = (0, 1).

Here is the version of the PF theorem for positive integral matrices, a.k.a. graphs, which has
slightly better statements:

Theorem 8.23 Let Γ ∈ Matn×n(N). Then the PF theorem Theorem 8.20 applies and we have
additionally:

(i) If Γ has a directed cycle, then λpf (M) ∈ R≥1.

(ii) If Γ is strongly connected, then λpf (Γ) ∈ R≥1, vpf (M) ∈ Rn
>0 (after normalization),

and all µ satisfying equality in (8-4) are not in R>0. Further, the only strictly positive
eigenvectors of M are of eigenvalue λpf (M).

Proof. Note that Γk counts the number of paths of length k in Γ.

(i). As Γ has an oriented cycle, Γk �= 0 for all k ∈ N. Moreover, since Γ has entries from N we
also know that limk→∞ Γk �= 0. This implies that the PF eigenvalue has to be at least 1.

(ii). We get a strictly positive matrix

T = f(Γ) =
�n

i=0 Γi ∈ Matn×n(N>0), where f(X) =
�n

i=0 Xi.

Hence, we can apply Theorem 8.20.(ii) to T , and simultaneously Theorem 8.20.(i) to Γ. These
imply that

�n
i=1 λpf (Γ)i = λpf (T ), thus λpf (Γ) ∈ R≥1, and moreover vpf (Γ) = vpf (T ) ∈ Rn

>0.
The other claims follow by observing that the non-zero roots of f(X) are the nth complex roots
of unity. �

Example 8.24 Let Γ1, Γs ∈ Mat3×3(N) be

Γ1 =




0 0 1
1 0 0
0 1 0


 =

0 1

2
, Γs =




0 1 0
1 1 1
0 1 0


 = 1 s 1� .

(These are action matrices of fusion generators of fdMod
�
C[Z/3Z]

�
and fdMod

�
C[S3]

�
, respec-

tively.) Let us call them “Case 1” and “Case 2”. The eigenvalues and eigenvectors in these two
cases are:

Case 1 :





λpf = 1, vpf = (1, 1, 1),
µ1 = 1

2(−1 + i
√

3), v1 =
�1

2(−1 + i
√

3), 1
2(−1 − i

√
3), 1

�
,

µ2 = 1
2(−1 − i

√
3), v2 =

�1
2(−1 − i

√
3), 1

2(−1 + i
√

3), 1
�
,



QUANTUM TOPOLOGY WITHOUT TOPOLOGY 119

Case 2 :





λpf = 2, vpf = (1, 2, 1),
µ�

1 = −1, v1 = (1, −1, 1),
µ�

2 = 0, v2 = (−1, 0, 1).

Note that |µ1| = |µ2| = λpf = 1, but neither µ1 nor µ2 are real numbers.

By Proposition 8.13, we get the following invariants of fiat categories.

Definition 8.25 Let C ∈ wmFiat and X ∈ C. The PF dimension of X is PFdim(X) =
λpf (ΓX). The PF dimension of C is PFdim(C) =

�n
i=1 PFdim(Zi)2.

Note that we always have PFdim(�) = 1. (We will omit this case from examples.) However, PF
dimensions need not to be integers:

Example 8.26 There exists a semisimple fiat category Fib, called Fibonacci category, which
has two simple objects L1 = � and L = L2 with

L2 ∼= �⊕ L.

Thus, letting φ = 1
2(1 +

√
5) denote the golden ratio, we get

ΓL =
�

0 1
1 1

�
= � L ⇒





λpf (ΓL) = PFdim(L) = φ,

vpf (ΓL) = (φ, 1),
PFdim(Fib) = 1 + φ2 = 1

2(5 +
√

5).

Lemma 8.27 Let C ∈ wmFiat. Then:

(i) For X, Y ∈ C we have PFdim(XY) = PFdim(X)PFdim(Y).

(ii) If X ∈ C is invertible (see Definition 4.34), then PFdim(X) = 1.

(iii) For X ∈ C we have PFdim(X�) = PFdim(X) = PFdim(�X). Moreover, all action matrices,
ΓX� , ΓX and Γ�X, agree up to transposition and permutation.

(iv) The self-dual object T ∈ C, called the total object, defined by

T =
�n

i=1 Zi,

is a fusion generator of C if and only if C is transitive.

(v) If C is transitive, then there exists a strictly positive virtual object R ∈ C (meaning a
formal R>0 linear combination of indecomposables), called the regular object, which is
the, up to scaling, unique object satisfies the equality

[XR] = [RX] = PFdim(X) · [R], (in K⊕
0 (C) ⊗Z C),

for all X ∈ C.

(vi) We have PFdim(C) = PFdim(R).

As we will see in e.g. Example 8.29(i), all of this should be thought of as generalizing very familiar
notions from representation theory of groups.
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Proof. (i). This follows since the PF eigenvalue is multiplicative.

(ii). As an invertible object can not have a nilpotent action matrix this follows from (i) and
PFdim(X) ≥ 1, see Theorem 8.23.(i).

(iii). By Lemma 7.22.(iii), the functor −� preserves the property of being indecomposable and
induces a bijection as in (7-7). In other words, duality acts as a permutation on the set of
indecomposable objects. Thus, (ZX)� ∼= (X�)(Z�) shows that, up to permutation, the action matrix
for X� is the transpose of the action matrix for X, which implies that PFdim(X�) = PFdim(X).
The other claim follows by symmetry.

(iv). The second claim is clear by additivity, the first, that T is self-dual, follows from the bijections
as in (7-7).

(v). Since C is transitive, the total object T is a fusion generator, see (iv). By Theorem 8.20.(iii),
we can thus take [R] = vpf (ΓT), which is unique up to scaling and strictly positive. Hence, we
can interpret R as a strictly positive sum of indecomposables of C. By this construction and
Theorem 8.20.(iii) it follows that [XR] and [RX] must be proportional to [R]. To see this observe
that [XR]ΓT = λpf (T) · [XR] = ΓT[RX]. (Note that ΓT is symmetric by (iv).) This implies that [XR]
and [RX] are strictly positive eigenvectors of ΓT, and the claim follows from Theorem 8.20.(iii).

(vi). Clear by additivity of the PF eigenvalue. �

A crucial feature of PF dimensions is that they come in discrete values:

Proposition 8.28 Let C ∈ wmFiat and X ∈ C. Then the PF dimensions PFdim(X) and
PFdim(C) are algebraic integers, i.e. roots of some p ∈ Z[X], and ≥ 1.

Proof. To show that they are algebraic integers we can take p ∈ Z[X] to be the characteristic
polynomial of ΓX, and the claim for C follows by additivity. For the second claim we observe
that PFdim(X)2 = PFdim(XX�), by Lemma 8.27.(i), and PFdim(XX�) ≥ 1 by Theorem 8.23.(i):
ΓXX� can not be a nilpotent matrix as there should always be a non-degenerate (co)pairing to �.
Hence, PFdim(X) ≥ 1 which finishes the proof since, as before, the statement for C follows by
additivity. �

Example 8.29 Let S3 be the symmetric group in three letters, which is of order 6, and let
K be algebraically closed. By Proposition 8.6.(iii) we know that fdMod

�
K[S3]

�
is fiat, and by

Example 7.37 it is semisimple if and only if the characteristic of K is not 2 or 3. So we basically
have three cases:

(I) The case K = C, which we already glimpsed upon in Example 8.15. In this case we get
L1 = � and

PFdim(Ls) = PFdim
�� 0 1 0

1 1 1
0 1 0

��
= 2, PFdim(L1�) = PFdim

�� 0 0 1
0 1 0
1 0 0

��
= 1,

T = �⊕ Ls ⊕ L1� , ΓT =




1 1 1
1 3 1
1 1 1


 �

� L1�

Ls

3

,

R = �⊕ 2 · Ls ⊕ L1� ∼= C[S3], PFdim
�
fdMod

�
C[S3]

��
= 1 · 1 + 2 · 2 + 1 · 1 = 6 = PFdim(R).
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Note that the regular object is the regular representation of C[S3] on itself, hence the
name. The PF dimension in this case is the dimension of C[S3], a.k.a. the order of S3.

(II) The case K = F3. We want to use the construction in Remark 8.7. First, we have a
3-Sylow subgroup Z/3Z and we want ot consider F3[Z/3Z]. Similarly as for the case of
Z/5Z, see e.g. Example 6.91, we get that F3[Z/3Z] has three indecomposable modules,
given by Jordan blocks for the eigenvalue 1: a 1 × 1 Jordan block Z�

1, a 2 × 2 Jordan block
Z�

2, and a 3 × 3 Jordan block Z�
3 = F3[Z/3Z]. Let z be the basis element of Z�

1, and let 1, s

be the elements of S2 ∼= S3
�

(Z/3Z). Then:

F3[S3] ⊗F3[Z/3Z] Z�
1

∼= Z1 ⊕ Z1� ∼= L1 ⊕ L1� ,

for L1 ∼= � and L1� as in (I), which are also the only simples of F3[S3]. To see this we
simply observe that we can base change

F3[S3] ⊗F3[Z/3Z] Z�
1 = F3{1 ⊗ z, s ⊗ z} = F3{1

2(1 + s) ⊗ z, 1
2(1 − s) ⊗ z}.

(Also recall the idempotents e± from Example 7.9.) Moreover, we see analogously that

F3[S3] ⊗F3[Z/3Z] Z�
2

∼= Z2 ⊕ Z2� , F3[S3] ⊗F3[Z/3Z] Z�
3

∼= P(L1) ⊕ P(L1�) ∼= Z3 ⊕ Z3� ,

which are all of the indicated dimensions. Summarized:

Si
�
fdMod

�
F3[S3]

��
= {Z1 ∼= �, Z1� = L1�}, Pi

�
fdMod

�
F3[S3]

��
= {Z3 ∼= P�, Z3� ∼= P1�},

In
�
fdMod

�
F3[S3]

��
= {Z1, Z1� , Z2, Z2� , Z3, Z3�}, dim(Zi) = i = dim(Zi�).

To be more explicit, the Jordan–Hölder filtration are of the form

Z1 ∼= � is simple, Z1� = L1� is simple,

0 − �− L1� − Z2, 0 − L1� − �− Z2� ,

0 − �− L1� − �− Z3, 0 − L1� − �− L1� − Z3�

These satisfy the fusion rules:

⊗ Z2 P� P1� Z2� L1�

Z2 P� ⊕ L1� P� ⊕ P1� P� ⊕ P1� �⊕ P1� Z2�

P� P� ⊕ P1� P� ⊕ P1� ⊕ P� P1� ⊕ P� ⊕ P1� P� ⊕ P1� P1�

P1� P� ⊕ P1� P1� ⊕ P� ⊕ P1� P� ⊕ P1� ⊕ P� P� ⊕ P1� P�
Z2� �⊕ P1� P� ⊕ P1� P� ⊕ P1� P� ⊕ L1� Z2
L1� Z2� P1� P� Z2 �

.

Thus, the action matrices and their PF eigenvalues and eigenvectors are:

Γ1 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




, Γ1� =




0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0




,

λpf (Γ1) = 1,

vpf (Γ1) = (1, 1, 1, 1, 1, 1),
λpf (Γ1�) = 1,

vpf (Γ1�) = (1, 1, 1, 1, 1, 1),
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Γ2 =




0 0 0 0 1 0
1 0 0 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 0 0 1
0 1 0 0 0 0




, Γ2� =




0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 1 1 0
0 1 1 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0




,

λpf (Γ2) = 2,

vpf (Γ2) = (0, 0, 1, 1, 0, 0),
λpf (Γ2�) = 2,

vpf (Γ2�) = (0, 0, 1, 1, 0, 0),

Γ3 =




0 0 0 0 0 0
0 0 0 0 0 0
1 1 2 1 1 0
0 1 1 2 1 1
0 0 0 0 0 0
0 0 0 0 0 0




, Γ3� =




0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 2 1 1
1 1 2 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0




,

λpf (Γ3) = 3,

vpf (Γ3) = (0, 0, 1, 1, 0, 0),
λpf (Γ3�) = 3,

vpf (Γ3�) = (0, 0, 1, 1, 0, 0).

Note that none of the indecomposables are fusion generators, and only the one dimensional
ones are invertible. The total and regular objects are also not fusion generators:

ΓT =




1 1 0 0 1 1
1 1 0 0 1 1
1 3 6 6 3 1
1 3 6 6 3 1
1 1 0 0 1 1
1 1 0 0 1 1




, ΓR =




1 2 0 0 2 1
2 1 0 0 1 2
3 8 14 14 8 3
3 8 14 14 8 3
2 1 0 0 1 2
1 2 0 0 2 1




,

λpf (Γ3) = 12,

vpf (Γ3) = (0, 0, 1, 1, 0, 0),
λpf (Γ3�) = 28,

vpf (Γ3�) = (0, 0, 1, 1, 0, 0).

The PF dimension of the category itself is PFdim(C) = PFdim(R) = 28.

(III) The case K = F2 works mutatis mutandis as (II) above. Doing the calculations gives four
indecomposable modules Z1 = L1 ∼= �, Z2 = Ls, Z3 ∼= P� and Z3� ∼= Ps, which are of the
indicated dimensions. The fusion rules are:

⊗ Ls P� Ps

Ls L� ⊕ P� P� ⊕ Ps P� ⊕ P�
P� P� ⊕ Ps 2 · P� ⊕ Ps P� ⊕ 2 · Ps

Ps P� ⊕ P� P� ⊕ 2 · Ps 2 · P� ⊕ Ps

To compute the PF dimensions etc. is Exercise 8.59.

Example 8.30 Let us again consider S3, but now rather the category Vecω
�⊕(S3), for any 3

cocycle ω. Let S3 = {1, s, t, ts, st, sts = tst}, where, in graphical notation,

1 = , s = , t = , ts = , st = , sts = = = tst.

By definition, the fusion rules of Vecω
�⊕(S3) are exactly the multiplication rules of S3. Thus, the

action matrices are just permutation matrices, e.g.

Γst =




0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0




,
λpf (Γsts) = 1,

vpf (Γsts) = (1, 1, 1, 1, 1, 1).
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Thus, all PF dimensions are 1, and all objects are invertible. Note also that PFdim
�
Vecω

C⊕(S3)
�

=
6 = PFdim

�
fdMod

�
C[S3]

��
, the order of S3.

8E. Fusion categories. Here are the categorical analogs of groups:

Definition 8.31 A semisimple category C ∈ wmFiat is called a weakly multi fusion
category, and a semisimple category C ∈ wFiat is called a weakly fusion category. If these
are additionally pivotal, then we call them multi fusion categories and fusion categories,
respectively.

Without further ado we get the full subcategories of the form e.g. wmFus ⊂ wmFiat (again,
potentially omitting the w and the m), called e.g. category of weakly multi fusion categories,
equivalence being �S⊕�.

Example 8.32 We have already seen the prototypical examples of (weakly) fusion categories,
namely Vecω

�⊕(G) and fdMod
�
�[G]

�
, where G is a finite group, in both cases, and #G does not

divide the characteristic of � in the second case, as well as fdMod(A) where A is a semisimple
Hopf algebra.

Proposition 8.33 Fusion categories can be alternatively defined e.g. as follows:

“A semisimple category C ∈ wmTen is called a weakly multifusion category.”

Proof. Clear since semisimple is a stronger notion than abelian, see Theorem 7.31. �

Proposition 8.34 Let C ∈ wmFus. Then:

(i) If C ∈ wFus is � linear, then � ∈ Si(C).

(ii) If C ∈ wFus, then X� ∼= �X for all X ∈ C.

(iii) The fusion coefficients N k
ij are cyclic up to duality, i.e.

LiLj
∼=

�n
k=1 Nk

i,j · Lk ⇔ (L�
k)Li

∼=
�n

k=1 N j�

(k�),i · L�
j .

(iv) A regular object is

R =
�n

i=1 PFdim(Li) · Li.

Proof. (i). By EndC(�) ∼= �, the monoidal unit is indecomposable, hence simple.

(ii). By additivity, it suffices to show L� ∼= �L for all simples. Here we first note that
�
HomC(�, L�L) �∼= 0

�
⇒

�
L� ∼= L�

�
,

�
HomC(L�L,�) �∼= 0

�
⇒

�
L� ∼= �L

�
,

by semisimplicity, (i) and Schur’s lemma Lemma 6.68. Moreover, also by semisimplicity,

HomC(�, L�L) ∼= HomC(L�L,�),

which then in turn implies the claim.

(iii). By noting that

Nk
ij = dim

�
HomC(LiLj , Lk)

�
= dim

�
HomC((L�

k)Li, L�
j )
�

= N j�

(k�)i,
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which holds by Theorem 4.16 and (ii).

(iv). Using the previous results, we calculate

LiR ∼=
�n

j=1 PFdim(Lj) · LiLj
∼=

�n
j,k=1 PFdim(Lj) · Nk

i,jLk
∼=

�n
j,k=1 PFdim(Lj) · N j�

(k�)iLk

∼=
�n

j,k=1 PFdim(Lj) · N j
(i�)kLk

∼=
�n

k=1 PFdim
�
(L�

i )Lk

�
· Lk

∼= PFdim(L�
i ) ·

��n
k=1 PFdim(Lk) · Lk

� ∼= PFdim(Li) · R,

which implies the claim by uniqueness of the regular object. �

Example 8.35 Let G be a finite group, and let � = C. Note that for any subgroup H ⊂ G we
get an algebra

AH =
�

h∈H h ∈ VecC⊕(G).

These are of course the corresponding group algebras and thus

Mod(AH) �C⊕� fdMod
�
C[H]

�
.

The generalization of this construction, as explained in details in [EGNO15, Example 9.7.2], takes
an algebra AH ∈ Vecω

C⊕(G) together with a so-called 2 cochain ψ to twist the multiplication of
AH. The corresponding module categories

fdModω,ψ
G

�
C[H]

�
= Mod(AH),

where AH ∈ Vecω
C⊕(G) and ψ is a 2 cochain with d2ψ = ω|H×H×H,

are all fusion categories, and are sometimes called group-like fusion categories.

Remark 8.36 The construction in Example 8.35 can also be done for arbitrary S instead of C,
by letting the cochains take values in S∗.

8F. Verlinde categories – part I. There is an important family of fusion categories, which
are of paramount importance for the construction of the classical quantum invariants, and also
for the theory of fiat and fusion categories. However, they are not easy to construct and we will
postpone a more detailed discussion to the later sections. For now we just state the theorem:

Theorem 8.37 For any finite dimensional semisimple complex Lie algebra g, any k ∈ N≥h

(where h is the Coxeter number of g) and any q ∈ C being a primitive 2kth root of unity there
exists a C linear category fdModq

k(g) ∈ Fus.

The categories of the form fdModq
k(g) ∈ Fus are called Verlinde categories.

Proof. We will elaborate later, but the main construction can be found in e.g. [An92]. �

Example 8.38 To be at least a bit more explicit, let g = sl2 where h = 2. Let us explain the
fusion rules of the categories fdModq

k(sl2) which only depend on k and not on q. So let us fix
k ≥ 2 and choose q = exp(πi/k), for the sake of concreteness. The category fdModq

k(sl2) is
ribbon and fusion and has simple objects

Si
�
fdModq

k(sl2)
�

= {Li | i = 0, ..., k − 2}, L0 ∼= �, L�
i

∼= Li.
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The fusion rules are given by the truncated Clebsch–Gordan rule

LiLj
∼=

�min(i,j)
l=max(i+j−k+2,0) Li+j−2l.(8-5)

Let us discuss a few cases for small k:

• For k = 2 we have fdModq
2(sl2) ∼= VecC. Hence, the fusion generator � has PFdim(�) =

2 cos(π/2) = 1 giving PFdim
�
fdModq

2(sl2)
�

= 1.

• For k = 3 we have that the fusion generator L1 satisfies

L1L1 ∼= �, Γ1 =
�

0 1
1 0

�
= � L1 , PFdim(Γ1) = 2 cos(π/3).

And thus, PFdim
�
fdModq

2(sl3)
�

= 2. One can actually show that fdModq
k(sl2) �C⊕�

VecC⊕(Z/2Z).

• For k = 4 the fusion rules take the form

⊗ L1 L2

L1 �⊕ L2 L1
L2 L1 �

.

Thus, we get the fusion graphs

Γ1 =




0 1 0
1 0 1
0 1 0


 = � L1 L2 , PFdim(Γ1) = 2 cos(π/4),

Γ2 =




0 0 1
0 1 0
1 0 0


 = � L1 L2 , PFdim(Γ2) = 1.

Hence, PFdim
�
fdModq

4(sl2)
�

= 2 + 2 cos(π/4)2.

For general k ≥ 2 the object L1 will be a fusion generator of fdModq
k(sl2) linear fusion graph

Γ1 = � L1 L2 ... Lk ,

and PFdim(L1) = 2 cos(π/k).

Example 8.39 Using the same notion as in Example 8.38, note that there is a full subcategory
fdModq

k(so3) ⊂ fdModq
k(sl2) with

�
fdModq

k(so3)
�

= {Li | i = 0, ..., k − 2, i even}, L0 ∼= �, L�
i

∼= Li,

and exactly the same fusion rules, i.e. (8-5), just taking even indexes only. Again, let us discuss
some cases in detail:

• The cases k = 2 and k = 3 will now collide and are as in Example 8.38.

• The case k = 4 gives fdModq
k(so3) ∼= VecC⊕(Z/2Z).

• For k = 5 one can show that fdModq
k(so3) ∼= Fib (the Fibonacci category, see Exam-

ple 8.26) for q = exp(πi/5).
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• For k = 6 the fusion rules take the form

⊗ L2 L4

L2 �⊕ L2 ⊕ L4 L2
L4 L2 �

,

and we get the fusion graphs

Γ2 =




0 1 0
1 1 1
0 1 0


 = � L2 L4 , PFdim(Γ2) = 2,

Γ4 =




0 0 1
0 1 0
1 0 0


 = � L2 L4 , PFdim(Γ1) = 1.

Hence, PFdim
�
fdModq

6(so3)
�

= 6. In fact, fdModq
6(so3) �C⊕� fdMod

�
C[S3]

�
.

• Finally, for k = 7 we get

⊗ L2 L4

L2 �⊕ L2 ⊕ L4 L2 ⊕ L4
L4 L2 ⊕ L4 �⊕ L2

.

Thus, the fusion graphs are

Γ2 =




0 1 0
1 1 1
0 1 1


 = � L2 L4 , PFdim(Γ2) = 2,

Γ4 =




0 0 1
0 1 1
1 1 0


 = � L2 L4 , PFdim(Γ1) = 1.

For general k = 2l ≥ 4 or k = 2l + 1 ≥ 5 the object L2 will be a fusion generator of fdModq
k(so3)

with fusion graph

Γ2 = � L2 L4 ... L2l−2 Ll if k = 2l ≥ 4,

Γ2 = � L2 L4 ... L2l−2 Ll if k = 2l + 1 ≥ 5.

There is almost no redundancy:

Proposition 8.40 We have
�

fdModq
k(sl2) �C⊕� fdModq�

k�(sl2)
�

⇔
�
k = k� and (q = q� or q−1 = q�)

�
,

�
fdModq

k(so3) �C⊕� fdModq�
k�(so3)

�
⇔

�
k = k� and (q = q� or q−1 = q�)

�
.

Proof. See [FK93, Proposition 8.2.3]. �
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Example 8.41 Note that the k = 5 case in Example 8.39 has now two non-equivalent cases:
fdModq

k(so3) ∼= Fib, which happens for q = exp(πi/5), and another fusion category appearing
for q = exp(2πi/5).

8G. Classifying fiat, tensor and fusion categories. Let us now address some classification
problems. Namely, we want to ask (in order) whether one can classify fiat, tensor or fusion
categories with a given K⊕

0 (−), with a fixed rank rk(−) or a fixed PF dimension PFdim(−).

Remark 8.42 We will be a bit sketchy in this section because we want to state theorems which
are easy to understand (and worthwhile to be stated) but sometimes not easy to prove.

The arguable most important theorem in the theory is Ocneanu rigidity, which is a “uniqueness
of categorifications” type of statement:

Theorem 8.43 The number of � linear weakly multi fusion categories (up to ��⊕� equivalence)
with a given K⊕

0 (−) is finite.

Proof. The (not easy) proof of this theorem can be found in e.g. [EGNO15, Theorem 9.1.4]. �

We have already seen two numerical invariants, which only depend only on K⊕
0 (−), of fiat

categories: the rank, cf. Proposition 7.51 and the PF dimension, cf. Definition 8.25, and both
discrete valued and ≥ 1. Thus, Theorem 8.43 motivates the question whether one can classify
fiat or fusion categories of a given K⊕

0 (−), of a given rank or of a given PF dimension.

Let us start by fixing K⊕
0 (−).

Proposition 8.44 Let G be a finite group. If C ∈ wmFus is C linear and has K⊕
0 (C) ∼= Z[G]

as Z algebras, then C �C⊕� Vecω
C⊕(G).

Proof. By carefully writing down all equations coming from the associativity and unitality
constrains, see e.g. [EGNO15, Proposition 4.10.3] for details. �

For a finite group G let TYG denote the so-called Tambara–Yamagami fusion ring given by
adjoining a self-dual element X to Z[G] satisfying the fusion rules

gX = Xg = X, X2 =
�

g∈G g.

(Here we use the terminology from above for the Z algebra K⊕
0 (−) itself.)

Example 8.45 For G = Z/3Z the fusion rules etc. of TYZ/3Z are

⊗ 1 2 X

1 2 0 X

2 0 1 X

X X X 0 + 1 + 2

, ΓX =




0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0


 =

1

0 X 2 , PFdim(X) =
√

3.

For general G we have

PFdim(g) = 1, PFdim(X) =
�

#G, PFdim(TYG) = 2#G.
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Proposition 8.46 Let G be a finite group. If C ∈ wmFus is C linear and has K⊕
0 (C) ∼= TYG

as Z algebras, then G is abelian. Moreover, for any abelian G there exists a C ∈ wmFus with
K⊕

0 (C) ∼= TYG as Z algebras, and such weakly multi fusion categories are parameterized (up to
�C⊕� equivalence) by symmetric isomorphisms G

∼=−→ G∨ and a choice of sign.

Proof. This is the main result of [TY98]. �

Let us continue by fixing the rank:

Proposition 8.47 We have the following.

(i) If C ∈ wmFiat is � linear of rank rk(C) = 1, then C ��⊕� fdVec�.

(ii) If D ∈ wTen is � linear of rank rk(D) = 1 and � is of characteristic zero, then
D ��e� fdVec�.

Proof. (i). Note that any object X ∈ C is a direct sum of the unique indecomposable Z, i.e. there
exists a k ∈ N such that X ∼= k · Z. Hence, we have clearly

(m ≤ k, l) ⇔
k · Z

l · Z m · Z

pu
∃!

f

,

showing that X is projective. Hence, we are done by e.g. Theorem 7.36 since C has to be
semisimple.

� = k · Z for some k ∈ N>0, which implies that � is projective.

(ii). Recall that in each abelian category one can define the abelian group of extensions Ext1
C(X, Y)

to be the equivalence class (for an appropriate equivalence) of SES of the form

X E Yi p

The SES of this form which split, i.e. where E ∼= X ⊕ Y, are trivial in Ext1
C(X, Y).

Back to D ∈ wTen, we claim that Ext1
D(�,�) = 0.

To this end, suppose the converse. We want to show that EndD(P�) has under this assumption
infinitely many modules of dimension one, which is a contradiction since EndD(P�) is a finite
dimensional � algebra. Let E be a non-trivial extension of � by itself. Then HomD(P�, E) is of
dimension two, has a filtration of length 2 with quotients isomorphic to HomD(P�,�). Note that
EndD(P�) acts on both, HomD(P�, E) and HomD(P�,�), from the right. Thus, taking all of this
together and letting d0 : EndD(P�) → � denote the character obtained from the right action on
HomD(P�,�), we can find a basis of HomD(P�, E) such that the action matrices of EndD(P�) take
the form

Ma=
�

d0(a) d1(a)
0 d0(a)

�
,

�
d0(ab) d1(ab)

0 d0(ab)

�
= Mab=MaMb =

�
d0(ab) d0(a)d1(b) + d1(a)d0(b)

0 d0(ab)

�
,

where d1(a) �= 0, satisfying d1(ab) = d0(a)d1(b) + d1(a)d0(b), as indicated. Similarly, for any
k ∈ N>0, we get a 2k dimensional EndD(P�) module HomD(P�, Ek), and one can show that the
corresponding dk(−) satisfies a recursive equality of the form

dk(ab) =
�k

i=0

�
k

i

�
di(a)dk−i(b).
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This implies that we can define infinitely many distinct one dimensional EndD(P�) modules by
the formula

ex(a) =
�∞

i=0
1
i! · di(a)xiti ∈ �((t)).

(Here we use that � is of characteristic zero because we need 1
i! , and this formally speaking ends

in �((t)).) A contradiction, and we get Ext1
D(�,�) = 0.

Finally, Ext1
D(�,�) = 0 implies that D is semisimple, and the claim follows. �

Example 8.48 Note the difference between Proposition 8.47.(i) and (ii): The first assumes the
number of indecomposables to be one, the other assumes the number of simples to be one. In
fact, as we have seen in Example 6.91, there are examples of tensor categories with one simple
objects which are not equivalent to fdVec�.

Let us try to go to rank 2:

Proposition 8.49 Let C ∈ wmFus be C linear of rank rk(C) = 2. Then C is equivalent (as a
fusion category) to one of the following cases.

• C �C⊕� (VecC ⊕ VecC).

• C ��⊕� VecC⊕(Z/2Z).

• C �C⊕� Vecω
C⊕(Z/2Z) for the non-trivial ω ∈ H3(Z/2Z,C∗) ∼= Z/2Z.

• C �C⊕� fdModq
5(sl2) for q = exp(πi/5).

• C �C⊕� fdModq
5(sl2) for q = exp(2πi/5).

Proof. Let us sketch the proof, and a general proof strategy, details can be found in [Os03].

We start by observing that, if C is not transitive, then each simple spans a copy of VecC and we
are in the first case. Similarly if � is not simple.

Thus, we can assume that C is transitive and � ∈ Si(C). In this case we have another self-dual
simple object L and the fusion rules

L2 ∼= m · �⊕ n · L.(8-6)

First, the coefficient m of � has to be one, by rigidity. The main work is now to show that
there is no fusion category C for which n > 2 in (8-6). This is non-trivial and needs some clever
arguments, and is the main point of [Os03]:

There is no fusion category with fusion rules as in (8-6) for m �= 1 and n > 2.(8-7)

So let us assume that n = 0 and n = 1 are the only possible solutions. In both cases we already
know solutions, namely the above listed cases 2 and 3 for n = 0, where K0(C) ∼= Z[Z/2Z],
respectively 4 and 5 for n = 1. A careful study of the associativity constrains (as we already
did for K0(C) ∼= Z[Z/2Z] throughout the previous sections) shows that there can not be other
solutions. �

Note that the proof of Proposition 8.49 had three main features which are part of a general
strategy to classify fiat and fusion categories, in increasing difficulty:



130 DANIEL TUBBENHAUER

• write down the possible solutions on the Grothendieck level, which was (8-6) above;

• use the categorical properties of C to rule out cases, which was (8-7) above;

• in the remaining cases construct the categories and analyze the various categorical
constrains to show that one has found all solutions, which was the last step above.

Example 8.50 To rule out the cases n > 2 in (8-6) requires all assumptions. For example, if
one drops the assumption on C to be semisimple, then m = 0 and n arbitrary can indeed occur.
We have already seen an example, namely fdProj

�
Fp(Z/pZ)

�
, see e.g. (7-14), where P�P� ∼= p ·P�.

(Formally speaking, we would need to adjoin the monoidal unit to fdProj
�
Fp(Z/pZ)

�
to make

this example solid.)

To continue to try to classify fusion categories by their ranks get tricky, and is doomed to fail
from some point on. Let us state the rk(C) = 3 result, ordered as in the strategy list above:

Proposition 8.51 Let C ∈ Fus be C linear of rank rk(C) = 3. Let Si(C) = {L1 = �, L2, L3}.
Then:

• The only possible fusion rules of C are:

⊗ L2 L3

L2 L3 �

L3 � L2

,

⊗ L2 L3

L2 �⊕ m · L2 ⊕ k · L3 k · L2 ⊕ l · L3
L3 k · L2 ⊕ l · L3 �⊕ l · L2 ⊕ n · L3

,

where k, l, m, n ∈ N satisfying k2 + l2 = kn + lm + 1.

• Only the following cases can occur:

(A) :
⊗ L2 L3

L2 L3 �

L3 � L2

, (B) :
⊗ L2 L3

L2 �⊕ L2 ⊕ L3 L2 ⊕ L3
L3 L2 ⊕ L3 �⊕ L2

, (C) :
⊗ L2 L3

L2 �⊕ L3 L2
L3 L2 �

,

(D) :
⊗ L2 L3

L2 �⊕ L2 ⊕ L3 L2
L3 L2 �

, (E) :
⊗ L2 L3

L2 �⊕ 2 · L2 ⊕ L3 L2
L3 L2 �

.

• For (A) we have the solutions Vecω
C⊕(Z/3Z) (note that H3(Z/3Z,C∗) ∼= Z/3Z).

• For (B) we have the solutions fdModq
7(so3).

• For (C) we have the solutions fdModq
4(sl2).

• For (D) we have the solutions fdMod(S3) and twists (as in Example 8.35).

• For (E) we have two solutions, a fusion category associated with a subfactor of type E6
or its Galois conjugate. (See e.g. [HH09] for the definitions.)

• There are no other solutions.

Proof. This is proven in [Os13]. �
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Let us have a look now at the PF dimension.

Theorem 8.52 Let F ∈ Hom�⊕�(C, D), where C, D ∈ wmFiat are � linear. Then:

(i) If F is fully faithful, then

PFdim(C) ≤ PFdim(D),

with equality achieved if and only if F is an equivalence.

(ii) If F is fully faithful, then

PFdim(C) ≥ PFdim(D),

with equality achieved if and only if F is an equivalence.

Proof. This can be proven mutatis mutandis as in [EGNO15, Propositions 6.3.3 and 6.3.4]. �

Proposition 8.53 If C ∈ wFiat is � linear of PF dimension PFdim(C) = 1, then C ��⊕�

fdVec�.

Proof. We already know that PFdim(C) ≥ 1, see Proposition 8.28. Moreover, there is always
a fully faithful functor F : fdVec� → C given by � = � �→ �. Thus, the claim follows from
Theorem 8.52.(i). �

The analog of “All finite groups of prime order are cyclic.” is:

Proposition 8.54 If C ∈ wFiat is C linear and satisfies PFdim(C) = p for p ∈ N being a
prime, then C ��⊕� Vecω

C⊕(Z/pZ).

Proof. See [ENO05, Corollary 8.30]. �

An extraordinary fact is that PF dimensions are quantized:

Proposition 8.55 Let C ∈ wFus be � linear, and let L1 ∈ Si(C) be a fusion generator of PF
dimension PFdim(L1) < 2. Then:

(i) PFdim(L1) = 2 cos(π/k) for some k.
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(ii) The fusion graph of L1 is one of the following ADE types:

Type A : � L1 L2 ... Lk ,

Type D :

Lk+1

� L1 L2 ... Lk

L�
k+1

,

Type E6 :
L5

� L1 L2 L3 L5

,

Type E7 :
L6

� L1 L2 L3 L4 L5

,

Type E8 :
L7

� L1 L2 L3 L4 L5 L6

.

(8-8)

(iii) For all the graphs in (8-8) there exists a fusion category with a fusion generator having
the corresponding fusion graph.

(iv) In type A the fusion category is of the form fdModq
k(sl2).

Proof. See e.g. [FK93, Chapter 8]. �

8H. A pseudo classification – or, summarizing the above. Let G be a finite group and let
us call Vecω

C⊕(G) for non-trivial ω a twist of VecC⊕(G). Similarly, we have twists of fdMod(G),
cf. Example 8.35, and we also call the Verlinde categories fdModq

k(g) for q �= exp(±πi/k) twists
of the standard choice q = exp(πi/k). Then we have the following pseudo classification, motivated
by the above.

“Theorem” 8.56 All C linear fusion categories are one of the following types:

(I) Categories of the form VecC⊕(G) and twists.

(II) Categories of the form fdMod(G) and twists.

(III) Categories of the form fdModq
k(g) and twists.

(IV) Exceptions. �

The crucial point, which we will explore in the following sections, will be:

The main source of quantum invariants are the fusion categories of type (III).
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The fusion categories of types (I), (II) and (IV) sometimes also give quantum invariants. But it
turns out that types (I) and (II) give rather “boring” invariants, while type (IV) remains to be
explored further.

8I. Exercises.

Exercise 8.57 Try to understand the claims in Example 8.5 and verify as many of them as
possible.

Exercise 8.58 Calculate the fusion graphs and PF dimensions of fdMod
�
F5[Z/5Z]

�
and of

fdMod
�
C[S5]

�
. The latter is a semisimple fiat category and has the fusion rules L1 ∼= � and

⊗ Ls Lb Ls� L1�

Ls �⊕ Ls ⊕ Lb ⊕ Ls� Ls ⊕ Ls� Ls ⊕ Lb ⊕ Ls� ⊕ L1� Ls�

Lb Ls ⊕ Ls� �⊕ Lb ⊕ L1� Ls ⊕ Ls� Lb

Ls� Ls ⊕ Lb ⊕ Ls� ⊕ L1� Ls ⊕ Ls� �⊕ Ls ⊕ Lb ⊕ Ls� Ls

L1� Ls� Lb Ls �

.

Exercise 8.59 Complete the discussion in Example 8.29.

Exercise 8.60 Verify the calculations in Example 8.45.

Exercise 8.61 Prove the last claim in Example 8.38 and Example 8.39.

9. Fusion and modular categories – definitions and graphical calculus

The question we want to address is:

Can we separate “topologically boring” fiat categories from “topologically interesting” ones?

The answer will turn out to be “Yes and no.”.

9A. A word about conventions. Of course, we keep the previous conventions.

Convention 9.1 We will revised several properties which we have seen before and which depend
on choices such as being braided. As before we tend to write e.g. “ABC is XYZ” instead of the
formally correct “there is a choice such that ABC is XYZ” etc.

9B. Hom spaces in fiat, tensor and fusion categories. Let us start by motivating the
diagrammatics which we will see below.

If C ∈ CatKS and Si(C) = {L1, ..., Lm}, then Schur’s lemma Lemma 6.69 allows us to compute
hom spaces as follows. Let X, Y ∈ C, and decompose them into simples

X ∼=
�m

i=1 [X : Li] · Li, Y ∼=
�m

i=1 [Y : Li] · Li.

Then we have the decomposition and dimension formulas

HomC(X, Y) ∼=
�m

i=1 Mat[X:Li]×[Y:Li](K), dim
�
HomC(X, Y)

�
=

�m
i=1 [X : Li][Y : Li].(9-1)
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Example 9.2 Assume that X ∼= 2 · L1 ⊕ L2 and Y ∼= L1 ⊕ L3. Then

EndC(X) ∼=
L1 L1 L2

L1 L1 L2

∼= Mat2×2(K) ⊕ Mat1×1(K),

HomC(X, Y) ∼=
L1 L3

L1 L1 L2

∼= Mat2×1(K),

EndC(Y) ∼=
L1 L3

L1 L3

∼= Mat1×1(K) ⊕ Mat1×1(K),

illustrates the validity of the formulas in (9-1), where each arrow represents a, up to scalars
unique, basis element of the hom spaces. An object such as Y is also called multiplicity free,
referring to the decomposition of Y having each simple appear at most once.

Note that (9-1) fails in the non-semisimple case: For C ∈ CatK⊕�, Si(C) = {L1, ..., Lm}, and
In(C) = {Z1, ..., Zn}, Schur’s lemma does not hold between indecomposables and hom spaces need
not te be matrix K algebras, but rather matrix algebras over some local K algebra.

Example 9.3 Back to Example 6.91: In fdMod
�
F5[Z/5Z]

�
we have seen that � = Z1 and its

projective cover P� = Z5 are non-isomorphic indecomposables. However, by the definition of the
projective cover, the hom space between them is non-zero.

However, we still have the idempotent decomposition of idX, i.e.

idX =
�n

i=1
�(X:Zi)

j=1 iij pij , pik
ijl

= δi,jδk,lidZik
,

iij : Zij �→ X jth inclusion, pij : X � Zij jth projection,

idX =
�n

i=1 iipi, piij = δi,j id(X:Zi)·Zi
,

ii =
�(X:Zi)

j=1 iij isotypic inclusion, pi =
�(X:Zi)

j=1 pij isotypic projection.

(9-2)

(This is just (6-2), but taking multiplicities into account.) The morphisms iij and pij are unique
up to scaling, and ii and pi are called the isotypic inclusions and projections, respectively.

Example 9.4 For EndC(X) as in Example 9.2, but where the simples are only assumed to be
indecomposable, we have

idX =

X

Z1 Z1 Z2

X

i11 i12
i21

p11
p12 p21

,
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i11p11 �

Z1 Z1 Z2

Z1 1 0 0
Z1 0 0 0
Z2 0 0 0

, i12p12 �

Z1 Z1 Z2

Z1 0 0 0
Z1 0 1 0
Z2 0 0 0

, i21p21 �

Z1 Z1 Z2

Z1 0 0 0
Z1 0 0 0
Z2 0 0 1

,

i1p1 �

Z1 Z1 Z2

Z1 1 0 0
Z1 0 1 0
Z2 0 0 0

, i2p2 �

Z1 Z1 Z2

Z1 0 0 0
Z1 0 0 0
Z2 0 0 1

.

Note that the colored zero have to be zero in the semisimple case, by Schur’s lemma, but not
necessarily in general.

9C. Feynman diagrams for fiat, tensor and fusion categories. Let us assume that have
have a strict multi fiat category. Then we get, of course, the diagrammatic calculus for pivotal
categories as in Section 4G. Additionally, we want to keep track of the morphisms iij and pij

from (9-2), as well as simples. We use the conventions:

Zi �
i

i

, iij � j

i

X

, pij � j

X

i

, ii �

i

X

, pi �

X

i

.(9-3)

Note that we can distinguish between the inclusions and the projections in (9-3) by the labeling
of the strands, so we can just use colored boxes as indicated. The relations in (9-2) then are e.g.

�n
i=1

X

i

X

=

X

X

,

i

X

i

= (X : Zi) ·

i

i

.(9-4)

We, of course, still have the topological relations which we have seen, e.g. sliding

i X

= �

Xi

, where �

X

i

=




i

X



�

.

If our category of interest is additionally braided, then we have the power of the Reidemeister
calculus, see Section 5F, as well, e.g.

i

X Y

Z

Z

=

i

X Y

Z

Z

.
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Note that this graphical calculus is, having e.g. Theorem 4.52 established, is automatically
consisted as we simply used a special notation for special morphisms.

9D. Traces and dimensions revisited. Recall that we had the notions of traces and dimensions
for pivotal categories, cf. Section 4H. We can say a bit more now. But first an evident lemma:

Lemma 9.5 Let C ∈ PCat⊕. Then

trC(f ⊕ g) = trC(f) + trC(g), Ctr(f ⊕ g) = Ctr(f) + Ctr(g),

dimC(X ⊕ Y) = dimC(X) + dimC(Y), Cdim(X ⊕ Y) = Cdim(X) + Cdim(Y),

for all X, Y ∈ C and (f : X → X), (g : Y → Y) ∈ C. �

Proposition 9.6 Let C ∈ PCatKS and L ∈ Si(C). Then we have

dimC(L) �= 0, Cdim(L) �= 0.

More generally, if f : L
∼=−→ L�� is an isomorphism, then

trC(f) �= 0, Ctr(f) �= 0.

Proof. Note that dimC(L) = 0 would contradict Schur’s lemma Lemma 6.69: from dimC(L) = 0
we get

dim EndC(L) = dim HomC(LL�,�) > 1,

since we would get a map different from evL. Thus, we are done by symmetry as the argument
for the traces is exactly the same. �

Example 9.7 Proposition 9.6 fails in the non-semisimple case, i.e. for Z ∈ In(C)

dimC(Z) = 0, Cdim(Z) = 0,

is possible. To give an explicit example, let us consider the Rumer–Teller–Weyl category TLq
C�

as in Definition 7.39, and let q = exp(2πi/4) = i ∈ C. Then the circle removal becomes

= 0 = dimTLq
C�(•),(9-5)

and • is, of course, indecomposable. Using (9-5), we also get an isomorphism of C algebras

EndTLq
C�

(•2)
∼=−→ C[X]/(X2), �→ 1, �→ X.

This implies that EndTLq
C�

(•2) is a local C algebra and thus •2 ∈ In(TLq
C�). We also have

= 0 = dimTLq
C�(•2).

More general, one can show that
�
Z ∈ In(TLq

C�)
�

⇒
�
dimTLq

C�(Z) = 0 unless � = Z
�
.

That dimensions of objects are non-zero is in some sense a property of semisimple categories:

Proposition 9.8 Let C ∈ mlFiat. Then the following are equivalent:

(I) C is semisimple;
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(II) dimC(P) �= 0 for all P ∈ Pi(C);

(III) dimC(P) �= 0 for some P ∈ Proj(C);

(IV) Cdim(P) �= 0 for all P ∈ Pi(C);

(V) Cdim(P) �= 0 for some P ∈ Proj(C).

Proof. (I)⇒(II). By Proposition 9.6 since all simple objects (and thus, all objects) are projective.

(II)⇒(III). Evident.

(III)⇒(I). Consider

� P(�P) PP�
�

coevP ∼= evP ,

which calculates dimC(P). If this is not zero, then � � P(�P) ∈ Proj(C). Thus, Theorem 7.36
implies that C is semisimple.

Finally, by symmetry, (II) and (III) are equivalent to (IV) and (V), so we are done. �

Lemma 9.9 Let C ∈ mFiat and X ∈ C. Then we have

dimC(X) =
�n

i=1 (X : Zi)dimC(Li), Cdim(X) =
�n

i=1 (X : Zi)Cdim(Li).

Proof. An easy calculation using (9-4) and sliding:

X =
�n

i=1 i X =
�n

i=1 X i =
�n

i=1 (X : Zi) · i .

The other cases follows by symmetry. �

Definition 9.10 Let C ∈ mFiat. Then the categorical dimension of C is

Dim(C) =
�n

i=1
Cdim(Zi)dimC(Zi).

Note that, if C is spherical, then

Dim(C) =
�n

i=1 dimC(Zi)2.(9-6)

Example 9.11 The categorical dimension generalizes familiar concepts:

(i) For Vec� we get Dim(Vec�) = 1 = PFdim(Vec�).

(ii) For Vecω
C⊕(Z/2Z) we have already seen that there were two choices of pivotal structures

giving

choice 1: 1 = 1 = 1 , choice 2: 1 = −1 = 1 .(9-7)
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The same work for a trivial ω, i.e. there are also two choices of (co)evaluations satisfying
(9-7). Thus, for both choices, we get

Dim
�
VecC⊕(Z/2Z)

�
= Dim

�
Vecω

C⊕(Z/2Z)
�

= 2 = #(Z/2Z)
= PFdim

�
VecC⊕(Z/2Z)

�
= PFdim

�
Vecω

C⊕(Z/2Z)
�
.

(iii) For the non-spherical category such as VecC⊕(Z/3Z) with the choice of (co)evaluations
from Example 4.59 we get

Dim
�
Vec�⊕(Z/3Z)

�
= 3 = #(Z/3Z) = PFdim

�
Vec�⊕(Z/3Z)

�
.

Proposition 9.12 Let C ∈ mFus be spherical and � be of characteristic zero. Then Dim(C) �=
0. Moreover, if � = C, then Dim(C) ≥ 1.

Proof. Since C is spherical, we have (9-6) which immediately implies the claims. �

Example 9.13 Proposition 9.12 does not hold in finite characteristic. For example, with
reference to Example 9.11.(b), we have

Dim
�
VecF2⊕(Z/2Z)

�
= 2 = 0 ∈ EndVecF2⊕(Z/2Z)(�) ∼= F2.

Note however that

PFdim
�
VecF2⊕(Z/2Z)

�
= 2 �= 0,

since the PF dimension is, by definition, an element in R≥0.

Note that Example 9.13 also illustrates a crucial difference between the categorical dimension
and the PF dimension: The first is a categorical notion, is about morphisms, and lives in C. On
the other hand, the PF dimension is a numerical notion, is about objects and lives in R≥0.

9E. The Alexander–Markov theorem and traces of braids. Recall that we had the cat-
egory of braids qSym, see Example 5.15, which is the free braided category generated by one
object. In particular, we get the Alexander functor

A: qSym → oqBr, • �→ •, �→ .(9-8)

The Markov quotient of qSym, denoted by qSym/MM, is the quotient of qSym by the
congruence spanned by the Markov moves MM. Formally:

Definition 9.14 We let qSym/MM = �S, T | R ∪ MM� with

S : •, T : : •2 → •2, R : = = , = ,

MM :
f

g

...

...

...

=
g

f

...

...

...

,

f

g

...

...

...

=
f

g

...

...

...

=
f

g

...

...

...

.

(9-9)

(The Markov moves are imposed for all possible number of strands and all morphisms f and g.)



QUANTUM TOPOLOGY WITHOUT TOPOLOGY 139

By definition, we have a full quotient functor

M: qSym → qSym/MM, • �→ •, �→ .

The classical Alexander–Markov theorem takes now the following form:

Theorem 9.15 We have the following.

(i) The functor A from (9-8) is fully faithful.

(ii) The functor A gives a surjection

A:
�

n∈N EndqSym(•n) � EndoqBr(�), f �→ troqBr�A(f)
�
.(9-10)

(iii) There exists a bijection

AM−1 :
�

n∈N EndqSym/MM(•n)
∼=−→ EndoqBr(�),

making the following diagram (in Set) commutative:
�

n∈N EndqSym(•n) EndoqBr(�)

�
n∈N EndqSym/MM(•n)

A

M
∼=

AM−1
.

(ii) and (iii) work also for left instead of right traces.

Proof. A proof can be found in e.g. [KT08, Chapter 2]. �

In words, Theorem 9.15.(ii) says that every link arises as a closure of a braid, see Example 9.16,
while Theorem 9.15.(iii) gives a precise condition for when two closures represent the same link.

Example 9.16 The Alexander closure A from (9-10) can be illustrated by “closing a braid
to the right”:

A−→ = .

The surprising result of Alexander is then that every link can be arranged such that it has a
purely upward-oriented and a purely downward-oriented part, with the latter being trivial. The
Markov moves then just take the form of sliding and Reidemeister 1:

f

g

...

...

...

=
g

f

...

...

...

A−→
f

g

...

...

...

=
g

f

...

...

...

,
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f

g

...

...

...

=
f

g

...

...

...

=
f

g

...

...

...

A−→
f

g

...

...

...

=
f

g

...

...

...

=
f

g

...

...

...

.

These evidently hold in oqBr. (See also Exercise 9.47.) The point of Theorem 9.15.(iii) is that
these are the only extra relations.

Remark 9.17 The functor in (9-8) has, of course, various cousins, e.g. we could equally well
go to qBr. Similarly for the Alexander–Markov theorem Theorem 9.15, which exists in a variety
of flavors.

9F. Colored braids and links. The previous section is partially a motivation for the following.
More general than Section 9E, if C ∈ BCat is any braided category and X ∈ C is any object,
then we get a coloring with X functor

AX : qSym → C, • �→ X, �→
X

X

X

X
.

Similarly, if C ∈ BPCat is any braided pivotal category and X ∈ C is any object, then we have a
more general coloring with X functor

A�
X : oqBr → C, • �→ X, �→

X

X

X

X
, �→

X

X

X
, �→

X

X

X
, �→

X

X

X
, �→

X

X

X
.

Remark 9.18 The coloring functors as above have the “flaw” that one can only color with one
color at a time. This can be corrected by considering the category of colored braids cqSym
or the colored oriented quantum Brauer category coqBr. The images of the coloring
functors are then called colored braids or colored (oriented) tangles, respectively.

Our main target for coloring functors (which thus, allow a diagrammatic calculus of colored
tangles) are:

Definition 9.19 Let C ∈ mlFiat. Then:

• If C ∈ BCat, then we call it a multi locally bfiat category. The corresponding
category is denoted by mlBfiat.

• If C ∈ BCatS , then we call it a multi locally bmodular category. The corresponding
category is denoted by mlBMo.

• Finally, if these satisfy the ribbon equation (5-18), then we call them rfiat or rmodular,
with the corresponding notation for the categories.

Remark 9.20 A rmodular category is also called a pre-modular category in the literature.
Note also the hierarchy in the definitions above.
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Example 9.21 We have already seen plenty of examples:

(a) Of course, Vec� is bmodular.

(b) More generally, Vecω
�⊕(G) is bmodular if and only if G is a finite abelian group.

(c) For G being a finite group the category fdMod
�
C[G]

�
is bmodular.

(d) More generally, let K be algebraically closed and assume that the condition in Proposi-
tion 8.6.(iii) holds. Then fdMod

�
K[G]

�
is bfiat.

Example 9.22 Whether a bfiat or bmodular is ribbon is trickier, as this depends on choices.
Let us discuss VecC⊕(Z/3Z) in details, where we recall Example 4.59 and Lemma 5.25. In
particular, their are several choices of (co)evaluations and braidings given as follows. (Some are
equivalent, but let us just list them anyways.) Let

dk(i) = ζij , i, k ∈ {0, 1, 2},

where ζ = exp(2πi/3) ∈ C. Then, for k, l, m ∈ {0, 1, 2},

i i
= 1,

i i = 1,
ii

= dk(i), ii = dk(i)−1,

j

j

i

i
= dl(i)dm(j),

are choices. We then check that
i

i

= dk(i)−1dl(i)2 ·

i

i

,

i

i

= dk(i)dl(i)2 ·

i

i

.

In particular, being ribbon does not depend on the choice of braiding, but is equivalent to
VecC⊕(Z/3Z) being spherical.

Recall that for a C ∈ BFiat being S linear we have a finite set of indecomposables In(C) =
{Z1, ..., Zn} and also EndC(�) ∼= S, and we can consider the colored Hopf braid

sij = βZj ,ZiβZi,Zj =

ZjZi

Zi Zj

, trC(sij) = Zj Zi ∈ S.

These assemble into an important n × n matrix, called the S matrix

S =
�
trC(sij)

�n

i,j=1 ∈ Matn×n(S).

Note that, if the braiding is symmetric, then

trC(sij) = Zj Zi = Zj Zi = dimC(Zi)dimC(Zj) ∈ S.

Example 9.23 Let us discuss the case of Vec�⊕(G) for small G.
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(a) Recall from Example 6.23 that VecC⊕(Z/2Z) has two braidings. However, both satisfy
sij = idLiLj . So they give the same result for the S matrix. Moreover, recall that
VecC⊕(Z/2Z) has two choices (co)evaluations, see Example 4.64. For these we get

choice 1: S =
�

1 1
1 1

�
, det(S) = 0, choice 2: S =

�
1 −1

−1 1

�
, det(S) = 0.

(b) For VecC⊕(Z/3Z), enumerate Si
�
VecC⊕(Z/3Z)

�
= {0, 1, 2}, let ζ = exp(2πi/3) and take

a braiding such that sij = ζi+j . Then, for the standard rigidity structure,

S =




1 ζ ζ2

ζ ζ2 1
ζ2 1 ζ


 , det(S) = 0.

Example 9.24 Back to S3, cf. Example 8.15: The category fdMod
�
C[S3]

�
with the swap map

as the braiding and the usual (co)evaluations is rfiat. With this choice the categorical dimension
is just the dimension as a C vector space. Thus, since the braiding is symmetric, we get

S =




1 2 1
2 4 2
1 2 1


 , det(S) = 0.

Lemma 9.25 For C ∈ BFiat and any Zi ∈ In(C) we have

sijsik = dimC(Zi) · �n
l=1 N l

jksil.

Proof. The diagrammatic equation

Zi = Zi , where
Zj

Zj

= ,

Zk

Zk

= ,

ZjZk

ZjZk

= ,

and additivity provide the result. �

Example 9.26 In Example 9.24 we can easily check that for i = 2 = j and k = 1 we have
8 = 2(0 · 2 + 1 · 4 + 0 · 2).

Lemma 9.27 Any C ∈ BFiat has a symmetric S matrix.

Proof. A Reidemeister-type argument:

= = = = .

(The colors are meant to represent colorings with objects.) �
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Let us continue this section with an important lemma which should remind us that the Reidemeister
1 move (5-17) “is not as innocent as it looks”.

Lemma 9.28 Let C ∈ mlBFiat be K linear and Z ∈ In(C) and K algebraically closed. There
exits a(Z) ∈ K∗ such that

Z

Z

= a(Z) ·

Z

Z

,

Z

Z

= a−1(Z) ·

Z

Z

.(9-11)

Proof. After recalling that the twist is invertible with explicit inverse as given in Lemma 5.35,
this is a direct consequence of Schur’s lemma Lemma 6.69 if Z is simple. For general Z we also
use Schur’s lemma Lemma 6.68 and additionally observe that the invertible elements in a local
ring can be identified with the ground field. �

For C ∈ lBFiat we let

Δr =
�n

i=1 Zi Zi , Δl =
�n

i=1 Zi Zi ,

both of which are in EndC(�) ∼= S.

Lemma 9.29 Let C ∈ lBFiat be K linear. Then:

(i) We have Δr =
�n

i=1 a(Zi)dimC(Zi)2 and Δl =
�n

i=1 a(Zi)−1Cdim(Zi)2.

(ii) If C is semisimple, then Δr =
�n

i=1 a(Zi)Cdim(Zi)2 and Δl =
�n

i=1 a(Zi)−1dimC(Zi)2.

Proof. An immediate consequence of Lemma 9.28. �

9G. Modular categories. The S matrix is symmetric, but e.g. Example 9.23 shows that it
might not be invertible. So:

Definition 9.30 A category C ∈ BFiat with invertible S matrix is called mfiat. If such a C
is additionally semisimple, then C is called modular.

The corresponding categories are denoted by MoFiat and MoCat.

Example 9.31 Back to Example 9.21:

(a) The category Vec� is modular.

(b) However, Vecω
�⊕(G) is rarely modular, cf. Example 9.23. (See also [EGNO15, Example

8.13.5].)

(c) For G being a finite group the category fdMod
�
C[G]

�
is only modular if G is the trivial

group.
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(d) More generally, whenever the categorical dimension is equal to the vector space dimension
a category with more than one indecomposable object can not be modular.

Example 9.32 The Verlinde categories, cf. Section 8F, are all modular.

The topological motivation for Definition 9.30 is:

Proposition 9.33 Let C ∈ BFiat be � linear. Then C ∈ MoFiat if and only if � is the only
indecomposable object such that

βZ,�β�,Z = id�Z, β�,ZβZ,� = idZ�, for all Z ∈ In(C).(9-12)

Proof. This is Exercise 9.50. �

9H. More on Rumer–Teller–Weyl categories. Let us come back to TLq
S⊕� as in Defini-

tion 7.39. This category usually has infinitely many simple and indecomposable objects, but
it has nice quotients. Here we use the usual quantum numbers, i.e. for a ∈ N we let [0]q = 0,
[1]q = 1 and

[a]q = qa−1 + qa−3 + ... + q−a+3 + q−a+1 ∈ S.(9-13)

For a ∈ Z<0 we let [a]q = − [−a]q. To this end, we need the following:

Example 9.34 Note that [a]q depends on the choice of q. To be explicit let S = C and let q be
either 1, ζ2 = i = exp(2πi/4), ζ3 = exp(2πi/3), ζ4 = exp(2πi/8), or ζ5 = exp(2πi/5). Then

[1]q [2]q [3]q [4]q [5]q [6]q [7]q [8]q
q = 1 1 2 3 4 5 6 7 8
q = ζ2 1 0 −1 0 1 0 −1 0
q = ζ3 1 −1 0 1 −1 0 1 −1
q = ζ4 1

√
2 1 0 −1 −

√
2 −1 0

q = ζ5 1 1
2(−1 +

√
5) 1

2(1 −
√

5) −1 0 1 1
2(−1 +

√
5) 1

2(1 −
√

5)

.

(Note the difference between whether the i in ζi is even or odd.)

Definition 9.35 Let q2 ∈ C∗ be not a second or third primitive root of unity. For i = 0, 1, 2, 3
define the ith Jones–Wenzl idempotent (JW idempotent for short) JWi ∈ EndTLq

C⊕�
(•i) as

follows:

JW0 = ∅, JW1 = , JW2 = + [1]q
[2]q · ,

JW3 = + [2]q
[3]q · + [2]q

[3]q · + [1]q
[3]q · + [1]q

[3]q · .

Example 9.36 A calculation shows that we have the traces

trTLq
C⊕�(JWi) = (−1)i+1[i + 1]q.

For example, we calculate

trTLq
C⊕�(JW2) = + [1]q

[2]q · = [2]2q − 1 = [3]q,
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and

trTLq
C⊕�(JW3) = + [2]q

[3]q · + [2]q
[3]q ·

+ [1]q
[3]q · + [1]q

[3]q ·

= 1
[3]q

�
− [2]3q [3]q + [2]3q + [2]3q − [2]q − [2]q

�
= −[4]q.

Lemma 9.37 The JW projectors as in Definition 9.35 are idempotents.

Proof. This is an exercise, cf. Exercise 9.51. �

Definition 9.38 Let q2 ∈ C∗ be a primitive forth root of unity. We define the level 4 semisim-
plified quotient TL4

C⊕� of TLq
C⊕� to be

TL4
C⊕� = TLq

C⊕�/
�
(•3, JW3)

�
,

where the quotient is given by taking the ⊗ ideal generated by the object (•3, JW3).

Recall that we can identify objects of the idempotent completion with Im(e), see Section 7C.

Proposition 9.39 We have the following.

(i) We have TL4
C⊕� ∈ MoCat.

(ii) We have Si(TL4
C⊕�) = {Im(JW0) = �, L1 = Im(JW1), L2 = Im(JW2)}.

(iii) The fusion rules are

⊗ L1 L2

L1 �⊕ L2 L1
L2 L1 �

.

(iv) We have

TL4
C⊕� �C⊕� fdModq

4(sl2).

Proof. Let us postpone the proof to a later section, but let us calculate the S matrix of TL4
C⊕� ∈

Mo, i.e. we need to compute colored Jones polynomial of the Hopf link. We do this
calculation generically, i.e. keeping q a formal variable, and specialize q in the end. We also use
the diagrammatic notation

�

�

= ,

L1

L1
= ,

L2

L2
= .

We note that we have the crossing formulas

= , = , = q1/2 · + q−1/2 · ,
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=

JW2

JW2

, =

JW2

JW2 JW2

JW2

including mirrors. Using these we compute (also with reference to Example 7.42)

trC(s��) = [1]q, trC(s�1) = trC(s1�) = = −[2]q, trC(s11) = = [4]q,

trC(s�2) = trC(s2�) = = [3]q, trC(s12) = trC(s21) = = −[6]q,

trC(s22) = = [9]q.

Thus, we get the S matrix

S =




[1]q −[2]q [3]q
−[2]q [4]q −[6]q
[3]q −[6]q [9]q


 =




1 −
√

2 1
−

√
2 0

√
2

1
√

2 1


 , det(S) = −8,

which shows that S is invertible. �

Example 9.40 The category TL4
C⊕� from Definition 9.38 exists more general for any k ∈ N≥2,

and we one gets

TLk
C⊕� �C⊕� fdModq

k(sl2) ∈ Mo.

Moreover, the S matrix of is

S = (trTLk
C⊕�(sij))k−1

i,j=0, trTLk
C⊕�(sij) = (−1)i+j

�
(i + 1)(j + 1)

�
q
.

9I. Modular formulas. The purpose of this section is to indicate the “Why?” of modular
categories, which will be further justified in the upcoming sections.

Remark 9.41 As we will see in Section 9J, modular categories have “good reasons” to have
nice number theoretical properties. We are not giving proofs, as this is not our main purpose.
(There are more formulas than the ones given below, see e.g. [EGNO15, Chapter 8].)

We have three important matrices for C ∈ BFiat:

• The S matrix which we have already seen in Section 9F;

• The T matrix

tij = δi,ja(Zi), T = (tij)n
i,j=1 ∈ Matn×n(S),

which is a diagonal matrix having the scalars from (9-11) on the diagonal;
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• The C matrix

cij = δi,j� , C = (cij)n
i,j=1 ∈ Matn×n(S),

which is the n × n identity matrix if every object is self-dual.

Proposition 9.42 Let C ∈ MoCat be � linear. Then:

(i) We have Δr, Δl ∈ �
∗.

(ii) We have Dim(C) = ΔrΔl, which is non-zero.

(iii) We have C2 = idn, where idn is the n × n identity matrix.

(iv) We have S2 = Dim(C) · C.

(v) We have S4 = Dim(C)2 · idn.

(vi) We have (ST )3 = Δr · S2 = Dim(C)Δr · C.

(vii) We have TC = CT .

Proof. See [TV17, Section 4.5.2] and [EGNO15, Proposition 8.14.2 and Theorem 8.16.1]. �

Example 9.43 Let us come back to Proposition 9.39 and the calculations therein. We have

a(�) = 1, a(L1) = −q−3/2, a(L2) = q−4 = −1,

dimC(�) = [1]q = 1, dimC(L1) = −[2]q = −
√

2, dimC(L2) = [3]q = 1,

Dim(C) = [1]2q + [2]2q + [3]2q = 4,

Δr = [1]2q − q−3/2[2]2q + q−4[3]2q = −2 exp(πi5/8), Δl = [1]2q − q3/2[2]2q + q4[3]2q = 2 exp(πi3/8),
4 =

�
− 2 exp(πi5/8)

��
2 exp(πi3/8)

�
.

Moreover, the matrix C is the identity and we have

S2 =




1 −
√

2 1
−

√
2 0

√
2

1
√

2 1


 ·




1 −
√

2 1
−

√
2 0

√
2

1
√

2 1


 =




4 0 0
0 4 0
0 0 4


 .

Finally, we also calculate that

(ST )3 =




−8 exp(πi5/8) 0 0
0 −8 exp(πi5/8) 0
0 0 −8 exp(πi5/8)


 .

Recall that dimC(L) ∈ �
∗ if C is semisimple, see Proposition 9.6. The Verlinde formula, which

is up next, gives us the surprising result that the S matrix is in some sense encoded on the
Grothendieck classes:

Proposition 9.44 Let C ∈ MoCat be � linear. Then we have

Dim(C)N l
jk =

�n
i=1

sijsiksil�

dimC(Li)
.

Proof. Omitted, see [EGNO15, Corollary 8.14.4]. �
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Example 9.45 We continue Example 9.43: The S matrix and the fusion rules are stated in
(the proof of) Proposition 9.39, and we indeed get e.g.

0 = −[2]q [3]2q
[1]q + [4]q [6]2q

[2]q + −[6]q [9]2q
[3]q , 4 = [2]2q [3]q

[1]q + [4]2q [6]q
[2]q + [6]2q [9]q

[3]q .

9J. The modular group. Let us explain where the name “modular” comes from. To this end,
we first recall that there is the Möbius group given by Möbius transformations, i.e.

f : C → C, f(z) = az + b

cz + d
, where ad − bc �= 0.

Algebraically speaking the Möbius group is

PGL2(C) =
�

A =
�

a b

c d

�����A ∈ Mat2×2(C), det(A) = ad − bc �= 0
��

(±1),

which is the projective linear group of the Riemann sphere PC1. (Recall that “projective” in this
sense should be read as “up to scalars”.) Geometrically, thinking of the Riemann sphere as the
complex number plane wrapped around a sphere a Möbius transformations

This usually produces nice pictures:

,

https://commons.wikimedia.org/wiki/File:Riemann_sphere.png,

https://commons.wikimedia.org/wiki/File:MoebiusInversion.svg.

Anyway, the “algebraic version” of the Möbius group is the modular group which, depending
on the literature, is either PGL2(Z) or PSL2(Z), and is of crucial importance in e.g. number
theory. For us the latter is the one we want, and in formulas:

PSL2(Z) =
�

A =
�

a b

c d

�����A ∈ Mat2×2(Z), det(A) = ad − bc = 1
��

(±1).

It is well-known that PSL2(Z) has a generator–relation presentation of the form

PSL2(Z) = �S, T | S4 = 1, (ST )3 = S2�,

where S and T correspond to the matrices
� 0 −1

1 0
�

and ( 1 1
0 1 ), respectively.

Thus, the summary of the above, in particular Proposition 9.42, is:

Theorem 9.46 Let C ∈ MoCat be � linear such that
�

Dim(C) ∈ �. Then

PSL2(Z) → EndfdVec�
�
EndC(�)n

�
, S �→ 1√

Dim(C)
· S, T �→ T,

defines a projective action of the modular group. �

Let us stress again that “projective” hereby means “up to scalars”.
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9K. Summary of categories. Let us summarize the categorical constructions which in the end
gave as modular categories.

• “Categorifying sets” � categories � access to morphisms.

• “Categorifying monoids” � monoidal categories � access to a two dimensional calculus.

• “Categorifying dual vector spaces” � rigid, pivotal, spherical categories � access to
height operations.

• “Categorifying braid groups” � braided categories � access to the Reidemeister calculus.

• “Categorifying abelian groups” � additive and abelian categories � access to linear and
homological algebra.

• “Categorifying algebras” � fiat and tensor categories � access to linear and homological
algebra, a two dimensional calculus and height operations.

• “Categorifying semisimple algebras” � fusion categories � access to numerical data.

• “Action of the modular group” � modular categories � access to number theoretical
data.

9L. Exercises.

Exercise 9.47 Let li ∈ EndoqBr(�) for i = 1, 2, 3, 4 be the Hopf link with various orientations:

l1 = , l1 = , l3 = , l4 = .

Find fi ∈ qSym for i = 1, 2, 3, 4 with A(fi) = li (taking upwards-oriented right traces). Further,
prove algebraically that the Markov moves hold after closing in oqBr.

Exercise 9.48 Make Remark 9.18 precise. For example, what kind of “free as an XYZ” should
be satisfied by the category of colored braids?

Exercise 9.49 Let G be a finite group, and consider fdMod
�
C[G]

�
with standard braiding and

duality. Show that the S matrix of fdMod
�
C[G]

�
is of rank 1. For which G can fdMod

�
C[G]

�

be modular?

Exercise 9.50 Proof Proposition 9.33.

Exercise 9.51 Verify as many claims from Section 9G as possible.

10. Quantum invariants – a diagrammatic approach

Recall from Section 5K that a quantum invariant is structure preserving functor from a Brauer-type
category to a, say, fiat, fusion or modular category.

How to construct quantum invariants?
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10A. A word about conventions. We need to be careful with the scalars:

Convention 10.1 Recall that S, � and K denote a ring, a field and an algebraically closed
field, respectively. We further need A = Z[v1/2, v−1/2] for v being a formal variable (v is the
generic quantum parameter, in contrast to q which will always be some specialization).

Convention 10.2 Since q = ±1 ∈ S will always behave differently from e.g. q = exp(2πi/l) ∈ C
for l > 2, we will not count q = ±1 as roots of unity.

10B. An interlude about specializations. For any pair (S, q) of a ring and an element
q1/2 ∈ S∗ (we need a square root of the parameters because of the braiding, cf. (7-10)), let A act
on S from the left via

A

�

S, 1 � x = x, v � x = qx,

which makes S into a left A module. We thus get a specialization functor

− ⊗v=q
A S : VecA → VecS, X �→ X ⊗v=q

A S.(10-1)

In words, − ⊗v=q
A S extends scalars to S and substitutes v = q. The pair (S, q) is also called a

specialization.

Let CA ∈ CatA. Similarly as before, we get a category specialized at q, denoted by Cq
S, by

extending scalars to S and substituting v = q. Formally:

• First we let Ob(Cq
S) = Ob(CA);

• then we let

HomCq
S
(X, Y) = HomCA(X, Y) ⊗v=q

A S,

where − ⊗v=q
A S is as in (10-1).

The following is easy, but crucial:

Lemma 10.3 Let CA be as above, and let (S, q) any specialization. If B is a basis of HomCA(X, Y),
then it is also a basis of HomCq

S
(X, Y). �

We have a few different looking cases which however will behave grouped as follows.

(I) The integral case which is either of:

• We stay with A.

• We let S = Z and q = ±1.

(II) The generic case (or generically) which is either of:

• S = � being a field of characteristic zero and q = ±1.

• We let S = � be any field and q �= ±1 not a root of unity in �.

(III) The finite characteristic case (or char p case) where S = � is a field of characteristic
p > 0 and q = ±1.
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(IV) The complex root of unity case where S = � is a field of characteristic p = 0 and
q ∈ � is a root of unity such that q2 is of order l.

(V) The mixed root of unity case (or mixed case) where S = � is a field of characteristic
p > 0 and q ∈ � is a root of unity such that q2 is of order l.

Example 10.4 It is a bit confusing, so let us make clear that the generic case includes the
choice S = C(q), for a formal variable q, which is probably the most common ground field in
quantum topology and quantum algebra.

The philosophy is that we have a category CA, defined integrally, with an integral basis and
integral objects (“objects which are always defined”), whose decomposition however depend on
the specialization: Usually CA has pseudo idempotents, i.e. morphisms with

e2 = a · e, a ∈ A.

As we have already seen in Section 7B, idempotents a very important to understand categories
at hand, and they should decompose the integral objects into indecomposables. So we want to
divide by a to get an idempotent:

�
e2 = a · e

�
⇒

�
( 1

ae)2 = 1
ae

�
.

So the crucial fact we need is whether the scalar a is invertible, which depends on the choice of
specialization. Here is a prototypical example:

Example 10.5 Let us come back to the symmetric group S3 and let us consider the integral
case Z[S3] and its category C1

Z = fdMod
�
Z[S3]

�
. In this case an integral object would be Z[S3]

itself, which we can always define.

We already know that generically C1
S is semisimple, e.g. for S = C we have

C[S3] ∼= �⊕ 2 · Ls ⊕ L−1,(10-2)

see Example 8.15. However, for S = F2 or S = F3 this is not the case anymore, see Example 8.29,
and one can see this in fdMod

�
Z[S3]

�
as follows.

Let S3 = {1, s, t, ts, st, sts = tst}, where, in graphical notation,

1 = , s = , t = , ts = , st = , sts = = = tst.

The category fdMod
�
Z[S3]

�
has the following four pseudo idempotents:

e� = 1 + s + t + ts + st + sts, e2
� = 6 · e�,

es,1 = 1 + s − ts − sts, e2
s,1 = 3 · es,1,

es,2 = 1 − s − st + sts, e2
s,2 = 3 · es,2,

e−1 = 1 − s − t + ts + st − sts, e2
−1 = 6 · eL−1 ,

orthogonal: xy = 0, where x, y ∈ {e1, es,1, es,2, e−1}, x �= y,

pseudo complete: e1 + 2es,1 + 2es,2 + e−1 = 6.
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We recover the three different cases we were already aware of: In C we can scale them to be
idempotents and we get the decomposition (10-2). For S = F2 we can scale the middle two pseudo
idempotents to get idempotents, while for S = F3 no scaling works.

Note that integrally we can not decompose Z[S3]. In fact, we get a decomposition into indecom-
posables depending on the specialization: the generic case is (10-2), while

F2[S3] ∼= P� ⊕ Ps, F3[S3] ∼= P� ⊕ P1� ,

are the decompositions in characteristic 2 and 3, respectively.

The plan of this section is to discuss this strategy for the Rumer–Teller–Weyl category, which will
ultimately lead to the construction of the Verlinde categories (for Sl2) and Jones-type invariants.

10C. An integral basis for the Rumer–Teller–Weyl category. Let TLv
A denote the cate-

gory as defined in Definition 7.39, but over the ground ring A and without taking additive and
idempotent closures (for the time being). Recall that TLv

A is a A linear ribbon category.

We further let E = R, E+ = R≥0, X = Z ⊂ E and X+ = N ⊂ E. We also let Φ = {ε1 = 1, ε−1 =
−1} ⊂ E.

Definition 10.6 A(n integral) path π of length k in E is a word π = π1...πk ∈ Φk of length k.
Such a path is called non-negative if

�j
i=1 πi ∈ X+ for all 1 ≤ j ≤ k.

Definition 10.7 The weight of a path π is λ(π) =
�k

i=1 πi ∈ X.

Example 10.8 We think of paths as “honest” paths in E, starting at 0, using the rules

ε1 � ...
a − 1 a a + 1

...
ε1

, ε−1 � ...
a − 1 a a + 1

...
ε−1

.

Using this interpretation, a path is non-negative if and only if it stays in E+, and the weight is
its endpoint in E+. For example,

π = ε1ε1ε−1ε1 � ...
−1 0 1 2

...

is a non-negative path of length four and weight two. Note also that having a non-negative weight,
a.k.a. endpoint, is not enough to be a non-negative path, e.g. the following is not a non-negative
path, but has non-negative weight:

π = ε−1ε1 � ...
−1 0 1

... .

Definition 10.9 To ε±1 we associate operators via:

ε1(f) : f �→ f , ε−1(f) : f �→ f .(10-3)

In words, if we already have a morphism f ∈ TLv
A, then we obtain to new morphism fε±1 ∈ TLv

A
by either adding a strand or a cap to the right.
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Definition 10.10 The downward integral ladder d(π) ∈ TLv
A associated to a non-negative

path π is the morphism π(id∅) obtained by successively using (10-3). The upward integral
ladder u(π) ∈ TLv

A is the corresponding downward integral ladder horizontally mirrored.

By vertical mirroring it suffices to only calculate down integral ladder, of course, e.g.

d(π) = ⇔ u(π) = .

Example 10.11 One can easily check that

λ = 4: π1 = ε1ε1ε1ε1,

λ = 2: π2 = ε1ε−1ε1ε1, π3 = ε1ε1ε−1ε1, π4 = ε1ε1ε1ε−1,

λ = 0: π5 = ε1ε−1ε1ε−1, π6 = ε1ε1ε−1ε−1,

are the only non-negative paths of length four. We get:

λ = 4: d(π1) =

λ = 2: d(π2) = , d(π3) = , d(π4) = ,

λ = 0: d(π5) = , d(π6) = .

Moreover, we denote by (λ, πm
d , πn

u) a triple of a weight λ, and two non-negative paths πm
d and

πn
u of this weight, of length as indicated by the superscripts.

Definition 10.12 The integral ladder associated to the triple (λ, πm
d , πn

u) is the morphism

cλ
πn

u ,πm
d

= u(πn
u)d(πm

d ) ∈ HomTLv
A(•m, •n).

We also write cλ
u,d = cλ

πn
u ,πm

d
etc. for simplicity of notation.

Example 10.13 With respect to Example 10.11: the integral ladders which can be obtained
from the diagrams therein are 14 in total:

λ = 4: ,

λ = 2: ,

λ = 0: .

Note that the weight λ can be read off in the middle, as indicated.
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Example 10.14 In Example 10.13 we have calculated integral ladder morphisms in EndTLv
A(•4).

For, say HomTLv
A(•2, •4) we first observe that we have only two non-negative paths of length 2,

and thus, also only two downwards integral ladders:

π1 = ε1ε1 � , π2 = ε1ε−1 � .

Thus, we get the following integral ladders in HomTLv
A(•2, •4):

λ = 2: , λ = 0: .

Theorem 10.15 The sets of the form

IL =
�

cλ
πn

u ,πm
d

| λ a weight, πn
u , πm

d non-negative paths
�

(10-4)

are bases of HomTLv
A(•m, •n).

Proof. In this formulation the crucial observation is [El15, Theorem 2.57], showing linear indepen-
dence. That integral ladders span follows by observing that HomTLv

A(•m,�) is clearly spanned
by integral ladders (“crossingless matchings”), which implies the claim since mating preserves
this property, see Theorem 4.16. �

We call IL as in (10-4) the integral ladder basis of TLv
A. Note that this basis is built using a

bottleneck principle, and we will also illustrate the basis elements by

cλ
u,d =

d
u

λ =
d
u

.(10-5)

Denote by I<i the set of morphisms in TLv
A which contain at most i − 1 through strands, e.g.

∈ I<2, /∈ I<1.

Clearly, I<j ⊂ I<i if j ≤ i. Moreover:

Lemma 10.16 The set I<i is an ideal in TLv
A, i.e.

�
f ∈ I<i, g, h ∈ TLv

A
�

⇒
�
gf, fh ∈ I<i

�
.

Proof. This is Exercise 10.51. �

The point is that these “get thinner if we multiply”:

Lemma 10.17 We have

d
u

λ

d�
u�

µ

= a ·
d
u��

λ + I<λ = b ·
d��
u

µ + I<µ,

where the scalars a = a(u, d�), b = b(u, d�) ∈ A∞ only depend on u and d�.

Proof. The integral basis is constructed to get “thinner”. Details are supposed to be done in
Exercise 10.53. �
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Example 10.18 With the notation as in Example 10.11 we have e.g.

d2

u2 2

d3

u3 2
= 2 = d2

u3 2 ,

d5

u6 0

d3

u3 2
= − [2]v · 0 = − [2]v · d5

u6 0 .

10D. Jones–Wenzl idempotents and their generalizations. Recall the quantum numbers
as in (9-13). (We will use different subscripts to make it clear whether we work in a specialization
or not.) We also need the quantum binomials for a ∈ Z and b ∈ N. First, by convention,�

a
0
�

v
= 1 and otherwise we let

�
a

b

�

v

= [a]v [a−1]v ...[a−b+1]v
[b]v [b−1]v ...[1]v

∈ A.

(Note that these are elements of A, as one can check.) Of course, for q = 1 the quantum binomial
is the usual binomial and for q = −1 it is a signed version of the usual binomial. Moreover,

�
a

b

�

v

= 0 ⇔ a < b,

which is however far from being true in specializations.

Example 10.19 Here are some explicit examples for specializations with p = char(S):
�8

0
�

q

�8
1
�

q

�8
2
�

q

�8
3
�

q

�8
4
�

q

�8
5
�

q

�8
6
�

q

�8
7
�

q

�8
8
�

q

q = 1, p = 0 1 8 28 56 70 56 28 8 1
q = −1, p = 0 1 −8 28 −56 70 −56 28 −8 1
q = 2, p = 0 1 21845

128
23859109

4096
1550842085

32768
6221613541

65536
1550842085

32768
23859109

4096
21845
128 1

q = 1, p = 3 1 2 1 2 1 2 1 2 1
q = 1, p = 5 1 3 3 1 0 1 3 3 1
q = 1, p = 7 1 1 0 0 0 0 0 1 1

q = exp(2πi/3), p = 0 1 −1 1 2 −2 2 1 −1 1
q = exp(2πi/5), p = 0 1 1

2(1 −
√

5) 1
2(1 −

√
5) 1 0 1 1

2(1 −
√

5) 1
2(1 −

√
5) 1

q = exp(2πi/7), p = 0 1 1 0 0 0 0 0 1 1
q = 2, p = 13 1 4 1 0 0 0 1 4 1
q = 3, p = 13 1 12 1 2 11 2 1 12 1
q = 4, p = 13 1 1 1 11 11 11 1 1 1

.

(Note that the appearing of fractions in the q = 2 and p = 0 case above is not a contradiction to
the claim that

�
a
b

�
v

∈ A since 2−k ∈ A ⊗v=2
A S.) Let us do two more examples. First a = 11:

�11
0
�

q

�11
1
�

q

�11
2
�

q

�11
3
�

q

�11
4
�

q

�11
5
�

q

�11
6
�

q

�11
7
�

q

�11
8
�

q

�11
9
�

q

�11
10
�

q

�11
11
�

q

q = 1, p = 3 1 2 1 0 0 0 0 0 0 1 2 1
q = exp(2πi/3), p = 0 1 −1 1 3 −3 3 3 −3 3 1 −1 1

And finally, a = 14:
�14

0
�

q

�14
1
�

q

�14
2
�

q

�14
3
�

q

�14
4
�

q

�14
5
�

q

�14
6
�

q

�14
7
�

q

�14
8
�

q

�14
9
�

q

�14
10
�

q

�14
11
�

q

�14
12
�

q

�14
13
�

q

�14
14
�

q

q = 1, p = 7 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1
q = exp(2πi/3), p = 0 1 −1 1 4 −4 4 6 −6 6 4 −4 4 1 −1 1

q = 2, p = 7 1 6 1 4 3 4 6 1 6 4 3 4 1 6 1
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For i ∈ N let us use the ground ring

Ai = A
���

i
j

�
v

�−1 | 0 ≤ j ≤ i
�

obtained from A by formally inverting the quantum binomials. Now we come back to Defini-
tion 10.20:

Definition 10.20 For i ∈ N an ith Jones–Wenzl idempotent (JW idempotent for short)
ei ∈ EndTLAi⊕(•i), denoted by,

ei = ei = ei

•
...

•

•
...

•
∈ EndTLAi⊕(•i),

is a morphism satisfying:

• it is an idempotent, i.e.

e2
i = ei � ei

ei = ei ;(10-6)

• it annihilates caps and cups, i.e.

I<iei = 0 = eiI<i � ei = 0 = ei ;(10-7)

• it contains the identity with coefficient 1, i.e.

(id•i − ei) ∈ I<i � ei = ... + diagrams with caps and cups.(10-8)

The following is just some algebraic yoga and the crucial point will be the existence of JW
idempotents.

Lemma 10.21 If an ith JW idempotent exists, then it is unique.

Proof. If ei and e�
i are two such idempotents, then (10-8) implies that ei − e�

i ∈ I<i. Thus, using
the other two defining properties we calculate

ei − eie�
i

(10-6)= ei(ei − e�
i)

(10-7)= 0 (10-7)= (ei − e�
i)e�

i

(10-6)= e�
i − eie�

i,

which shows the claim. �

Thus, we will say the ith JW idempotent.

Proposition 10.22 The ith JW idempotent exists in TLv
Ai

Proof. We do not know a self-contained proof (i.e. using the combinatorics of TLv
Ai only) of this

fact and refer to [EL17, Theorem A.2]. �

Remark 10.23 As we have seen e.g. in Example 10.5, idempotents tend to have longish
expressions. Then same is true for the JW idempotents, see Definition 9.35 for e2 and e3, and the
philosophy here would be not to expand them using the recursion from (10-12) below, but rather
the abstract properties.
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Lemma 10.24 JW idempotents satisfy the following.

(i) We have hom vanishing, i.e. for 0 ≤ j ≤ i we have

ejHomTLAi⊕(•i, •j)ei =
�
Ai{ei} if i=j,
0 else.

(10-9)

Similarly if j ≥ i.

(ii) We have absorption, i.e.

ei

ej = ei =
ei

ej
where 0 ≤ j ≤ i.(10-10)

(iii) We have partial trace properties, i.e.

ei = − [i+1]v
[i]v

· ei−1 .(10-11)

(iv) The ith JW idempotent satisfies a recursion: First, we have

e0 = ∅, e1 = .

Then, for i ≥ 2, we have

ei = ei−1 + [i−1]v
[i]v

·
ei−1

ei−2

ei−1
.(10-12)

Proof. (i). Immediate from the definitions.

(ii). To prove absorption we simply observe that ej = id•j + I<j , and recall that ei annihilates
caps and cups (10-7).

(iii)+(iv). We prove these two claims inductively in tandem. For i = 0 or i = 1 both claims
are clear, so let us suppose that i ≥ 2 and that (iii) and (iv) hold for all j < i. Then define a
morphism e�

i by (10-12). Having this expression it is easy to see inductively that the defining
properties of an ith JW idempotent hold: (10-8) is clear, while for (10-7) the crucial calculation is

ei−1 + [i−1]v
[i]v

·
ei−1

ei−2

ei−1 (10-11)= ei−1 −
ei−1

ei−2

ei−2
(10-10)= ei−1 − ei−1 = 0.

The same calculations shows (10-6). For partial traces we calculate

ei−1 + [i−1]v
[i]v

·
ei−1

ei−2

ei−1
(10-10)=

�
− [2]v + [i−1]v

[i]v

�
· ei−1 = − [i+1]v

[i]v
· ei−1 .

This shows the lemma. �

Lemma 10.25 For the canonical pivotal structure we have trTLv
Ai (ei) = (−1)i [i + 1]v.

Proof. This is Exercise 10.53. �
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We can also construct a basis using the JW idempotents, which should be compared to the
construction of the integral basis from Section 10C (e.g. compare (10-3) and (10-13)). To this
end, let us consider the generic ground ring, inverting all quantum binomials,

Ag = A
���

i
j

�
v

�−1 | 0 ≤ j ≤ i, i ∈ N
�
,

or variations such as A≤i, having the evident meaning.

Definition 10.26 To ε±1 we associate operators via:

ε̃1(f) : f �→
f
ei

, ε̃−1(f) : f �→ f
ei−2

.(10-13)

In words, if we already have a morphism f ∈ TLv
A≤i ending in •i−1, then we obtain to new

morphism fε±1 ∈ TLv
A≤i by either adding a strand or a cap and a JW idempotent.

Copying Section 10C, we obtain downward d̃(π) ∈ TLv
A≤i and upward Weyl ladders ũ(π) ∈

TLv
A≤i , respectively, and also Weyl ladders

c̃λ
πn

u ,πm
d

= ũ(πn
u)d̃(πm

d ) ∈ HomTLv

A≤i
(•m, •n), i = max{m, n},

all of which have an associated length etc. Not surprisingly, and directly from Proposition 10.22:

Proposition 10.27 The morphisms c̃λ
πn

u ,πm
d

exist in TLv
A≤i for i = max{m, n}. �

Example 10.28 Consider the case of the all non-negative paths π = ε1...ε1. Then absorption
(10-10) gives inductively

∅ ε1−→ ε1−→ e2 = e2
ε1−→ e3

e2
= e3

ε1−→ e4
e3

= e4
ε1−→ ....

Thus, we get c̃λ
πi,πi = d̃(π) = ũ(π) = ei.

Example 10.29 Let us consider the analog of Example 10.11, using the same notation. After
using absorption we get

λ = 4: d̃(π1) = e4 ,

λ = 2: d̃(π2) =
e2

e1

, d̃(π3) =
e2

e2

, d̃(π4) =
e2

e3

,

λ = 0: d̃(π5) =
e0

e1 e1

, d̃(π6) =
e0

e2

.

(Of course, the JW idempotents e0 and e1 are rather trivial and they are only illustrated to clarify
the construction.)

Theorem 10.30 The sets of the form

WL =
�

c̃λ
πn

u ,πm
d

| λ a weight, πn
u , πm

d non-negative paths
�

(10-14)

are bases of HomTLv
Ag (•m, •n).
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Proof. This is (almost) immediate from Theorem 10.15: Substituting the identity in the coupons
of the JW idempotents recovers the integral basis IL. By (10-8) we thus get an upper triangular
change-of-basis matrix between IL and WL. �

Again, we also write e.g. c̃λ
ũ,d̃ = c̃λ

πn
u ,πm

d
for simplicity. Moreover, note that these morphisms are

constructed using the bottleneck principle as in (10-5) and we will illustrate these by

c̃λ
ũ,d̃ =

d̃
ũ

λ =
d̃
ũ

.

Lemma 10.31 We have

d̃
ũ

λ

d̃�
ũ�

µ

= a ·
d̃
ũ��

λ + I<λ = b ·
d̃��
ũ µ + I<µ,

where the scalars a = a(ũ, d̃�), b = b(ũ, d̃�) ∈ A∞ only depend on ũ and d̃�.

Proof. This follows using the abstract properties of the JW idempotents. �

Definition 10.32 For (λ, π, π) consisting of a weight and a non-negative path, we define the
(generalized) JW idempotent eπ by

eπ = eπ = κ−1
π ·

d̃
ũ

, the scalar is defined by

eλ

eλ

ũ
d̃ = κπ · eλ ,

where d̃ and ũ are the downwards and upwards Weyl ladders associated to π.

Example 10.33 Let us calculate κ−1
π3 for π3 = ε1ε1ε−1ε1, which uses the partial traces (10-11):

e2

e2

e2

= − [3]v
[2]v

· e2 ⇒ κ−1
π3 = − [2]v

[3]v
.

Theorem 10.34 The generalized JW idempotents are well-defined and the set
�

eπ

���π non-negative path of length i
�

⊂ EndTLv
A∞ (•i)

is a complete set of orthogonal idempotents, i.e.

�
π

eπ = ... , eπ

eπ�
= δπ,π� · eπ

Proof. Note first that the scalar κπ exists by hom vanishing (10-9). Moreover, it is easy to see
that the scalar κπ is an iterative product of partial trace scalars, thus, can be inverted in A∞.
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That the generalized JW idempotents are orthogonal idempotents follows from the observation
that

eπ = κ−1
π ·

d̃
ũ = κ−1

π · eλ

d̃

ũ
,(10-15)

where λ is the weight of π, and the properties of the JW idempotents. Finally, we have

eπ = eπε1 + eπε−1(10-16)

as a consequence of the JW recursion (10-12), which inductively implies that
�

π eπ = id•i . �

10E. The Rumer–Teller–Weyl category – algebra. Let us further analyze the category
TLv

A or specializations of it.

Lemma 10.35 We have the following.

(i) We have the decomposition

•i ∼=
�

π Im(eπ) (in TLv
A∞⊕�).

(ii) The object Im(eπ) ∈ TLv
A∞⊕� is simple.

(iii) We have
�
Im(eπ) ∼= Im(eπ�)

�
⇔

�
π and π� are of the same weight

�
.

(iv) We have

Si(TLv
A∞⊕�) = In(TLv

A∞⊕�) =
�

Im(eλ) | λ ∈ N
�

.

Proof. (i)+(ii). These a direct consequences of Theorem 10.34.

(iii). If π and π� are not of the same weight, then HomTLv
A∞⊕�

�
Im(eπ), Im(eπ�)

�
= 0 by hom

vanishing (10-9) and (10-15). Thus, we get Im(eπ) �∼= Im(eπ�) in this case. For the converse it is
enough to consider the case eπ� = eλ. Then

d̃ : Im(eπ) → Im(eλ), ũ : Im(eλ) → Im(eπ),

are inverses up to a scalar as (10-15) shows.

(iv). By (iii) we get that every Im(eπ) is isomorphic to precisely one Im(ei), while (i) and (ii) show
that there are no other simple objects. �

Note that TLq
�⊕� is always l fiat. Moreover, it is l fusion in exactly the following situation:

Theorem 10.36 Let (�, q) be a specialization. Then TLq
�⊕� is semisimple if and only if

A∞ ⊂v=q � (i.e. all quantum binomials are invertible). Moreover, in the semisimple case we have

Si(TLq
�⊕�) = In(TLq

�⊕�) =
�

Im(eλ) | λ ∈ N
�

.

Proof. If all quantum binomials are invertible, then the specialization (�, q) factors through A∞

and the claim follows from Lemma 10.35. On the other hand, if some quantum binomial is not
invertible, then there exists some JW idempotent ej which is still well-defined, but ej+1 is not.



QUANTUM TOPOLOGY WITHOUT TOPOLOGY 161

Let ei be the minimal such JW idempotent. We claim that Im(ei ⊗ id•) is indecomposable, but
not simple. Indeed,

ei

ei (10-6)= ei ,

shows that ei ⊗ id• is an idempotent. Moreover, using the standard basis (10-4) and (10-9) we
have

ei

ei

f = 0 unless f ∈
�

... , ...
�

.

Furthermore, since � is a field the quantum binomial
�

i+1
j

�
q

for 0 ≤ j ≤ i+1 is only non-invertible
if its zero, which, by minimality of i, gives [i + 1]q = 0. Hence, the calculation

ei
(10-11)= [i+1]q

[i]q
ei−1 = 0

shows that the endomorphism ring of Im(ei ⊗ id•) is �[X]/(X2), which implies that Im(id• ⊗ ei)
is indeed indecomposable, not not simple. �

10F. Some quantum computations. Let us further study the behavior of quantum numbers.
Our main aim is to give “good” conditions for whether the JW idempotents and their generaliza-
tions exist, which implies that TLq

�⊕� is semisimple Theorem 10.36. For a field � this happens if
and only if all quantum binomials are non-zero.

Definition 10.37 Define the q characteristic of a specialization (S, q) as

char(S, q) = min
�

a ∈ N>0 | [a]q = 0
�

,

or char(S, q) = 0 if [a]q �= 0 for all a ∈ N>0.

Example 10.38 For q = ±1 the q characteristic is the usual characteristic. Here are a few
examples of the behavior of the quantum numbers, where p = char(S).

[0]q [1]q [2]q [3]q [4]q [5]q [6]q [7]q [8]q
q = 1, p = 0 0 1 2 3 4 5 6 7 8

q = −1, p = 0 0 1 −2 3 −4 5 −6 7 −8
q = 2, p = 0 0 1 5

2
21
4

85
8

341
16

1365
32

5461
64

21845
128

q = 1, p = 3 0 1 2 0 1 2 0 1 2
q = 1, p = 5 0 1 2 3 4 0 1 2 3
q = 1, p = 7 0 1 2 3 4 5 6 0 1
q = 2, p = 13 0 1 9 2 9 1 0 12 4
q = 3, p = 13 0 1 12 0 1 12 0 1 12
q = 4, p = 13 0 1 1 0 12 12 0 1 1

.

(The complex root of unity case was already discussed in Example 9.34, so it is omitted from the
above table.) Thus, we have for example char(F13, 2) = 6.

Lemma 10.39 Let a ∈ Z �=0. Then:

(i) If char(S, q) = 0, then [a]q ∈ S is non-zero.
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(ii) If char(S, q) = p > 0 and q = ±1, then [a]q ∈ S is non-zero if and only if p� | a.

(iii) If char(S, q) > 0 and q �= ±1, then [a]q ∈ S is non-zero if and only if q2a �= 1.

Proof. If q = ±1, then we have [a]q = ±a and the claims are clear. Note further that [a]q = qa 1−q2a

q−q−1

in case q �= ±1. Thus, the roots of [a]q are exactly the roots of the cyclotomic polynomial 1 − q2a,
which proves the root of unity case. �

For any c ∈ N and any d ∈ N we use the digits ck of its d-adic expansion:

c = [..., c2, c1, c0]d =
�∞

k=0 ckdk where ck ∈ {0, ..., d − 1}.

We also write ∗ for an arbitrary digit.

Lemma 10.40 Let a ∈ N. Then:

(i) If char(S, q) < a, then
�

a
b

�
q

∈ S is non-zero for all 0 ≤ b ≤ a.

(ii) If char(S, q) = char(S) = p ≥ a, then
�

a
b

�
q

∈ S is non-zero for all 0 ≤ b ≤ a if and only if

a = [..., 0, 0, ∗, p − 1, ..., p − 1]p.

(iii) If char(S, q) = k ≥ a and char(S) = 0, then
�

a
b

�
q

∈ S is non-zero for all 0 ≤ b ≤ a if and
only if

a = [..., 0, 0, ∗, ..., ∗, k − 1]k.

(iv) If char(S, q) = k ≥ a, char(S) = p > 0 and k �= p, then
�

a
b

�
q

∈ S is non-zero for all
0 ≤ b ≤ a if and only if

a = [..., 0, 0, ∗, ..., ∗, k − 1]k, m = [..., 0, 0, ∗, p − 1, ..., p − 1]p,

where a = mk + ã0 for 0 ≤ ã0 < k.

Proof. In case char(S, q) < a the claim is clear, so let us assume that char(S, q) = k ≥ a and
write a = mk + ã0 and b = nk + b̃0 with 0 ≤ ã0, b̃0 < k. Recall that then the quantum Lucas’
theorem states that

�
a

b

�

q

=
�

m

n

��
ã0
b̃0

�

q

,(10-17)

see e.g. [Lu10, Lemma 24.1.2]. Note the appearance of the usual binomial: If char(S) = 0, then
this factor is always non-zero and we get the case (iii) in the statement. If however char(S) = p > 0,
then we can apply the classical Lucas theorem to (10-17) and get

�
a

b

�

q

=
��∞

i=0

�
mi

ni

���ã0
b̃0

�

q

p=l=
�∞

i=0

�
ai

bi

��
a0
b0

�

q

.

where we distinguish expansion in base l and p. �

Example 10.41 If we want to know whether
�

a
b

�
q

is non-zero for all 0 ≤ b ≤ a, as in Exam-
ple 10.19 for a = 8, a = 11 or a = 14, then:

• Generically this is always the case.
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• In char p we would write e.g. 8 = [2, 2]3 = [1, 3]5 = [1, 1]7 which implies that in
characteristic 3 the quantum binomials will be non-zero, but it will eventually be zero in
characteristic 5 or 7. For 11 = [1, 0, 2]3 the quantum binomial might be zero.

• In the complex root of unity case only the zeroth digit plays a role. For example for
11 = [1, 0, 2]3 and q = exp(2πi/3) the quantum binomial will always be non-zero.

• The mixed case is a mixture of the above two cases. For example, for q3 = 1 and p = 7
one would need to expand a in base 3, where only the zeroth digit is important, and
then m in base 7, cf. 14 = [1, 1, 2]3 and 4 = [4]7 in Example 10.19. Another example
where all quantum binomials for q3 = 1 and p = 7 are invertible is 146 = 3 · 48 + 2 since
146 = [1, 2, 1, 0, 2]3 and 48 = [6, 6]7.

For Lemma 10.40 and Theorem 10.36 we immediately get:

Theorem 10.42 Let (�, q) be a specialization. Then TLq
�⊕� is semisimple if and only if we

are in the generic case. Moreover, in this case we have

Si(TLq
�⊕�) = In(TLq

�⊕�) =
�

Im(eλ) | λ ∈ N
�

,

as the set of simple objects. �

10G. Constructing Verlinde categories. Let us now finish by constructing quantum invariants
from (specializations of) TLv

A⊕�.

Definition 10.43 Let C ∈ MCat. We call a collection of subspaces

I⊗ = {In(X, Y) ⊂ HomC(X, Y) | X, Y ∈ C}

a (two-sided) ⊗ ideal if

• it is closed under vertical composition, i.e.

g ∈ I⊗ ⇒

f

g
h

∈ I⊗ where f, h ∈ C;

• it is is closed under horizontal composition, i.e.

g ∈ I⊗ ⇒ f g h ∈ I⊗ where f, h ∈ C.

Proposition 10.44 Let C ∈ MCatS and let I⊗ be a ⊗ ideal. Then:

(i) The exists a category C/I⊗ with

Ob(C/I⊗) = Ob(C), HomC/I⊗(X, Y) = HomC(X, Y)
�

In(X, Y),

and the evident composition.

(ii) We have C/I⊗ ∈ MCat and the identity map on objects and morphisms induces a
monoidal and full functor C � C/I⊗.
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(iii) If C was braided (or rigid, pivotal, spherical, ribbon), then so is C/I⊗.

Proof. This is Exercise 10.54. �

Example 10.45 Clearly, any C ∈ MCatS has a trivial ⊗ ideal, namely I⊗ = C. We stress
this because of the confusing fact that C/C is trivial although Ob(C/C) = Ob(C). The point is
that HomC/C(X, Y) ∼= {0}, and thus all objects are isomorphic.

Definition 10.46 Let C ∈ PCatS. A morphism f ∈ C is called right negligible if

trC(gf) = 0 for all g ∈ C,

and left negligible if
Ctr(gf) = 0 for all g ∈ C.

A right and left negligible is called negligible.

For C ∈ PCatS let NC denote the collection of negligible morphisms.

Proposition 10.47 For any C ∈ PCatS collection NC is a ⊗ ideal.

Proof. By definition, the vertical composition of a negligible morphism with any other morphism
is negligible. Moreover, up to symmetry,

f g
h

=
f

h�
, where h� =

g
h

shows the same for the horizontal composition. �

Definition 10.48 Fix the canonical pivotal structure on TLA⊕�. For any specialization (S, q)
we call

Ver(S, q) = TLq
S⊕�

�
NTLq

S⊕�

the Verlinde category for (S, q).

Example 10.49 In the generic case Ver(�, q) = TLq
�⊕�, since NTLq

�⊕�
= 0. This follows

because we know that the (images of the) JW idempotents are the simple objects in this
semisimple category, see Theorem 10.42, and their traces are non-zero by Lemma 10.25.

By Proposition 10.44.(iii) and additivity of categorical traces we immediately see that Ver(S, q) ∈
lRifiat. We get a bit more:

Proposition 10.50 For any specialization (�, q) the category Ver(�, q) is semisimple, i.e.
Ver(�, q) ∈ lRiMo. Furthermore, the simple objects of Ver(�, q) are the indecomposable objects
of TLq

�⊕� of non-zero categorical dimension.
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Proof. This follows from the following characterization of negligible morphisms. A morphism
f = (fi,j) :

�k
i=1 Zi → �l

j=1 Zj between indecomposable objects of Ver(�, q) is negligible if and
only if for each i, j either fi,j is not an isomorphism or dimVer(�,q)(Zj) = 0. (This is well-known,
see e.g. [EO18, Lemma 2.2].) �

The Verlinde categories are sometimes even modular, e.g. in the complex root of unity case. In
general:

The quantum invariants arising from Ver(�, q) are generalized Jones polynomials.

This gives a completely diagrammatic construction of the Jones-type quantum invariants, i.e.
by coloring strands with (versions of) JW idempotents. Similarly one can construct type BCD
versions of these invariants using quantum Brauer categories, or higher rank versions using
so-called webs.

10H. Exercises.

Exercise 10.51 Prove Lemma 10.16.

Exercise 10.52 Prove Lemma 10.17. Also try to think what changes in the proof compared to
Lemma 10.31.

Exercise 10.53 Prove Lemma 10.25.

Exercise 10.54 Prove Proposition 10.44.

Exercise 10.55 Compute the following quantum invariant.

β3
Li,Li

=

LiLi

Li Li

, trVer(�,exp(πi/3))(β3
Li,Li

) =
Li Li

∈ C,

for i = 0, 1, 2. (This is the colored Jones polynomial of the trefoil knot.)
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