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ABSTRACT. Quantum invariants are more than just topological invariants needed to tell objects
apart. They build bridges between topology, algebra, number theory and quantum physics helping
to transfer ideas, and stimulating mutual development. They also have a deep and interesting
connection to representation theory, in particular, to representations of quantum groups.

The goal of these lecture notes is to explain how categorical algebra gives a way to study
algebra and topology; in particular, how quantum invariants arise purely category theoretical.
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INTRODUCTION

Motivated by the Rosetta Stone, see Figure 1, here is the

ategory theory

Algebra

Topologyj

categorical Rosetta stone.

Physics

Logic

objects X

algebraic data X

manifold X

system X

proposition X

morphism f: X - Y

relation f: X — Y

cobordism f: X — Y

process f: X — Y

proof f: X =Y

monoidal product X ® Y

product data X ® Y

disjoint union X ® Y

joint systems X ® Y

conjunction X ® Y

monoidal product f @ g
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F1GURE 1. The Rosé€

parallel relations f @ g

stone: the t

$oint union f ® g

parallel process f ® g

parallel proofs f @ g

)

-

le texts are in ancient Egyptian

using hieroglyphic and Demotic scripts, respectively, while the bottom is in ancient

Greek. The decree has only minor differences among the three versions, so the

Rosetta stone became key to deciphering Egyptian hieroglyphs.

https://commons.wikimedia.org/wiki/File:Rosetta_Stone_BW.jpeg

In the 1980s we have witnessed the birth of a fascinating new mathematical field, often called
quantum algebra or quantum topology. The most spectacular achievements of this was to combine
various fields of mathematics and mathematical physics such as the theory of monoidal categories,
von Neumann algebras and subfactors, Hopf algebras, representations of semisimple Lie algebras,
quantum field theories, the topology of knots, etc., all centered around the so-called quantum

tnvariants of links.

In these lecture notes we focus our attention on the categorical aspects of the theory. Our goal
is the construction and study of invariants of knots and links using techniques from categorical

algebra only:

Goal. Use the left column of the categorical Rosetta stone to say something interesting
about the others; especially with the focus on quantum invariants.

Summarized in a picture, the goal is to describe the categorical analog of:

Algebra: non-commutative structures

Topology: knots and links

)\

Aaaad

N7/

/(

Aaaad

Physics: particles in R?
Logic: ribbon logic
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1. CATEGORIES — DEFINITIONS, EXAMPLES AND GRAPHICAL CALCULUS
The slogan for this first section is:

“Classical mathematics is based on sets, modern mathematics is based on categories.”

1A. A word about conventions.

Convention 1.1 Throughout, categories will be denoted by bold letters such as C or D, objects
by X, Y etc. and morphisms by e.g. f, g. Moreover, functors are denoted by F, G etc., while natural
transformations are denoted by Greek letters such as «. Further, for the sake of simplicity, we will
write X € C for objects and (f: X — Y) € C (or just f € C) for morphisms f € Hom¢(X,Y), and
also gf = g of for composition, which is itself denoted by o. (Note our reading conventions from
right to left, called operator notation.) When we write these we assume that the expression
makes sense.

Convention 1.2 There are some set theoretical issues with the definitions of some categories.
For example, the objects of Set are all sets, which do not form a set. These issues are completely

unimportant for the aims of these notes and ignored throughout.

Convention 1.3 Throughout, we will read any diagrammatics bottom to top, cf. Example 1.11,
and right to left, cf. (2-7). Moreover, the Feynman diagrams which we will use should be oriented,
but we employ the convention that “No orientation on Feynman diagrams means upward oriented
by default.”.

Convention 1.4 k will always denote some field, which we sometimes specialize to be e.g. of
characteristic zero. If we need an algebraically closed field we write K, and a general associative
and unital ring such as 7 is denoted by S. (A lot of constructions which we will see are stated
over a field k, but could also be formulated over S. We find it however easier to think about a
field k and leave potential and easy generalizations to the reader.)

1B. Basics. We begin at the beginning: 4 9
e o2 X

Definition 1.5 A category C consists of \
gory 7_1 > s o g @
e a collection of objects Ob(C); /V l’[n,— 3 >

vy

e a set of morphisms Homc(X,Y) for all X,Y € C;

such that

(i) there exists a morphism gf € Homc (X, Z) for all f € Homc(X,Y) and g € Homc (Y, Z);

there exists a morphism idy for all X € C satistying idyf = f = fidx for all f € Homc(X,Y);

(iii) we have h(gf) = (hg)f whenever this makes sense. % g g g
/

The morphism gf is called the composition of g after f, while the morphism idyx is called
the identity on X. The last condition in Definition 1.5 is called associativity of morphism

At =ghaen oty Ué”—’{ "G A
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composition as it is equivalent to associativity (and we henceforth omit all brackets). In particular,
Endc(X) = Homg(X, X) is always a monoid. —=—» % (’b// -")

Example 1.6 Categories generalize many familiar concepts.

(a) Categories generalize monoids: given a monoid M, there is a category M with Ob(M) =
{e} (a dummy) and Homypz (e, ®) = M, where composition is the multiplication in M. The

picture Tor M = 7 /47 being the cyclic group with four elements is

0
. Q72
r 3 e o1, gf=f+gmod4. 4 h ™
-
PN U o & =al,

[ &

—

(b) Categories generalize monoids in another way: there is a category Mon whose objects

are monoids and whose morphisms are monoid maps. x __> \/ ’l — 4

&
(c) Categories generalize sets: therg is a category Set whose objects are sets Mwse 1
morphisms are maps. } g
V5 wW A ( 1

(d) Categories generalize vector spaces: there is a categorjj Vecy Whose objects are k vector

spaces and whose morphisms are k linear maps. More general, the same construction
gives the category of S modules also, abusing notation a bit, denoted by Vecs.

(e) Categories generalize vector spaces in another way: there is a category fdVecy whose
objects are finite dimensional k vector spaces and whose morphisms are k linear maps.

emark 1.7 Note that categories are traditionally named after their objects, as e.g. Set, but
the main players are actually the morphisms. )

Example 1.8 Later we often have categories which are denoted by Mod(A), which will be
module categories of A. For now we observe that Mod(Z), the category of abelian groups,
whose objects are abelian groups (equivalently, 7 modules Vecy,) and whose morphisms are group

homomorphisms, is a category.

Example 1.9 It is formally not correct to think of morphisms as maps. For example, there is
a category Ag having three objects and three non-identity morphisms arranged via

having the evident composition rule. Thus; 1sms are more like “arrows” and not maps.

Remark 1.10 In (1-1) we have seen the first commutative diagram, which in general is a
certain oriented graph, in these lecture notes. This is always to be understood that all ways
composing along the various edges of the graph give the same result. In (1-1) this is easy as the
commutative diagram is a triangle and there are only two paths to compare, which are equal by
definition. However, things can get more complicated, of course, cf. Exercise 1.58.
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Example 1.11 Very important for these lecture notes are the following examples. We will
not define these formally, which is a bit painful, but rather stay with the informal, but handy,
definition. (Later we will be able to give alternative and rigorous constructions.) I \ ‘ I

(a) The category 1Cob of 1 dimensional cobordisms. Its objects are 0 dimensional

manifolds, a.k.a. points " = e...e for n € N, and its morphisms are 1 dimensional

cobordisms between these, a.k.a. strands, illustrated as follows:
A e

' Y N\ z
f1= , 8T= :
K RS0 TN

where X —eee Y —eeeee and Z =e. Composition is stacking g on top of f:

2 0 : J
BN &

(b) The category 1Tan of 1 dimensional tangles. This is the same as 1Cob, but now
remembering some embedding into R3, illustrated as follows:

v \\\\Qm //\\

where X =eee, Y —eeeee and Z =e. Composition is stacking g on top of f:

|
e BN
NORN

(c) The category 1State of 1 dimensional states (sometimes called oriented tangles),
which is the category of particles moving in space with objects being particles and
morphisms being worldlines. Said otherwise, it is the same as 1Tan, but now remembering

some orientation, illustrated as follows:
,
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where X = () @ o, Y — @ @ o(0*)o* and Z = e, a notation which will become clear in later
sections. Composition is stacking g on top of f:

|

N O

Definition 1.12 For any category C, the pair category CxC is the category whose objects

and morphisms are pairs of their corresponding types, i.e.
Ob(CxC) = {(X,Y) | X,Y € C}, Homcxc((X,Y),(Z,4)) = Homc(X, Z) x Homc(Y, A),

and whose composition is defined componentwise.

Definition 1.13 For any category C, the opposite category C is the category wj

same objects and morphisms, but reversed composition:
L cler

(1-2) .
Reversed o? H No ‘ Yes

We also write f°P for opposite morphisms. C

1C. Feynman diagrams. We now discuss a convenient notation for ca

Feynman (or Penrose) diagrams, but we will also say e.g. diagrammatics. \f
Given a category C we will denote objects X € C and morphisms f € C via &
X Y
(1-3) X e T <: T) , [ew ,
X X

From now on we use the convention from Convention 1.3, meaning we omit the orientations. X

———————
Remark 1.14 This notation is “Poincaré dual” to the one f: X — Y since, in diagrammatic rﬂ_
notation, objects are strands and morphisms points, illustrated as coupons, see (1-3).

Composition is horizontal stacking, i.e.

A YA Y

I
o

[
7\
i

(1-4)

o
(=)
||
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The formal rule of manipulation of these diagrams is:

“Two diagrams are equivalent if they are
1-5
(1-5) related by scaling.”

The following is (almost) evident.

Theorem 1.15 The graphical calculus is consistent, i.e. two morphisms are equal if and only if
their diagrams are related by (1-5).

Proof. Note that associativity is implicitly used as we have only one way to illustrate h(gf) = (hg)f

ol

X X X X Y

as shown in (1-4), while

o
B
B
B

shows the identity axiom. O

Remark 1.16 Later, with more structure at hand, these diagrams will turn out to be a (quite
useful) 2 dimensional calculus. For now they are rather 1 dimensional.

a—

f

1D. Maps between categories. A map between categories is:

Definition 1.17 A functor F: C — D between categories C and D is a map sending

e X € C to an object F(X) € D;

o (f: X = Y) € C to a morphism (F(f)FLX)—>FQ_)) eD

e

such that

(i) composition is preserved, i.

—

(ii) identities are preserved, i.§. F
f

Example 1.18 There is an identity functor Idc: C — C, sending each object and each
morphism to themselves.

A functor sends objects to objects and morphisms to morphisms in such a way that all relevant
structures are preserved, and can thus be seen as a morphisms between categories. Note further
that one can compose functors in the evident way (with the identity functors being identities)

r-
C —>Dyg
Lemma 1.19 IfF and G are functors, then so is GF. }J
— 6= 7 E

Example 1.20 Hence, we get the prototypical example of a category:the category of

and the result is again a functor:

O

categories, whose objects are categories and whose morphisms are functors.

Example 1.21 Functors generalize many familiar concepts.
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(a) Functors generalize monoid maps: a functor F: M — M’ between monoid categories M
and M, as in Example 1.6.(a), is a homomorphism of monoids.

(b) Functors generalize models: a functor F: M — Set between a monoid category M and
Set assigns a set F(e) to ® and an endomorphism F(f) of F(e) to f € M, which can be
seen as a concrete model of the underlying monoid M.

(c) Functors generalize representations: a functor F: M — Vecy between a monoid category
M and Vecy assigns a k vector space F(e) to e and a k linear endomorphism F(f) of F(e)

to f € M, which can be seen as a representation of the underlying monoid M.

(d) Functors generalize forgetting: there is a functor Forget: Vecy — Set which forgets the
underlying k linear structure.

(e) Functors generalize free structures: there is a functor Free: Set — Vecy for which Free(X)
is the free k vector space with basis X and Free(f) is the k linear extension of f.

Finally, note that any functor F: C — D gives rise to a natural map
Homc (X, Y) = Homp (F(X),F(Y)), f — F(f),

which we often use without further comment. In particular:

H’UVH ( >< I —")
(:r% Set, {Y ~ }_Iom_c(y—), Homcg(—,X): C?? — Set, {Y — Homo (Y, X),
£ (fo-), £ (of).

Remark 1.23 A functor F: C? — D, such as Homc(—, X), is sometimes seen as a contravari-
ant functor F: C — D, meaning that F(gf) = F(f)F(g) holds instead of F(gf) = F(g)F(f).

Example 1.22 There are hom functors:

1E. Maps between maps between categories. A map between functors is:
——

Definition 1.24 A natural transformation «a: F = G between functors F,G: C - D is a
collection of morphisms in D

{ax: FX) = G(X) | X € C}

such that the following diagram commutes for all f € C:

F(X) — 2 F(Y)
(1_6) Oéxl J/QY .
G(X) G(Y)



> X
Remark 1.25 The diagram in (1-6) (which is the classical way of illustrating natural transfor-

6 4 2w % a) F()\) F—-(K)F {Y)
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mations, sometimes also called natural or naturality ) is of course the same as

F(X) o F(Y)

which, using our reading conventions, is saying that « can be seen as a morphism from F to G.

There is of course a composition of natural transformations, called the vertical composition
and denoted by o, of natural transformations given by

Example 1.26 There is an identity natural transformation IDyp: F — F, (IDp)x = idy.

Clearly: = f__; G

Lemma 1.27 If a and 8 are natural transformations, then so is Ba. O

Example 1.28 By Lemma 1.27, there is a category Hom(C, D), the category of functors
from C to D. Its objects are all such functors and its morphisms are natural transformations,

with composition being vertical composition. A special case are endofunctors, whose category
we denote by End(CZ = Hom(C, C), which will play an important role.

Example 1.29 Natural transformations generalize intertwiners (a.k.a. maps of representations):
given two representations F,G: M — Vecy, as in Example 1.21.(c), a natural transformation
between them would provide a commuting diagram

where F (o) and G(e) are the k vector spaces associated to the representations, and o : F(e) — G(e)
is a k linear map between them.

Example 1.30 Having a monoid category M, the category Hom (M, Vecy) can be identified
with all representations of the underlying monoid.

1F. Some notions which we will need. Up next, some category theoretical notions.
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Definition 1.31 Let (f: X —Y) € C.

(i) f is called an isomorphism if there exists a (g: Y — X) € C such that

b ‘:a. gf = idx, fg = idy. %g

(ii) f is called a monomorphism or monic if it is Ieft—cancellative, ie. Q\
I (fh=fi) = (h=1) for all b,i € C. -

V\/A

(iii) f is called a epimorphism or epic if it is right-cancellative, i.e.

P (hf = if) = (h=1) for all b,i € C. Ry_-_ ‘g

The following is the usual Yoga:

Lemma 1.32 Iff € C is an isomorphism, then g € C as in Definition 1.81.(i) is unique.
Moreover, such an f is monic and ergzg ) O

Thus, we can just denote the g as in Definition 1.31.(i) as f~! and call it the inverse of f.

Example 1.33 In a lot of categories, e.g. Set or Vecy the three notions in Definition 1.31
correspond to bijective, injective and surjective morphisms, respectively. However, this is slightly
misleading: all non-identity morphisms in Ag, cf. Example 1.9, are monic and epic, but none of
these is an isomorphism, nor does being injective or surjective make sense,.

Definition 1.34 Let X,Y,Z € C, and all morphisms are assumed to be in C.

(i) X and Y are called isomorphic, denoted by X = Y, if there exists an isomorphism f: X — Y.

(ii) X is called a subobject of Y, denoted by X < Y, if there exists a monjc morphism
S ———
f:X—>VY.

(iii) Y is called a quotient of X, denoted by X — Y, if there exists an epic morphism f: X — Y.
——— ——

(iv) X is called a subquotient of Z if there exists Y and a sequence X «— Y < Z, i.e. if X is a
quotient of a subobject of Z.

Note that fixing an isomorphism f: X — Y also gives us a unique isomorphism f~': Y — X, a fact
which we will use silently throughout.

Example 1.35 Note that e.g. being isomorphic depends on the category one is working in.
Explicitly, Z/AZ and Z/27.xZ/27Z are clearly isomorphic in Set._put not in Mod(Z) since the
corresponding morphisms in Set are not homomorphisms of abelian groups.

Example 1.36 For C,D € Cat, by using Definition 1.34.(a), we get the notions of two
categories being isomorphic, denoted by C = D.
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Example 1.37 For F,G € Hom(C, D), by using Definition 1.34.(a), we get the notions of
two functors being isomorphic. In particular, F € Hom(C, Set) is called representable (a
particular nice functor), if its isomorphic to a hom functor as in Example 1.22.

We will also use the notion =, — and — for the morphisms, e.g. f: X < Y means that f is monic.
The following is clear.

Lemma 1.38 The three notions =, < and — are reflexive and transitive, meaning e.g.
(X—=YandY—Z) = (X Z), forallX,Y,Z € C,

and = is symmetric, thus, an equivalence relation. O

Definition 1.39 Let C,D € Cat.

(i) C is called a subcategory of D, denoted by C C D, if Ob(C) C Ob(D), HOIT@X,Y) C
Hog:)_X,Y) for all X,Y € C, and idy € C for all X € C.

(ii) Such a subcategory is called dense if for all Y € D there exists X € C such tha
—

(iii) Such a subcategory is called full if Homc(X,Y) = Homp(X,Y) for all X,Y € C.

Example 1.40 We have fdVecy C Vecy, and fdVecy, is full, but not dense, in Vecj.
Using Lemma 1.38 we can define:

Definition 1.41 Let Ob(C)/IE !be a choice of representatives of Ob(C)/ =. Given a category
C, its skeleton Sk(C) is the full subcategory with objects Ob(C)/ =
M

Formally the skeleton depends on the choice of representatives. However, we can (and will) be
sloppy and say that there is “the” skeleton:

Lemma 1.42 For any Ob(C)/ =, the corresponding skeletons are zsomorphzc

A category is called skeletal, if its isomorphic to its skeleton. 7 (\I/
/"1 "

Example 1.43 The skeleton of f{dVecy, can be identified with Maty, I.e. Sk(deecIk) = Mat;,.
Here Mat, is the category of matrices whose objects are natural numbers m,n € N, and
Hommag, (n,m) = Maty,xn(k), i.e. matrices with entries in k, and Maty is skeletal.

Definition 1.44 We let Ko(C) = Ob(C)/ = , and call it the Grothendieck classes of C.
Elements in Ko(C) are Grothendieck classes of X € C and denoted by [X].

S

We think of Ko(C) as capturing all information about the objects of C. For an arbitrary category
Ko(C) is just a set, but when C has more structure, then so does Ky(C).

Example 1.45 We can identify Ko(fdVecy) = Nas sets, the map being|[k"] H@since any

X € fdVecy, is isomorphic to k™ for some n € N.
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Note that EdVecﬂi and Maty ’in some sense contain the same information, but they are not
isomorphic: fdVecy % Maty. This is due to the fact that isomorphisms of categories give

bijections on objects. But recall that we “do not care about objects”. So maybe asking
Idc = GF, FG=Idp

is a bit too much. This motivates the following “correct” notion of equivalence of categories:

Definition 1.46 Let C,D € Cat. The categories C and D are ca]]e denoted by

C ~ D, if there exists F: C — D and G: D — C such that

ldc = GF, FG = 1Idp,

where = is taken in Hom(C, D), cf. Example 1.37

Remark 1.47 In Feynman diagrammatics for Hom(C, D) there is a nice interpretation of
equivalence. To this end, let us fix

1:1de = GF, ¢: FG = Idp,

sometimes also called unit and counit. Then these can be pictured as caps and cups
F G
o P (D
G F
where we have not drawn strands for the identity functors, by the usual convention. Later, with
more structure at hand, we will revisit such diagrams, which then become topological objects.

Functors as in Definition 1.46 are called equivalences and they are quasi-inverse to each other.
Clearly, isomorphic categories are equivalent, but the converse is not true:

Example 1.48 Any category C is equivalent to its skeleton, but not necessary isomorphic.
Explicitly, fdVecy ~ Maty, but fdVec; % Maty,.
gupui— aEEEEE———ETTRY

Example 1.49 The category fSet, which is the full subcategory of Set with objects being

finite sets, is not skeletal. \/’ &\‘\ &Gt,. ) f'é z ﬁ/

Example 1.50 The category fSet=, which is the subcategory of fSet with the same objects,
but only bijections, is not skeletal. Its skeleton is Sym'P? which is the subcategory of 1Cob, cf.
Example 1.11.(a), with the same objects but only cobordisms without Morse points (a.k.a. no

A W/

turnbacks). A typical diagram in Sym™? is a permutation diagram, e.g.

Note that Homsymto (o @™ @ unless m ==

Let us also note: ?/t : A 3 Lf
P N YD

- _Taga ,-QLI,;I,,: I l .l-—l]:

2 12232438

1 41{;,:
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Lemma 1.51 Any functor F € Hom(C, D) induces a map
Ko(F): Ko(C) = Ko(D), [X] = [F(X)].

Further, if F is an equivalence, then Ko(F) is an isomorphism. O

If one wants to check whether two categories are equivalent one almost always uses:

Proposition 1.52

A functor F: C — D is an equivalence if and only if

or all Y € D there exist X € C such tha

e it is faithfuli ie.

Homcg(X,Y) — Homp (F(X),F(Y)) for all X,Y € C;

Homc (X, Y)ﬁ»HOmD( (X),F(Y)) for all X,Y € C. 3

If a functor is full and faithful, then we also say its fully faithful.

e it s full, ie.

Proof. The proof is what is called diagram chasing.

=. Let (F,G,,¢) as in Remark 1.47 define the equivalence. By ex: FG(Y) =5 Y we see that F is
dense. To see that F is faithful consider the commuting diagram

X — — GF(X)
f or gi lGF(f) or GF(g) -
X —2 - GF(X)

Q

§

Assuming that GF(f) = GF(g), by Exercise 1.59, implies that f = g which in turn implies that F
is faithful. Very similar arguments, using again Exercise 1.59, show that F' is full.

<. Suppose that F is dense and fully faithful, so we need to construct the quadruple (F,G,¢,¢)
as in Remark 1.47. First, using density, we find an object G(Y) for all Y € D as well as an
isomorphism ey: FG(Y) =, Y. Thus, for each f: Y — Y/ we find a unique solution FG(f) to make

o

FG(Y) —— Y

£y

FG(f)l lf

FG(Y) —— Y

o

m

commutative, by Exercise 1.59. Hence, fully faithfulness of F defines us G(f). Scrutiny of this
construction actually show that G(Y) and G(f), and ey assemble into a functor and a natural
transformation, respectively. It remains to construct tx (and prove that these give rise to a natural
transformation), which can be done in a similar fashion. O

Definition 1.53 A category C is called concrete if it admits a faithful functor, called its
realization, R: C — Set.

Example 1.54 The functor Forget, cf. Example 1.21.(d), realizes Vecy as a concrete category.

e it is dense (also called essentially surjective), i.e. h"é ‘\‘W(J

~
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The following is arguably the most important statement in classical category theory and know as
the Yoneda lemma. We will not need it, and only give a reference for its proof, but any text
on category theory without it feels like “missing something”. So here we go:

Theorem 1.55 For any F € Hom(C, Set) and any X € C there is a bijection
HomHom(qSet)(Homc(X, _),F) — F(X), (a: Hom¢(X, - ) = F) — ax (idy).

Moreover, this correspondence is natural in both F and X.

Proof. Proofs are tend to be a bit technical and longish. We do not need the Yoneda lemma
much, so we refer to [Ma98, Section IIL.2]. O

As a consequence we have the Yoneda embedding(s) given by the Yoneda functor(s):

Proposition 1.56 Fix C € Cat. We the fully faithful functors

{Y@ om(cop Set)) 9“’3 < L Jf%‘ g&"\

X — Homg(—,X), (f: X = Y) o _: Homg(—,X) — Homg(— )g»—)fg (eup
- °
v )
u
{Xi—)Homc L X —=Y) — (_of: Home(Y, ) — Home(X, —), g — gf). ._EJ()

Hence, C and CP are full subcategories of Hom(C, Set) respectively of Hom(C, Set).

Proof. From the construction of the Yoneda functors we see that we have injections

(1-8) Homc(X,Y) — HomHom(Cyset)(Homc(X, ), Homc¢(Y, -)),
Homc (X, Y) — Hompom(c Set) (Homg(—, X), Homg(—,Y)).

Further, Theorem 1.55 implies that every natural transformation between represented functors

arises in this way, showing that (1-8) are bijections. Comparing this to the second and third bullet
points in Proposition 1.52, which define the notion of being fully faithful, shows the claim. O

Example 1.57 For the category Ag from Example 1.9 the Yoneda functor Y°P associates

1 {ids}, 2 — {f},3 — {gf} )

Y(1 Hom : Ag — Set,

etc., which identifies (Ag)° with the functors of the form Homa,(i,-) for i € {1,2,3}.

1G. Exercises.

Exercise 1.58 Given the following diagram in some category.
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X

SOV Y, X

OBV E SOV WX

coevy x

My, (W, X)W 0) M,,((Z.X]) ® M, ([Y. X])Y ® My, (W X)W

Ml]r:b v.xlz

M, (2, X])M, (W 2]) W M, (V. X2, V]) Z SUZ Y M (W, 2w
M iz v In g w zpw Idon ML (v z v ) w
R— L
(2
M, (2, X)W, Z))W M, (V. X][Z, Y] )M, (W, Z]) W M, (V. X)) M, ((Z.Y][W. Z))W M, ([¥. X[y )
M, (dz v, x onidd )y ML (Bdodoy, 2y I
M (([V. X2, Y)W, 2 W _ M, (Y. X)([2.Y][W, 2]) W
M._Lu;e-..\--.;z.e--.;u-.r).,.

If all the numbered subdiagrams commute, does it follow that the diagram itself is commutative?

Exercise 1.59 Given f: X — Y and fixed isomorphisms X = X" and Y &Y', there exists a unique
f’: X' — Y’ such that any, or, equivalently, all, of the following diagrams commute:

X —— 5y Xe— Y X —— Y Xe— Y
fl lf’u fl J{f/a fJ{ J{f/a fl lf/ .
X —— Y X —— Y X +——Y X' «+—Y

Exercise 1.60 Consider the following statement: “In every concrete category C with realization
R, a morphism f € C is an isomorphism < R(f) € Set is an isomorphism.”. Is this claim true or
false? Is at least one of the two directions, meaning = or <, correct?

Exercise 1.61 What is the skeleton of the category fSet from Example 1.497

Exercise 1.62 Let F € Hom(C, D) be an equivalence of categories. Show that f € C is monic
(or epic, or an isomorphism) if and only if F(f) € D is monic (or epic, or an isomorphism).

2. MONOIDAL CATEGORIES I — DEFINITIONS, EXAMPLES AND GRAPHICAL CALCULUS

We en Feynman diasrams for categories, but they are a 1 dimensional. So:

What are the right axioms to get a 2 dimensional diagrammatic calculus? )

S
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2A. Motivating example. If one considers the vertical composition of natural transformations
(1-7), then it seems there should be a second, horizontal composition :

—> G(Y) @ AN GF(x) <=, GR(Y)
(2-1) Tﬁv & ax T = (6®a)XT T(/@@a)y .
( ) o S0 F(X) —rg F(Y) GF (X) NN GF(Y)

As we will see, there is indeed such a second composition. --7 1‘4‘_"_\ W%

2B. A more down to earth motivating example. Recall from Definition 1.12 that we can
form the pair category Set xSet. Note that we have a functor

®: SetxSet — Set, ©((X,Y)) =XQY=XxY ®((f,g) =f®g="1xg,

where we already use the usual standard notation,meaning writing e.g. X ® Y instead of ®((X, Y)),

for these kinds of functors.

The functor ® is actually a bit better: it is a bifunctor. This mean that it satisfies an identity

rule and the interchange law, i.e. / a Og

(2-2) QX ®@ idy = idxey, (gf) (kh) = (g ® k)( @
Note the following: W .

This is only weakly associative, i.e.
~

&
X® (Y®2)@(X©Y) @ 2, but rather X (Y2 2kYX V) 97,

because the set X ® (Y ® Z) contains elements of the form (z, (y,z)), while (X® Y) ® Z

contains elements of the form ((;v, Y), z) é__,.—-—"'?
———

e Similarly, this operation has 1 = {e} as a unit, but it is again only a weak unit, meaning

®X#AXAX® 1L, but rather IX XX ZXQ L. ) C X) =X

2C. A word about conventions. As we have seen in the example above, there are two
operations for morphisms o and ®, but only one ® for objects. Recall, ¢f. Convention 1.1, that
we already abbreviate gf = gof, and we will do the same for objects:

——

Q

Convention 2.1 We will write XY = X ® Y for simplicity, and similarly we write -)f instead of
k € N factors of the form X ® ... ® X @

Convention 2.2 Although monoidal categories, functor etc. usually consists of a choice of
extra data, we will for brevity often just write e.g. C for a monoidal category. We also e.g. write
“C_is a monoidal categorv” when the choice of monoidal structure is clear from the context.

Convention 2.3 There will be several places where we have two or more monoidal categories
with potentially different structures. However, in order not to overload the notation we will write
e.g. 1 for all of them instead of for example 1.

a—
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2D. Basics. The definition of a monoidal category is a mouthful (but we will get rid most of the

complication later in Theorem 2.32):

Definition 2.4 A monoidal category (C,®, 1, «, A, p) consists of

e a category C;

e a bifunctor (cf. (2-2))
®: CxC = C, ®(XY)=xY,0(fg)=fxg, )
called monoidal product; @ N\,-) y . ) [ N
e a unit (object) 1 € C; M) 4 & N

e a collection of natural isomorphisms

(2-3) oxyz {X(y2) = (x)2.) ﬂ(hG 5 = (¢ .LB(

for all X,Y,Z € C, called associators;

e a collection of natural isomorphisms

(2_4) Axl ]lXiX, pxlX]liX, A a - m

for all X € C, called left and right unitors; o /l = A
such that

(i) the Q equality holds, i.e. we have commuting diagrams

((xY)z)A

V ax,y,z®idy

(XY)(zZA) (X(Y2))A >

ax,k A’YZ,A

X(¥(z8)) — PR T— X((YZ)A)

for all X,Y,7, A € C. < X 4_1

(ii) the /\ equality holds, i.e. we have commuting diagrams

XY
ide widy L/

X(1Y) » (XL)Y

ax,1,Y

for all X,Y € C.

Remark 2.5 There is a hidden D equality, coming from naturality,
—————————————

axly\{lyz/

X'(Y'Z) (X'y"z'

f®(g®h)T D T(f@g)@h ,
XY)Z

X(YZ) oz (

which holds for all for all X,Y,Z € C and all f,g,h € C.
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Definition 2.6 A monoidal category C is called strict if all associators and \unitors are

identities, and non-strict otherwise. M

Example 2.7 Monoidal categories arise in the wild.

(a) As seen above, Set with ® = x and 1 = {e} is a non-strict monoidal category.
——

imilar]y, Vecy, or fdVecy with ® = ® and 1 = k are non-strict monoidal categories.

(c) The skeletons of the three examples above, with the same monoidal structures, are strict
monoidal categories.

Example 2.8 Monoidal structures on categories are far from being unique. For example, Vecy
and fdVecy, have another monoidal structure given by ® = @ and 1 = {0}, which is again

non-strict. We will however always use the monoidal structures in Example 2.7.(b).
P

Example 2.9 Diagrammatic categories such as 1Cob, 1Tan and 1State, cf. Examp]e 1.11,
have (often) a monoidal structure given by ® being juxtaposition, e.g.

SRS //ﬁ

and 1 being the empty diagram. These monoidal structures are strict. r& >
——

5D

The following is in some sense the motivation for the name “monoidal category”. Recall hereby ®

the Grothendieck classes Ko(C) of C, see Definition 1.44. : —_—

Proposition 2.10 For any monoidal category C its Grothendieck classes Ko(C) form a monoid

with multiplication and unit N

X][Y] = [xy], 1 =[1]. -

Proof. Directly from the definitions, e.g. the associator (2-3) and the unitors (2-4) descent to
associativity and unitality on Ko(C). O

Cot.g-gl\‘l/ ~— @ = Ok

Exa 2.11 Coming back to Example 1.45, Ko(deec]k) = N with [k™] — n is an isomor-

phism of monoids. d,‘_-\ (V (DW\ — AA_\ VMV

Example 2.9 gives important examples of strict monoidal categories, while crucial examples of

non-strict monoidal categories are the monoidal incarnations of groups. These are very different
from the ones we have, noting that every group is of course a monoid, seen in Example 1.6.(a):

Example 2.12 Let G be a W G W V—S-

(a) The category Vec(G) is the category with Ob(Vec(G)) = G, and whose morphisms are

only identities. The monoidal product is i ® j = ij, with i,j,ij € G. For example, if
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G:Z/ZZXZ£2ZI then we have 0) @ 0 (
(1 0l (1 o
0.0 (L) (01 (LY. @belcd=(atcbid

—

if1 =g,
if i # j.
Thus, as a category Vec(QG) is rather boring and the point is the monoidal structure,

which is strict, by construction. KQ (VQL ( 6\\ _,3 6

(b) We also have the k linear version Vecyk(G) of Vec(G). The only difference is that the
endomorphisms are now given by scalars times the identities:

. gy [l =
om i,j=<—
Vee(G)HJ 0 ifi].

The monoidal category Vecy(G) is strict.

LY

o ids
HomVec(G)(la J) = 0

(c) Let w € Z3(G,C*) be a 3 cocycle of G, see Remark 2.13. Then we can define a monoidal
category Vecg(G) exactly as above but with associator and unitors W
(2-5) ai e = w(i, g, k)idige A =w(l,1,4) 7 Hdy,  ps = w(i, 1,1)i /

Explicitly, for G = Z/27 we have H3(G,C*) & 7,/27 and the non-trivial w has w(1,1,1) 0{

—1. Finally, MVG:C}C(G) = Vecc(G), but for a non-trivial w € H3(G,C*) th
monoidal category Vecg(G) is panzstrict and skeletal at the same time.
S~—>P Ko =6
Remark 2.13 For a group G, one can define a cohomology theory H*(G,C*), called group
cohomology. As usual these are constructed from a certain cochain complex and H*(G,C*) =
ZYG,C*)/BYG,C*), so i cocycles modulo i coboundaries. All we need to know about group
cohomology are the 3 cocycles which are functions w: G x G x G — C* satisfying

w(g, k,Dw(i, 7k, Dw(i, j, k) = w(ij, k, Dw(i, 7, kl),

[ )
w(ij, V w] k)
[ ]

pictorially: .

w(i, 5, kl)\ K(Mk, 1)

o — oo
w(g, k1)

Comparing (2-6) and Definition 2.4 shows that scaling as in (2-5) satisfies the‘A and () equations. )

Remark 2.14 Note that for Vec(G) or Veck(G) we can also allow monoids M instead of
groups G, or work over rings S, but for Vec§ (M) one would need to be careful how to define it.
For example, our cocycles take values in C*, but one could let them take values in e.g. k*.

A good question is whether we car@rrlore” non-strict monoidal catego@since working with
associators and unitors is a bit messy. However, ixample 2.12.(c) suggests that one can not
simply go to the skeleton, although this works for monoidal categories such as fdVecy,. We can
only answer this question after we have a bit more technology at hand.
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2E. Feynman diagrams for monoidal categories. Motivated by Example 2.9, we get the

following Feynman diagrammatics for strict monoidal categories. That is, given a strict monoidal

category C, we can depict ® as juxtaposition and the unit as an empty diagram, e.g.

X Y A Y
(27) 1m0, XYoo , g@f«w» .<—® —
e ————— —
X Y YA X
——

Note the cute fact that we do not need to be careful with the relative heights in (2-7) since the
interchange law (2-2) implies that

YA X

We can also illustrate morphisms with many ® inputs nicely, e.g.

A B

(2-9) f: XYZ — AB s

X Y Z

However, note that there are two drawbacks. First, diagrammatic calculus, by its very definition,
is not suitable for non-strict monoidal categories. Second, although (2-8) looks promising, we do
not have a 2 dimensional calculus yet as we are not allowed to change the upwards orientation of
diagrams (recall Convention 1.3), e.g.

(2-10)

is not an allowed diagram.
Remark 2.15 One should stress here that (2-10) and the text around it is not a contradiction

to Example 2.9: in that example the diagrams actually are just abbreviations for upwards oriented
Feynman diagrams, e.g.

where o and * are the two generating objects of 1State, as we will see. (Note that the unit is

\omitted from diagrams, cf. (2-7).) 41 - ,0/

Example 2.16 By our convention that 1 is diagramipatically presented by the empty diagram,

it follows that every morphisms f: 1 — 1 is presented by a floating diagram:
— "‘

f:IL—>IL«w». a
j

d 1
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We discuss how to incorporate non-strict monoidal categories below; the flaw of having only
upward oriented diagrams will be taken care of in Section 4.

2F. Coherence for monoids. For starters, let us compare two definitions of a monoid M, with

Defl being the one that you will usually find in written texts: h '
Conet— Pl

(2-11) k} Defl H a set M ‘ multlphcatlon umt H (gf) = (hg)f l

Def2 H a set M ‘ multiplication ‘ unlt associativity | ( )

where “associativity” means that all ways of using parentheses agree. Both deﬁnitions have their
advantages: Def2 is arguably the correct definition, but Defl is much more useful in practice and
one only needs to check h(fg) = (hg)f instead of infinitely many bracketings. So one would like
to have the following, called coherence theorem for monoids, which is rarely stated:

< Theorem 2.17 The two definitions in (2-11) are equivalenD

Proof. Clearly, Def2 implies Defl. To see that Defl implies Def2, we argue diagrammatically.
The condition h(gf) = (hg)f can be pictured as a (1‘

h(gf) (hg)f
(2-12) l = A . 8K
hgf hot A

However, successively applying this equality gives

(Actually, these are not aligned, cf. (2-14).) Thus, all ways of putting parenthesis agree. O

The above can also be stated differently. Let K;, be the 1 dimensional CW complex (a.k.a. graph)
obtained by adding an edge to the disjoint union of the graphs in (2-13) (with n endpoints) for
each application of (2-12), connecting the corresponding graphs. For example,

(2-14)

Then the above can be rephrased as m(K,) = 0. =1
-—-—'—

2G. Coherence for monoidal categories. With respect to the discussion about coherence for

monoids, in particular, (2-11), here is Def2 for monoidal categories with Defl being Definition 2.4.

Definition 2.18 A monoidal category (C,®, 1, a, A, p) consists of

e a category C;
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a bifunctor (cf. (2-2))
®: CxC = C, &((XY)=xY,0((f,g) =f®g,

called monoidal product;

a unit (object) 1 € C;

a collection of natural isomorphisms
axyz: X® (Y® Z) =N (X®Y)® 2Z,

for all X,Y,Z € C, called associators;

a collection of natural isomorphisms
A 1X S X, py: X1 S X,
for all X € C, called left and right unitors;

such that “every formal diagram” made up of associators and unitors commutes.

We will not define what “every formal diagram” means precisely as this gets a bit technical.
Moreover, we will only sketch a proof of the coherence theorem for monoidal categories,

(also known as Mac Lane’s coherence theorem), which is up next, for the very same reason.

@zorem 2.19 The two definitions Definition 2.4 and Definition 2.18 are equivalent. )

Proof. Let us sketch how this can be proven, following the exposition in [Ka93]. (A completely

different proof is due to Mac Lane, see [Ma98, Section VII.2].) Let us focus on associators, the
idea of the proof with unitors is exactly the same.

The proof works by constructing certain polytope@sometimes called Stasheff polytopes.

These are 2 dimensional analogs of the graphs we have seen in the proof of Theorem 2.17, and
constructed from the two relevant commuting diagrams, [ | and Y ] equations. For example,

A

(AyAZ)A, A1(Az2(AzA4))

(A1 Az)(AzA,) At ((A2A3)Aq)

]

Ay (AsAs3) (AT A)A3)A,  (A(A2A3)A,

Kj K4 Ks

(the picture is taken from [Ka93]) so Ky is just the () equation. Then one needs to show that
1 (Kn) =1. O
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Note the analogy: In the 1 dimensional case (for monoids, categories etc.) one needs to assume
that K3 is “nice”, and all other polytopes will then also be “nice”. On the other hand, in the 2
dimensional case (for monoidal categories etc.) one needs to assume that Ky is “nice”.

2H. Monoidal functors, natural transformations and equivalences. First things first:

Definition 2.20 A monoidal functor (F,¢, ;) with F € Hom(C, D) consists of

e a functor F;

e a collection of natural isomorphisms

&xv: FX)F(Y) = F(XY),

for all X,Y € C;

e a natural isomorphism

&0 1= F(L);

such that

(i) the () equality holds, i.e. we have a commuting diagram

(FRFY))F(z) — 225D pxy)F(z)

QF(x),F(Y),F(2) ﬂ

F(X) (F(Y)F(2)) F((x)2) -

idF()ﬁ)‘@m} /@:,Y,Z)

F(X)F(YZ) » F(X(Y2))

&x,vz

for all X,Y,Z € C;

(ii) a left and a right [ | equation holds, i.e. we have commuting diagrams

1P(x) 222950, B pe) P01 0% (1)
/\m)l J’&lx ) PF(x)l l&m )
F(X) g F(1%) F(X) ¢ F(X1)
for all X € C.

Definition 2.21 A monoidal natural transformation «: F = G between monoidal functors
F,G € Hom(C, D) is a natural transformation such that

(i) for all X, Y € C there is a commuting diagram

XGY) —2 G(xY)

ox ®QYT TCVXY ;

(X)F(Y) —— FxY)
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(ii) there is a commuting diagram

v
Lemma 2.22 We have the following.

(i) If F and G are monoidal functors, then so is GF.

(ii) If o and B are monoidal natural transformations, then so is Pa. O
Thus, since the identity functor has an evident structure of a monoidal functor:

Example 2.23 We get further examples of | plain) categories.

(a) There is a category MCat, the category of monoidal categories. Its objects are

monoidal categories and its morphisms are monoidal functors.

b) There is a category Homg (C, D), the category of monoidal functors from C to D.
&

Its objects are monoidal functors and its morphisms are monoidal natural transformations,

with vertical composition (1-7).

Example 2.24 Given any category C, the category End(C) of its endofunctors isla strict

monoidal category:

e the composition o is vertical composition of natural transformations (1-7); o $

e the monoidal product on objects is G @ F = GF, i.e. composition of functors; ® E

e the monoidal product on morphisms is  ® o = Ba, i.e. horizontal composition of natural
transformation (2-1). —

Definition 2.25 C,D € MCat are called monoidally equivalent, denoted by C g D, if
there exists an equivalence F € Hom(C, D) which is additionally a monoidal functgr.

Example 2.26 FEquivalent monoidal categories need not, but can be, monoidally equivalent:

(a) Recall that fdVecy ~ Maty. Together with the choice of monoidal structures being the
usual tensor products, this is an monoidal equivalence fdVecy ~g Maty.

(b) We have Veci(G) ~ Vecy(G') are equivalent as categories if and only if #G = #G'.
However, Vecy(G) ~g Vecy(G') if and only if G = G'.

(c¢) Similarly, Vect (G) ~ Vect (G') holds always, i.e. regardless of the 3 cocycles. However,
Vecy (G) and Vec? (G) are rarely equivalent as monoidal categories. Explicitly, let
w be the non-trivial 3 cocycle of G = Z/27Z. Then Vecc(Z/2Z) ~ Vect(Z/2Z) but
Vecc(Z/2Z) #s Vect(Z/27).

|
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Remark 2.27 More general as in Example 2.26.(c), one can check that Vect(G) g Vecd (G)
unless w and w' are cohomologically equivalent, see e.g. [EGNO15, Proposition 2.6.1]. (The
philosophy is that H3(G,k*) “measures” how much choice there is to twist the associativity
constrain.) One can further show that Vect (G) is only monoidally equivalent to a skeletal
category if w is cohomologically trivial.

Again, we have:

Lemma 2.28 Any functor F € Homg(C, D) induces a monoid homomorphism

Ko(F): Ko(C) = Ko(D), [X] = [F(X)].

Further, if F is an equivalence, then Ko(F) is an isomorphism. O

We leave it to the reader to define monoidal analogs of notions which we have seen in Section 1

(whenever appropriate), e.g. what a monoidal subcategory is. We only mention here that
there are now three opposite categories (four, if one takes C itself into account):

Definition 2.29 For any monoidal category C, we define three additional monoidal categories

H C ‘ Cor ‘ Cco ‘ Ccoop ’ o
(2-15) Reversed o? || No | Yes | No | Yes -
Yes ®

Reversed ®7 || No| No | Yes

Using °P is called taking the opposite, cf. Definition 1.13, taking ° is called taking the cooppo-
site, and C°P is called the biopposite of C.

2I. Strict vs. non-strict. Let us start the comparison of strict and non-strict monoidal

categories with a crucial example of a strict monoidal category, very much in the spirit of
Example 2.24.

Definition 2.30 Given a monoidal category C, define the category of right C module

endofunctors, denoted by End.c(C), via: =

L S —

e the objects are pairs (F, p) with F € End(C) and natural isomorphisms pxy: F(X)Y —
F(XY) such that we have a commuting diagram

F((xY)2)
(2-16) F(x(Y2)) \ F(XY)Z
pk A@idz
F(X)(YZ) —grr— (FX)Y)Z

for all X,Y,Z € C;
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e the morphisms «: (F,p) = (G, p') are natural transformations o: F = G such that we
have a commuting diagram

GER)Y — 2 G(xY)
(2_17) Oéx@idyT TOZXY

F(X)Y o F(XY)
for all X,Y € C;
e the composition o is vertical composition of natural transformations.

Lemma 2.31 For End,c(C) as in Definition 2.30 the rules \ Z

e ® on objects is (G, p')(F, p) = (GF, p"), where

Py = (GFM)Y 2% G(rx)Y) S22 GR@xy) ; Q’)( .

e ® on morphisms is horizontal composition of natural transformations;

A
define the structure of a strict monoidal category on End,c(C) with 1 = Idc. SW

2

Proof. All appearing structures use compositions, either of maps, functors or of natural transfor- .

mations, which are associative by definition. Thus, the only calculation one needs to check is
that Sa satisfies (2-17) if @ and 8 do. This is straightforward. O

Comparing the definitions of a monoidal category (in particular, the /\ and the O equations)
nd of a strict monoidal category, the following seems to be surprising.

\ —
V Theorem 2.32 For any monoidal category C there exists a strict monoidal category Ct which
(e is monoidally equivalent to C, i.e. C ~g C*.

e

The statement of Theorem 2.32 is called strictification, and it allows us to very ofte

that we have to worry about associators and unitors. For example, we get diagrammatics for any

monoidal category by passing to C*.

Proof. The idea is as follows. As a matter of fact, every monoid M is isomorphic to the monoid
End (M) consisting of maps from M to itself commuting with the right multiplication of M; the
isomorphism is given by left multiplication. We will prove the theorem by copying this fact, i.e.
we will show that C*! can be chosen to be End_C(C).l

By Lemma 2.31 we have a strict monoidal category End.c(C), which has a left action functor
L:C—Endc(C), LX) =EX®_,or' )LE)=fo_.

Note that (2-16) for L is the () equation.

The functor L is an equivalence of categories, which we verify using Proposition 1.52.

e The functor L is dense since any (F, p) is isomorphic to L(F(1)).
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e The functor L is faithful, since L(f) = L(g) implies f ® id; = g ® idy, which in turn gives

f = g, by naturality of the unitor p. That is, commutativity of

X1 —2* . x 1 —” o x

f®id1i J{f@idl s g®id1i

Y]lT>Y YI — Y

with bottom and top being isomorphisms and f ® idy = g ® idy implies f = g.

e Given a morphism o € End,c(C), define a morphism

—1
Px ag

f=X s X1 > Y1

PY

Direct verification shows that L(f) = «, thus L is full.

o Gy: XO(Y®_),idx®ay! agy ) = (X@Y

)

—_y—

Finally, we define the structure of a monoidal functor on L via defining

)

! One verifies that this satisfies the axioms in Definition 2.20.

@, axy

e ¢1: (Ide,id) = (I®_, ail ) to be given by the inverse of the left unitor .

) to be the associator ayy, ;

0

Remark 2.33 Alternatively, Theorem 2.32 can be proven using Theorem 2.19, see e.g. [Ma98,

Section XI.3].

2J. More graphical calculus. Recall the rules for diagrammatics of strict monoidal categories,

ie. (2-7) and (2-9). The formal rule of manipulation of these diagrams is:

“Two diagrams are equivalent if they are related by scaling

(2-18)

their diagrams are related by (2-18).

Proof. This basically boils down to (2-8).

or by a planar isotopy keeping the upwards orientation.”

Theorem 2.34 The graphical calculus is consistent, i.e. two morphisms are equal if and only if

Example 2.35 Note that the condition of keeping the upwards orientation is a bit strange.

In fact, it is probably not needed and can be dropped. The condition of only allowing planar

isotopies is however crucial and e.g.

<

D) C2

v (1),

A )

present different morphisms in general.

! Let us finish by showing the first hints why the diagrammatic calculus is very useful.

7~/

|

\\

Proposition 2.36 For C € MCat the space Endc(1) is a commutative monoid.

E——

;g'
\V
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-) f f
::‘\:—)::
O «@

proves commutativity. O

Proposition 2.37 For C € MCat and for any X,Y € C, we have commuting actions

Endg(1) © Home(X,Y) © Endc(1),

given by

Y Y Y Y
X X X X

Thus, Homc(X,Y) s an Endc(1)-bimodule.

Proof. Associativity and unitality of the left action reads as

Y Y Y Y Y
X X X X X

By reflecting the diagrams right to left, the same follows for the right action. Finally,

A Y Y YA
e |
X J/ X L X

shows that the two actions commute. O

Proposition 2.38 The bimodule structure on Homc(X,Y) from Proposition 2.37 is compatible
with o and ®.

Proof. This is Exercise 2.43. O

2K. Exercises.

Exercise 2.39 Explain explicitly what the four opposites from (2-15) are for the monoidal
categories 1Cob, 1Tan and 1State.

Exercise 2.40 Verify that End(C) is a strict monoidal category, cf. Example 2.24.

Exercise 2.41 Show that Vecy(Z/27) #g Vect(Z/27Z) if w is the non-trivial 3 cocycle. What
happens for k = Fo compared to k = C?

Exercise 2.42 Verify that End.c(C) is a category, cf. Definition 2.30.
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Exercise 2.43 Prove Proposition 2.38 diagrammaticallx. Hereby, compatibility means
£.Gh) = (f.)h=j(f.h), f.(he@j) = (.o

and vice versa for the right action.

3. MONOIDAL CATEGORIES II — MORE GRAPHICAL CALCULUS

The next question we will address, which will in particular give a rigorous, non-topological,
construction of 1Cob, 1Tan and 1State, is:

How to construct monoidal categories or algebraic objects using diagrammatic calculus?

3A. A word about conventions. This section is all about the algebra of diagrams.

Convention 3.1 Note the terminology, which we will use several times: “free as an ABC” means
that no relation except the ones forced by “being an ABC” hold, and we will write “generated by
XYZ” for short instead of “generated as an ABC by XYZ”. Moreover, we sometimes do not define
what “generated (as an ABC) by XYZ” means precisely as it will be clear from the context, see
e.g. Example 3.5.(b) for a non-defined phrase.

Convention 3.2 We usually simplify notation involving generators and relations as long as no
confusion can arise. For example, all generators and relations will be elements of sets, but we
omit the set brackets to make the notation less cumbersome.

Convention 3.3 All diagrammatics in this section are defined by generators and relations, in
particular, not topologically. However, to simplify illustrations we draw diagrams sometimes in a
topological fashion, and say some relations are mirrors of one another, e.g. the relations in (3-2)
without mirrors are

S 1§ PRUNR-ARNM

Convention 3.4 If certain notions only make sense under specific assumptions, then we tend
to not to repeat these assumptions, e.g. we write “algebras” rather than “algebras in monoidal

categories’. K of e\= M
N @A

3B. Generator-relation presentation for monoids. Recall the following constructions.
——

Given a set S, we obtain the free monoid generated (as a monoid) by S, denoted by (S | (),
defined by: -

e clements are finite words s;,...s;,, where s;; € S are the letters, and r € N;

e composition is concatenation of words; j-_ ! ] h F
— !

e the unit is the empty word 0; qq b B A b a bl b

e associativity is the only relation among words.

The elements of S are called generators (of (S | 0)). | l
w-w = vww

&lo— \3-\ akb
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Similarly, the free group generated (as a group) by S, also denoted by (S | 0), is defined

verbatim, but having additional formal letters 31'_1 satisfying s;s; 1= sl-_lsi

Example 3.5 We stress that being free depends on the adjectives: = ° < © > q

- e 1{-3 :

) (a) The free monoid generated by S = {e} is isomorphic to N, while the free group generated

yS—{ot1s1somorph1ctoZ o - A ._,9(/]'0\
A" 7 — - *—00 A )
(b) The free commutative monoid generated by S = {e,x} is isomorphic to while the free

monoid generated by S = {e,*} is not isomorphic to N. M
‘h) ab=he h - b
Moreover, fix two sets S and R, where C '4 L
R C (S| 0) x (S| 0). aba:z ba )

The elements of R_will be written as r = r’ for r,7’ € (S | §) and we call them relations. We
obtain the monozd generated by S with relations R, denoted bas the quotient

(SIR) = (S|0)/R,

meaning that two words in (S | ) are equal in (S | R) if and only if they can be obtained from

one another by using a finite number of relations from R. Said otherwise, taking the quotient by

the congr enerated by R.
\ If M= (S| R), then we say S | R give a generator-relation presentation of M. > l

Example 3.6 Again, this depends on the adjectives: . v = d \ = .

(a) For S = {e} andIR = {ee = 1}]We get (S|R) = Z/QZ, regardless of whether we want to
view this as being generated as a monoid or as a group.

(b) The symmetry group of the triangle, i.e. the dihedral group 15(3) of order 6, has the

generator-relation presentations

C— T
‘5/ > I(3) = (a,b ] a® =1,b° = l,aba:Q% (s,t|s*=1,t* =1, sts = tst),

—

“-Where the middle expression is read to be as a group, while thexight expression can be
either as a monoid or a group.

A €

The set-theoretical issues of the following lemma are as usual ignored.

Lemma 3.7 Fvery monoid has a generator-relation presentation. (1 6

Proof. Take S =M and let R be given by all equations coming from multiplication in M. O

The presentation obtained via Lemma 3.7 is, of course. useless. In general it is hard question

whether one can find a good generator-relation presentation for a given monoid, group etc. But
it is a good question, since we have the following evident, but useful, fact:

Lemma 3.8 7o define a morphism f: (S|R) — M to any monoid M it suffices to

—

o specify f(s) for s € S;

e check that f(r) = f(r'") forr =1 € R. ,_\ L,‘W O
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Example 3.9 In the free case we have R = (). Thus, every choice f(s) for s € S defines a

morphism, regardless of M.
3C. Generator-relation presentation for monoidal categories. We generalize the above:

Definition 3.10 A set T is called a set of morphism generators if it consists of triples
(f,X,Y). Such a set is compatible with a set S if

X, Y€ (S|, )(.@}/@2 - XY?‘

in which case we call S a set of object generators.

Of course we think of elements of S and T as being objects and morphisms f: X — Y, respectively.

Definition 3.11 We define words as follows.

e An object word (in S) is a word in (S | ), which can be concatenated as for monoids.

e A morphism word (in T) is defined recursively as follows. A morphism word of length
1 is either an element of T or of the form (idy, X,X) for X € (S | ). Suppose all morphism
words of length n > 1 are already defined. A morphism word of length n + 1 is either of

m@ the form
LB

r‘\o (gf,X,Z) (o concatenation),

e (f®h,XA,YB) (® concatenation),

where (f,X,Y), (g,Y,Z) and (h,A,B) are morphism words of length n. The two ways to
create new words are also the two possible concatenations of morphism words.

We denote the collections of objects and morphism words by (S| 0) and (T | 0), .

Definition 3.12 Given sets S and T of object and morphism generators, we define the free
strict monoidal category (monoidally generated) by S and T, denoted by (S T | 0), a

e the objects are (S| 0); /e J‘_,‘ VDVA
e the morphisms are (T | D)o x; a A"\ﬂ \/\fb% ¢ ﬁ

e composition is o concatenation of morphism words; <

e the monoidal product is ® concatenation of object respectively morphism words;

e the unit is 1 =1 € (S| 0);

e the relations among object words are

X(YZ) = (XY)Z, 1X =X=XI,

where X,Y,Z € (S| 0);

e the relations among morphism words are
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feEgeoh)=f®g)oh idjef=f=f®id,
idx ® idy = idxy, (gf) ® (kh) = (g @ k)(f ® h), ?

where X,Y € (S| 0) and f,g,h € (T | 0)o e

Remark 3.13 The last two bullet points in Definition 3.12 should be read as follows. The only
relations among object words are those ensuring that (S | ()) is the free monoid generated by
S. The only relations among morphism words are those ensuring that o is a composition in a
category and ® is a bifunctor, i.e. (2-2), for a strict monoidal category.

STR

Example 3.14 We have ({e},0 | @) ~g Vec(N), the latter being the evident adaption of
Example 2.12.(a) to the monoid N.

As before we can choose R % L
RC(T[0oox (T Oos. AP,

The elements of R will be written as r =1’ for r,1’ € (T | 0))o 5 and we call them relations.
———— ———

Definition 3.15 We define the strict monoidal category generated by S and T with
relations R, denoted by (S, T | R), as the quotient

(SaT | R> = <S’T | 0>/R‘7

meaning that two morphism words in (S, T | @) are equal in (S, T | R) if and only if they can
be obtained from one another by using a finite number of relations from R.

Definition 3.16 If C ~g (S, T | R), then we say S, T | R give a generator-relation pre-

g

sentation of C.

P

The following two lemmas can be proven verbatim as for monoids, using beforehand Theorem 2.32
for Lemma 3.17 if the monoidal category of interest is not strict.

Lemma 3.17 FEvery monoidal category has a generator-relation presentation. U

Lemma 3.18 To define a monoidal functor F: (S, T | R) — C to any strict monoidal category
C it suffices to

e specify F(X) for X € S;

o specify F(f) forf € T;

e check that F(r) = F(r') forr =1 € R. O

Example 3.19 In the free case again any choice works, regardless of C.

3D. Examples for generator-relation presentations. Recall that we write X* = X...X.

R ——
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Remark 3.20 We stress that all diagrams we will use below are not topological objects, but
rather formal symbols. However, as we will se%hmk of them as being topological

objects, see also Convention 3.3. I
Xl © Iwl= 11Xt
‘ Example 3.21 The categomof symmetric groups Sym can be defined as follows. We let

Sym = (S, T | R) with l o e IOX 0‘0\

(3-1)

Remark 3.22 There are extra relations which are implicit, e.g.

Y

We do not need to add this relation to (3-1) since 1t follows from the interchange law, cf. (2-8)

It is a (non-trivial) fact that Sym ~g Sym®” C 1Cob, see Example 1.50, and the above can be
seen as a purely algebraic construction of the (topologically defined) category Sym®?

Example 3.23 The (generic) Rumer—Teller—Weyl category TL (also known as the geniric

Temperley—Lieb category, hence the notation) is defined as follows. We let n @
f\:]l—>02,\j: 02—>]1' «
Again, its non-trivial, but visually clear, that TL is a monoidal subcategory of 1Cob. \J

Example 3.24 The (generic) Brauer category Br is defined as follows. We let

_;T><._>. r\n_>.,u._>]1 JQ‘JU

oA

O KU
Example 3.25 With Lemma 3.18 it is easy to define monoidal functors 6
Sym Sym — Br, o»—>o>< >< 7\

IBL: TL — Br, e = o,/ "\ = M\ — \U.

These are dense by construction, and with a bit more work one can show that they are faithful.
Thus, Sym and TL are (non-full) monoidal subcategories of Br.

The punchline is that{Br ~g 1Cob.Y.et us state this as a theorem, whose proof we will sketch,
highlighting what is easy and what is non-trivial about this statement.

Theorem 3.26 There exists a monoidal functor

(3-3) R: Br — 1Cob, o»—>o,><H><,r\Hr\,u|—>u.
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I The functor R is dense and fully faithful, thus, Br ~g 1Cob.

—
Crucial: the left diagrams in (3-3) are just algebraic symbols, while the right diagrams are just
placeholder symbols for topological objects.

Proof. There are several things to check, namely:

(a) The functor R is a well-defined monoidal functor. Using Lemma 3.18, this is just the
observation that the Brauer relations (3-2) hold in 1Cob, which is easy.

(b) That R is dense is clear.

(c) That R is full is not hard: Every 1 dimensional cobordism in 1Cob has locally a Morse
point, or not. But Morse points in this situation are just caps or cups. Moreover, taking
the immersion (into the plane) of the cobordism into account, locally a 1 dimensional
cobordism in 1Cob is of the form

generically: |, immersion: ><, Morse: M\, \/.

In particular, we have a Morse positioning of such cobordisms. Here is an example:

where the horizontal and dashed lines indicate height levels. Said otherwise, crossings,
caps and cups generate 1Cob, so R is full as all generators of 1Cob appear in its image.
(Note that already here one would need to be precise what one means by a “1 dimensional
cobordism”. But this is not the hard part.)

e

(d) The proof that R is faithful is hard and painful, because one needs to show that the
topologically defined 1Cob has the Brauer relations (3-2) as generating relations. (See

also Exercise 3.45.) O

Remark 3.27 By the same reason as in (d) in the proof of Theorem 3.26, it is hard to write
down any functor 1Cob — Br. That is, the inverse of R is of course

R™':1Cob — Br, e ¢, % = B, M= MU = \U-

But showing that this is well-defined bONg down to (d).
There are several variations of the Brauer category Br, e.g. with orientations, which we will
revisit later. For now we are brief:
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Example 3.28 The (generic) quantum Brauer category gBr, the (generic) oriented
Brauer category oBr and the (generic) oriented quantum Brauer category oqBr are
defined verbatim as the Brauer category, with a few differences:

e the adjective “oriented” means that one has two object generators e and@nd one has
oriented caps and cups generators, i.e. *

[
(3-5) e 1, N\ (0F)e =T, AT — o0, \ A1 — (0¥)e; ,1,
L ]

x

e the adjective “quantum” means that one distinguishes over- and undercrossings, i.e.

(3-6) overcrossing: %, undercrossing: N \/ \/
~ [/

All of these have analogs of Theorem 3.26, e.g. qBr ~g 1Tan.

T

Example 3.29 We also have qSym, the category of braids, being the analog of Sym with

crossing as in (3-6), but as a subcategory of qBr. Similarly, we also have oTL, the oriented

version of TL, with oriented diagrams as in (3-5). y
AN

S

3E. Algebras in monoidal categories. Next, we aim to generalize the notion of an algebra.

Definition 3.30 An algebra A = (A,m, i) in a monoidal category C consists of

e an object A € C;

e a multiplication, i.e. a morphism m: AA — A;
T ——

e a unit, i.e. a morphismi: 1 — A;

——

such that

(i) we have a commuting diagram

A coalgebra C = (C,d, e) in a monoidal category C is, by definition, an algebra in C°P.

Of course, the three commuting diagrams in Definition 3.30 are associativity (recall that (3-7)
implies honest associativity) and unitality, but in the context of (not necessary strict) monoidal
categories. Similarly for coalgebras. The Feynman diagrams can be simplified:

A A A A A A A A

*-m w*, 6(-\/\/-)1’ I;IMY7 @M-)T,

A A A A A A A A
——

A 1

A b
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are the structure maps and

A (o -

present associativity and counitaltty, respectively.
Example 3.31 In any monoidal category 1 has the structure of a (co)algebra. ¢ ¢

Example 3.32 Algebras and coalgebras generalize many notions:

(a) Algebras and coalgebras in Set are monoids and comonoids.

(b) Algebras and coalgebras in Vecy, are algebras and coalgebras over k.

Example 3.33 The objec@é Br (the Brauer category, see Example 3.24) is an algebra with
structure maps

—%m:df-.\_\. : ,i=w b ;‘;

Associativity and unitality are topologically clear:

AR AR ST e

Similarly, the object o> € Br is also a coalgebra, by mirroring the diagrams.

Definition 3.34 A Frobenius algebra A = (A,m,i,d,e) in C is an algebra (A,m,i) and a
coalgebra (A, d,e) in C satisfying a compatibility condition, i.e. we have commuting diagrams

-1

A(AR) — MMM (An)A (AM)A — MM p(ah)
(3-8) idA®dT lm@idA ’ d®idAT lidA@m :
AR~ A ——— A AD — A ——— AA

Diagrammatically (3-8) is

Example 3.35 Frobenius algebras in Vecy are classical Frobenius algebras over k.

Lemma 3.36 Let A be a Frobenius algebra in a strict monoidal category. Define

A A A A
~=A. VY=Y
A A

A A

nN=k. V=¥
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Then the following hold, including mirrors:

R

A A A A

e

A A A

Thus, Frobenius algebras are topologically in nature since Lemma 3.36 shows that the diagrams
for Frobenius algebras satisfy all planar isotopies.

Proof. This is Exercise 3.46 g

Remark 3.37 There is of course also a non-strict version of Lemma 3.36 which looks almost
exactly the same.

3F. Modules of algebras. Arguably modules of algebras are more interesting than the algebras
themselves. So:

Definition 3.38 Let A be an algebra. A right A module M = (M,._) in C consists of

e an object M € C;

e a right action, i.e. a morphism ._: MA — M;
—

such that

(i) we have a commuting diagram

M(AA) b (MA)A
idM®ml l(-—)@icu 3 Mo
MA y M 4 MA

(ii) we have a commuting diagram

_—
M1 e MA

equivariant if it intertwines the right A action, i.e. f(._) = (._)f.
e

Definition 3.39 Let M and N be right A modules. A morphism f: M — N is said to be A/

In pictures these notions are again nice:

1
3

N N

M M

M
>\ - ,/\\ ’ \.:
M A A M A A M

P ——

R

|
\\
=

Lemma 3.40 The composition of A equivariant morphisms is A equivariant.
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Proof. The proof in diagrams is easy:

@ =

2\

xy-e-

The non-strict version is thus also true. O

Since the identity is always A equivariant, we get another category:

Example 3.41 We have a category Modc(A), the category of right A modules, whose
objects are right A modules and morphisms are A equivariant morphisms. \/

Example 3.42 All of these notions generalize the classical notions of algebras, modules and
their categories if we work in Vecy.

We leave it to the reader to write down the definitions of other classical notions from algebra
in the categorical sense, see also Exercise 3.47. Let us instead finish with a diagrammatic proof
generalizing a classical fact which is actually messy to prove classically.

Proposition 3.43 Let A be a Frobenius algebra in C. Then every right A module has a
compatible structure of a right A comodule and vice versa.

Proof. We can assume that C is strict. Let M be a right A module. Then we define the coaction
(s—)c via

M

This defines a right A comodule since, by Lemma 3.36, we have e.g.
M A A M A A M A A M A A

) LY

)
M M M M \/

and unitality follows mutatis mutandis. By mirroring the diagrams we can get from comodules
to modules. O

3G. Exercises.

Exercise 3.44 Let Sym,, be the symmetric group of the set {1,...,n} for n > 2. Show that
Symn = <81, ey Sp—1 ’ 312 = 1, 8;Si+18; = Si:l:lsisi:lzlysisj = sjsi fOI“ ‘Z —]‘ > 1)

as groups. Deduce that Endgym(e") = Sym,,.
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Exercise 3.45 Recall the construction of Brauer category Br from Example 3.24. Prove that
the defining relations (3-2) imply that the following hold in Br:

where the thick red strands represent an arbitrary number of straight strands.
Exercise 3.46 Prove Lemma 3.36.

Exercise 3.47 Think about how to define right, left, bi(co)modules, their homomorphisms,
subalgebras, ideals, submodules, etc. in the categorical setting, and choose your favorite notion
and write down its categorical definition.

Exercise 3.48 Verify that 2 is a Frobenius algebra in Br, cf. Example 3.33. \/

4. PIVOTAL CATEGORIES — DEFINITIONS, EXAMPLES AND GRAPHICAL CALCULUS

Recall that Feynman diagrams for monoidal categories in general need to be upwards oriented,

i.e.gthev do not have Morse-pe#rrs. Sor
What kind of categories allow Morse points in their graphical calculus? ?

4A. A word about conventions. This section is all about duals.

Convention 4.1 We will use the symbola[or duality. Because it is always confusing, let us
state right away that right duals will have their x on the right, and left duals on the left, e.g.

object X, right dual X= left dual ®X.
-— — —~ —

If the left and the right dual agree, then we use the right dual _* as the notation, and similar
conventions for traces and dimensions.

Convention 4.2 Again, there will be several choices which we tend to omit when no confusion
can arise. Moreover, whenever we write e.g. X* we implicitly assume existence of the right dual.

Convention 4.3 For pivotal categories we use the convention that strands labeled X are directed
upwards, and those labeled with duals are oriented downward, see (4-13). In particular, it suffices
to label each strand once and in contrast to the general situation, cf. Convention 1.3, we usually
orient diagrams.

Convention 4.4 From now on we will use diagrammatics most of the time, and leave it to the
reader to work out some of the non-strict versions of definitions and statements. For diagrams we
use the terminology “taking mirrors” as before, but this also includes orientation reversals, e.g.

original 'E mirrors: Q . 9@‘ L/—}\) %

Convention 4.5 IfEndc(1) is e.g. k , then we often identify the endomorphisms with actual

elements, e.g. instead of “multiplication by a € k” we just write a.
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4B. Duality in monoidal categories. Since duality is a powerful concept, we start with:

474
Definition 4.6 @right dual (X*,evy, coevy) of X € C in a category C € MCat consists of

e an object X* € C;

e a (right) evaluation evy and a (right) coevaluation coevy, i.e. morphisms

A

(X9 x
4-1 ev XX* — 1 lev coevy: : 1 — (X* th;
1) x L N ()

-y
-

]

-

Xx ~>/_]]_ N —- X

such that they are non-degenerate, i.e.

)e(")
- b (@ iy ) s
?‘*

S1m1]ar]y,neft dual (*X,ev*, coev¥) of X € C in a category C € MCat consists of

e an object *X € C;

e a (left) evaluation ev* and a (left) coevaluation coev*, i.e. morphisms

(4-3) evi: *XX — 1

( \ *X *X X

(4-4) X =

We call (4-2) and (4-4) the zigzag relations.

oY

Remark 4.7 Note that we do not distinguish the right and left (co)evaluation in coupons since
the position of x will determine whether its right or left, cf. (4-1) and (4-3).

The following justifies to say “the” right and left dual.

A4

QL
Lemma 4.8 Right and left duals) if they exisg are unique up to unique_isomorphism.

.
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Proof. Let X* and X* be two right duals of X. These come with evaluation and coevaluation
morphisms, evy and coevy, and vy and €oevy, respectively. We use these to define two morphisms

X*

ey

1
.
I
>

|1
R
which are inverses by the zigzag relations. Moreover, it is easy to check that f is the only

isomorphism which preserves the (co)evaluation. The proof for left duals is similar. ]

Lemma 4.9 Fiz C € MCat.

(i) The monoidal unit is self-dual, meaning
[ eee——___J

1=1*=*1.

————

(ii) For any X € C which has a right and a left dual we have
———— C—
4-5 (X)) =X ()
(4-5) (X*) =x=("X) I:

(iii) If X € C has a right dual, then X € C® has a left dual, and vice versa.

Proof. (i). This follows since we can take the unitors as (co)evaluation morphisms.

(ii). The isomorphisms are similar to the ones in the proof of Lemma 4.8, where we again use the
zigzag relations to show that they invert one another.

(iii). Clear by comparing (4-1) and (4-3). O

Lemma 4.9.(iii) is the first instance of what we call right-left symmetry. It says in words that
“Every statement about right duals has a left counterpart and vice versa.”. I

|

"

4C. Some first examples of duals. The following can be taken as an example or as our
definition of adjoint functors:

Example 4.10 In the monoidal category End(C), cf. Example 2.24, the right dual F* of a
functor is called its right adjoint, while the left dal *F is called its left adjoint.
——————

Duals in general might not exist, e.g. not every functor has adjoints. A more down to earth

example is:

Example 4.11\{% every objects in Vecy has duals. However, if X is finite dimensional, then

X* = *X is the vector space dual with the (co)evaluations being the usual maps, e.g.
C————

evy: XX = k, (z,y") = y*(x), coevx:k — (X)X, 1— > ", 2] @,
———— - - S —

where {x1,...,x,} and {z7,...,x}} are choices of dual bases of X and X*.
Example 4.12\/1\/[05t of the diagrammatic categories which we have seen have duals. For
example, in TL or Br the generating object e is self-dual. More precisely,

- o e—e"="e, ev,=cv' =/, coeve=coev’ =\_J, {

N u

I

of ¢

7l
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(] %
L]
where the evaluation and the coevaluation are cap and cup morphisms, as illustrated. In the
algebraic model of 1State, the oriented quantum Brauer category oqBr, we have * = *e with

(3-5) being the four (co)evaluations.

Note that duals, if they exist, are unique, but the evaluation and coevaluation are not unique. In
particular, they usually can be scaled if we are in a k linear setting. The crucial example where
scaling will matter later on is: Q Q

¢

Example 4.13 Let us consider Vec(Z/21Z) for the non-trivial 3 cocycle w. In this category

all objects are self-dual, i.e. 1 = 1¥ = *1 and —4\)
11" =0, (1)1=0.

But the object 1 _admits several (co)evaluations, which we explain for the r1ght duahty, the left

being similar by right-left symmetry. The (hidden) associativity constrains in (4-2) are

1 1d1®coev! 1(11) 1,1,1 (11)1 evi®idy 1 ’ 1 coev ®1d! (11)1 ay 1,1 1(11) idi ®ev 1
u

Thus, recalling that o 1,1 gives a sign whatever non-zero scalar a € C* we like to scale evy with,
we then need to scale coevy by —a~ . The minus s1gn is the crucial part here: one can also scale
the (co)evaluations for 0, but then only with a and a™". — { ?

Duality is actually a functor, as we will see next.

R B
’l/? \ v oo
Definition 4.14 For (f: X — Y) € C, in a category C € MCat, its right {*: Y* — X* and ]’ftx

mate *f: *Y — *X are defined as
—

Lemma 4.15 Fiz any C € MCat. Then, for all X,Y,f,g € C: o y
(i) We have ()" = (£)(g") and *(gf) = (")("g). Y
(ii) We have (XY)* = (Y*)(X2 and *(XY) = (*Y)(*X).

Proof. This is Exercise 4.67. O

The most useful consequence of having duals in practice is:

Theorem 4.16  Let X,Y,Z € C be objects in any C € MCat. Then we have
Homc (XY, Z) = Home m)z), Homc(YX,Z) = Home (Y, 2(*X)),

Homc(Y,ZX) = Homc(YX",Z), Homc(Y,XZ) = Homc (XY, Z).

(Of course assuming that the corresponding duals exist for X.) l

How [ X, Y\ 2 B (ar (X7)Y]
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Proof. Let us construct isomorphisms for the first case, all others cases are similar. We define

X* Z Z
z Xz
H ) H e
X
X Y y Y X v

That these are inverses follows from the zigzag relations. O
Proposition 4.17 Let F € HOC,D). If X* is a right dual of X € C, then F(X*) ds a right
dual of E(X) € D. Similarly for left duals. -

b ——

Proof. By right-left symmetry, it suffices to define

-1
eviy: FOOF(X®) —2 pxr) %, pyy —= g
£ AN
coevpy: T — s F(1) 2 p((xn)X) — s BXF(X)
These are the corresponding (co)evaluations, as a straightforward calculation verifies. ([l

4D. Rigidity. Recall that duals might not exists. This motivates:

Definition 4.18 A category C € MCat is called rigid if every object has right and left duals.

Example 4.19 Several examples which we have seen are rigid.
(a) fdVecy, is rigid, cf. Example 4.11.
Q)) is

(b) Vect (G) (for the duration, we will always use tbe k Imear incarnation of Vec*(
———— 1

rigid with g~ = g* ="*g. =
= 99

(c) The diagrammatic categories TL and Br are rigid with a self-dual generator ..

(d) The diagrammatic categories oTL and oBr are rigid with e* = *e.

Let X** = (X*)* and **X = Z(*X) denote the double duals. Note that all the examples in
Example 4.19 satlsfy

(4-6) @ XK= g ( X‘) = X

This is not always true:

Example 4.20 The free rigid category generated by one object e has

(4_7) .*%*. _ .**%.%**.

e ——

where (4-6) fails exist, but are not easy to construct.

/Vﬁ"c»\/guw}/) Xz x ¥

\The proof of (4-7) this requires non-trivial arguments, i.e. by constructing models: examples
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Example 4.21 By Proposition 4.17, we see that monoidal functors are already the correct
morphisms between rigid categories, as long as we do not care for the choices of (co)evaluations.
Thus, we get the category of rigid categories RCat.

Lemma 4.22 [f C € RCat, then C% C® C“? ¢ RCat

Proof. Immediate by taking mirrors of diagrams. U

Lemma 4.15 shows that we can define important functors between rigid categories:

Definition 4.23 For C € RCat we define right and left duality functors

i C o COP X=X Y, CYP 5 C, X=X f =
Ny s — D ca— ——

Proposition 4.24 For C € RCat we have equivalences

(4-8) R e IR i = e}
(4-9) (L) =2Ide,  (2)* = Idgeoor.

Proof. As usual it suffices to prove (4-8) for the right duality. By Lemma 4.15 we see that _* is a
well-defined monoidal functor, while Theorem 4.16 shows fully faithfulness of _*. Moreover, (4-5)
proves that _* is dense, thus, an equivalence. The second part (4-9) follows easily from (4-6). O

Remark 4.25 The only reason to define the right duality be a functor from C to C“°P and
the left duality the other way around is to get a cleaner statement in (4-9), but for the duration
we rather have the left duality also defined to be from C to C°P. Furthermore, alternatively
right and left dualities also give equivalences (either way) C ~g C°.

Immediate consequences of Proposition 4.24 are:

Proposition 4.26 For C € RCat we have equivalences

(4-10) o ALY o =Y

— —_— —
Both equivalences can also be stated between CP and C°P, C° and C°, or C°P and C°P, [0

Proposition 4.27 For any rigid category C its Grothendieck classes Ko(C) form a monoid,
with multiplication and unit as in Proposition 2.10, and two homomorphisms

[-7]: Ko(C) = Ko(CU), [X] = [X7], ["-]: Ko(C) = Ko(CUP), [X] = ["X].

Moreover, they are inverse of one another.

Proof. By Lemma 4.15 we have
[(xY)*] = [Y"X*] = [Y*][x"]
and we get the left analog by right-left symmetry. They are inverses by (4-5). d

Example 4.28 On Ko(fdVecy), cf. Example 1.45, the two homomorphisms [_*| and [*_] agree
and are the identities.
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Let us now take care of the choice of (co)evaluations:

Definition 4.29 A functor F € Homg(C, D) for C,D € RCat is called rigid if

Flevy) = evp), Flcoewx) = COeVE(x), F(E:XX) =evP® Feoev®) = coev?'™®),

holds for all X € C.

The following lemma is immediate.

Lemma 4.30 The identity functor on a rigid category is rigid. Moreover, if ¥ and G are rigid
functors, then so is GF. O

Example 4.31 We get a (dense, in the monoidal sense, but non-full) subcategory R*Cat C
RCat, the category of rigid categories and rigid functors. Also, we have a (non-dense,

but full) subcategory Hom,(C,D) C Homg(C, D), the category rigid functors.

Definition 4.32 C,D € RCat are called equivalent as rigid categories, denoted by C ~,

D, if there exists an equivalence F € Hom,(C, D).

Example 4.33 Recall that Vec¢(Z/27) allowed several choices of (co)evaluations, some of ¢
which differ by signs. A monoidal functor does not take these choices into account, so they are
all monoidally equivalent. However, Lemma 4.62 below will show that not all of these choice give

-
~, equivalent rigid categories.

T
4E. Categorical groups. In some sense, see also Example 4.19.(b) or Exercise 4.69, rigid

categories are like categorical versions of groups. Let us make this a bit more precise.

Definition 4.34 Let C € RCat. Then X € C is called invertible if evy: XX* — 1 and
P e Y
coevy: 1 — (X*)X are isomorphisms.
e —

That Definition 4.34 seems to favor right over left is a mirage:

Lemma 4.35 IfX,Y € C are invertible, then:

(i) We have X* = *X.

(it) The object X* is invertible.

(iii) The object XY is invertible.

Proof. (i). Note that we have XX* = 1 = (X*)X by invertibility of X. Thus, taking duals we also
have *XX = 1 = X(*X), which we can put together to get X* = (X*)X(*X) = *X.

(ii). Clear by (4-5).

(iii). This follows since evyy, respectively coevyy, can be defined as compositions of evy with evy,
respectively of coevy with coevy. O
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Example 4.36 Lemma 4.35 says that we get a monoidal category Inv(C) as well as a group
Inv(C) = Inv(Kq(C)) of invertible objects.

Definition 4.37 Let C € RCat. Then C is called a categorical group if Inv(C) = C.

Example 4.38 With respect to the examples in Example 4.19:

(1) Inv(fdVecy) has, up to isomorphisms, only the object k. Hence, Inv(fdVecy) = 1, which

is the submonoid of invertible elements in K(fdVecy) = N.

y(ﬁ) For Vec}(G) one clearly has Inv(Vec{(G)) = Ko (Veci(G)) = G, and Vecy)(G) is a
categorical group. T ——

[ (iii) For the diagrammatic categories a la Brauer one always has Inv(Br) = 1.
e e

4F. Pivotality. Note that Example 4.20 shows that the equivalences from (4-10) might not be
trivial. In fact, they can be of infinite order. This motivates the following definition.

Definition 4.39 A category C € RCat is called pivotal if _* =g *_. A pivotal structure

on a pivotal category is a choice of an isomorphism 7: _* == *_.
e ee——

In other words, in a pivotal category we have (4-6). Thus:

*k* Y *k

Proposition 4.40 For any pivotal category C we have Idc =g _** =g **_, and hence the
. —

e

_ 1s of order two. g

functor _* =g

On the other hand, a pivotal structure on a pivotal category is a further choice of isomorphisms

R

(4-11) mx: X° — X,
P ——

natural in X, satisfying myy = mx ® my. Alternatively, a pivotal structure on a pivotal category is a
further choice of isomorphisms

(4-12) T X = X

satisfying exactly the same conditions.

Remark 4.41 It is more natural to define a pivotal structure as isomorphisms identifying right
and left duals, i.e. using (4-11). However, in practice the choice of isomorphisms as in (4-12)
turns out to be more useful, and we will use both interchangeable.

Example 4.42 All examples in Example 4.19 are pivotal. More precisely:
(a) fdVecy has a pivotal structure coming from the classical k vector space duality ¥V = V**,

(b) For Vecz’(G) one can choose the pivotal structure to be the identity.

(c) The diagrammatic categories a la Brauer usually have e* = *e or even e = e* = *e, which

M J

gives them an evident pivotal structure.

Example 4.43 Note the difference between being free:
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(a) The free rigid category generated by one object o, cf. Example 4.20, is not pivotal. /\_%'
— —

(b) The free pivotal category generated by one object e is oTL. =\ ) -

o
(c) The free pivotal category generated by one self-dual object e is TL. n u I

In these notes we tend to omit to choose a pivotal structure. To be precise, we take the one in
(4-17) which only involves choices of (co)evaluations, so:

Example 4.44 We also have the category PCat C R™Cat, the category of pivotal cate-
gories, whose morphisms are rigid functors.

Lemma 4.45 In a pivotal category right and left mates are conjuqgate, i.e. mxf* =*fmy, where

T " % *_ is a choice of pivotal structure.

Proof. The claim follows directly from _* Zg *_ and its commuting diagram. O

Definition 4.46 A category C € PCat is called strict, if _* =*_ as functors.
~//:){*

Similarly as in Theorem 2.32 we have the pivotal strictification, which we will use in all diagram-

Thus, we can write {* for the mate in case C € PCat is strict.

madtics:

——
Theorem 4.47 For any pivotal category C_there exists a strict pivotal category C*' which is

pivotal equivalent to C, i.e. C ~, C5t,

Proof. 1t is not hard, but also not trivial, to generalize the arguments in Theorem 2.32 to
pivotal categories by constructing an appropriate functor category, see e.g. [NS07, Theorem 2.2].
Alternatively, this can be deduced from a version of the monoidal coherence theorem for pivotal
categories similarly as the proof of Theorem 2.32 can be deduced from Theorem 2.19. (Such a
pivotal coherence theorem is stated in [BW99, Theorem 1.9].) Details are omitted for brevity. [

4G. Feynman diagrams for pivotal categories. The diagrams we can draw for strict pivotal
categories are now topological in nature, as well will see. The diagrammatic conventions are the
ones for monoidal categories, see e.g. (2-7), together with diagrammatic rules for dua

X
X X* *X /l\ j/
oL (1)
X *X X
evy e m COevy R X evt e m coevt s X x )(

x * 9 )

(4-13)

XX N

u
um’U
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Note our reading conventions for duals, see also Convention 4.3. The zigzag relations (4-2) and

(4-4) in these diagrams are
%

(+14) - | _

X

>
>
>

including mirrors, which imply:

* *
(4-15) m , X X , m , X X are invertible operations.
x x» U xS ~

Let us prove some lemmas using these diagrammatics.

Lemma 4.48 For all f € C, where C € PCat, we have

. VL@@M¢M<®

n

Proof. We calculate

X X
X X
=©)=00= :
Y Y
Y - Y
which is an application of Lemma 4.45. O

Lemma 4.49 For all f € C, where C € PCat, we have

f‘)’ Q: Q»

including mirrors.

These relations are called sliding.
——
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Proof. Using (4-15) this is easy:

X
X
™ ™
(4-14) - —
X Y Y X Y
Y

e ——
where we have used (4-14). O

Recall that a pivotal structure was an additional choice of an isomorphism 7y : X =, X**. One
such choice, sometimes called the canonical_choice, is

X*

X*
(4-17) T X = X, oy = = w .
X

X

The colored marker is a shorthand notation for the corresponding identity morphism, which we
also use below for different identities.

Lemma 4.50 For all X € C, where C € PCat, the morphism 7g*" is invertible and

X* X* X X
Tr)c{an - w N m ’ (ﬂ-;an ) B N (\j - m .
X X X* X*

Proof. Note that, by definition, markers are identities and just turn orientations on diagrams
around. Moreover, they are morphisms, so they slide. Hence, we have the diagrammatic equations

X X

o

X X X X
X X X X

is one of the equalities we need to check; the others being similar. O

including mirrors. Now

Example 4.51 The canonical pivotal structure in examples is as follows.
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(i) Using the choice and notation from Example 4.11 for fdVecy, we see that
X*

w X=Xz Y @ Qa2

X

which is independent of the choice of dual bases.

(ii) Recall from Example 4.13 that for Vec{(Z/27) the (co)evaluations are basically multipli-
cation with £1, giving the two possible choices

11,11, w111+ —1.

The formal rule of manipulation of these diagrams is:

)

“Two diagrams are equivalent if they are related by scaling
4-18 .
( ) or by a planar isotopy.”

Theorem 4.52 The graphical calculus is consistent, i.e. two morphisms are equal if and only if

their diagrams are related by (4-18).
—

Proof. Note that it is crucial to have X = X** which is key to have well-defined diagrammatics:

Toi-1 /.

X**

and the isomorphism between the left and right sides in (4-19) is the choice of pivotal structure,
see e.g. (4-17). Moreover, the zigzag relations in terms of diagrams (4-14) and the identification

of functors _* = *_, which gives (4-16), ensure that one has all planar isot/o]pies. 0

4H. Generalizing traces. Let us continue wifh a motivating example.

Example 4.53 Take Maty, the skeletold of V&k, which is pivotal with /

er
n=n"="n, evy=evi:nn—1, evy = (€1 .en), coevy =coev': 1l — nn, coevy = ( : )

Ofpis

Here {e1, ....ey} denotes the standard basis of k™ (which is secretly n, of course) . Thus, given
any f = (a;j)ij=1,..n € Endmat, (n), we can calculate, keeping Convention 4.5 in mind, that

/""’_‘/_\
g, treelf)
a

This is the classical trace of the matrix f. Very explicitly, if n = 2 and f = (g g), then the
——

calculation boils down to the matrix multiplication

d <“388 g

(t001)( ¢ >(—89:a+d.
00ab

~——\00cd/ \1

= =

feidy €goeva
R

Moreover, we get the dimension of n via

OO =4, ()20
g
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Definition 4.54 Forf € Endc( ), where C € PCat we define the right trC(f) and left trace

Ctr(f) as the endomorphisms tr€ (f), Ctr(f) € Endc(1) given by

SR}

Definition 4.55 For X € C, where C € PCat, we define the right dim® iXZ and left dimen-
sion ©dim(X) as the endomorphisms dim®(X), ©dim(X) € Endc(1) given by

dim€ (x) = trC(idy) = Qx . Cdim(xX) = Ctr(idy) = XO.

\ —
Definition 4.56 A category C € PCat is called spherical if

—_——

x =x1r ()
=SS,

for X € C and all f € Endc(X).
Remark 4.57 The name “spherical” comes from th¢ idea that we can also see Feynman

diagrams for endomorphisms as living on a sphere rathfr than being planar. Then

is just an isotopy which moves the strand around the sphere, a.k.a. the lasso move.

Example 4.58 We have already seen in Example 4.53 that traces and dimensions generalize
traces and dimensions for matrices. Here are a few more examples.

(a) The category fdVecy with the standard (co)evaluations is spherical and traces and
dimensions are the basis free definitions of the ones for Maty,.

(b) The category Vect (G) with the standard (co)evaluations is spherical and one has
dimVeei(G)(g) = 1 for all g € Vecy(G).

’ I (c) The category TL with its generators being the (co)evaluations is spherical. The dimension

of its generating object e is the morphism
dim™ (e) = O € Endry(1
CEEE—————

‘és a Warningilbeing spherical or not depends on choices:

Example 4.59 For G = Z/3Z, take ( € C to be a complex primitive third root of unity, and let
d(i) =¢', i €{0,1,2}.
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of (co)evaluM(Z/?)Z) gi
i 1 f\ (S

52

Then there is a choj

1 —1 —d), L 1
i1 S  i1 == U

This gives

Oz O e+

Thus, with this choice Vecc(Z/37Z) is pivotal, but not spherical,

Remark 4.60 By definition and Example 4.20 as well as Example 4.59 we have

rigid <= pivotal <= spherical,
rigid # pivotal # spherical.

We now discuss the generalization of the well-known properties of traces of matrices.

—
l Proposition 4.61 For any C € PCat the following hold.

(i) We have
trC(f) = Ctr(f) =,
for all f € Endc(1). In particular,
dim®(1) = €dim(1) = idy.
—_

(ii) Traces are Endc(1)-linear, i.e.
rC(f.g) =f.r%g), u®g.f)=tr(g).f, “u(f.g) =1.%%(g),
for all f € Endc(1) and g € Endc(X).

(iii) Traces are cyclic, i.e.

=

r(ef) = C(fg),  Ctr(gh) = r(fy),
for all f € Homc(X,Y) and g € Homc(Y,X).
(iv) We have
trC(f) = Ctr(f*),  Ctr(f) = trC()

for all f € Endc(X). In particular, for all X € C, we get

dim®(X) = Cdim(x*) = dim©x*™), Cdim(X) = dim®x*) =

Cr(g.f) =

Cdim(x**).

Cir(g) . f,

Proof. (i) and (ii). The short argument is that f is a floating bubble, cf. Proposition 2.36.

(iii). By right-left symmetry, we only need to calculate

36804
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X ) X,

which proves the claim by right-left symmetry. U

(iv). Sliding immediately gives

Lemma 4.62 For F € Hom,(C,D) and all X € C and f € End¢(X) we have
tr?(F(f) = F(tr9(F),  Ptr(F(F) = F(%tr(f),
dimP (F(X)) = F(dim©(x)), Pdim(F(x)) = F(®dim(x)).

Proof. Note that rigid functors preserve (co)evaluations. O

In words, rigid functors preserve traces and dimensions, which motivates:

Definition 4.63 C,D <€ PCat are called equivalent as pivotal categories, if they are
equivalent as rigid categories.

Example 4.64 Back to Example 4.33: there are sign choices for Vecg(Z/2Z) such that:

) 11 _ /N _ ., ot o1
choice 1: . : =1, u = -1, : L 1, v =1,
choice 2: 1/-\1’:1, 1 R = -1, f\ =1, 1 1

This gives

choice 1: Gl =1= 1@, choice 2: 1 =-1= 1@.

This shows, by Lemma 4.62, that these choices do not give pivotal categories which are equivalent

| as pivotal categories.

' 41. Algebras and coalgebras revisited. We conclude with (co)algebras in rigid categories,

whose modules have a right-left symmetry:

Proposition 4.65 Let A € C for C € RCat be an algebra.

(i) For every M € Modc(A) its right dual M* has the structure of a left A module.

(ii) For every N € (A)Modc its left dual *N has the structure of a right A module.

Similarly for coalgebras.

Proof. By symmetry, it suffices to prove (i).

(i). We define a left action on M* via
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To show that this satisfies associativity and unitality is an easy zigzag argument. U

Thus:

Proposition 4.66 Let A € C for C € PCat be an algebra. Then, for every M € Modc(A) its
dual M* has the structure of a right and left A module. In particular, M itself has the structure of a
left A module. Similarly for coalgebras. O

4J. Exercises.
Exercise 4.67 Prove Lemma 4.15.

Exercise 4.68 Show that Theorem 4.16 implies that the functors
I _:C—C, _®x:C-=>C
have duals (a.k.a. adjoints) given by
X@_)EXe_., "X )=2Xe_, ((X)'=2_0" "(-0X)=Z_X,

assuming the existence of duals of X € C, where C € MCat, of course.
Exercise 4.69 Show that Veci(M) € RCat if and only if M is a group.
Exercise 4.70 Show that Vecy is not rigid.

Exercise 4.71 Verify the claims in Example 4.59.

5. BRAIDED CATEGORIES — DEFINITIONS, EXAMPLES AND GRAPHICAL CALCULUS

Recall that the difference between 1Cob and 1Tan was a choice of embedding. So how can we
distinguish between these two categories using categorical algebra, i.e.:

What categorical framework can detect embeddings?

5A. A word about conventions. This section is all about crossings. I m \/ Z
K

Convention 5.1 We will have over- and undercrossings, which are algebraic and not topologicaml ’
in nature. Our diagrammatic conventions for these are

overcrossing: [3 undercrossing: 571 ! \ A
- -— N\

These will come in various incarnations, e.g. with orientations, and our preferred choice will be to
use overcrossings, and the undercrossings will be the inverses of the overcrossings.

Convention 5.2 We use the same conventions as in Convention 4.2 for the various choices
involved in the notions which we will see in this section. Moreover, and also as before, since we
will use diagrammatics most of the time we usually omit the associators and unitors.
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Convention 5.3 Our terminology “taking mirrors” includes also crossing reversals of all

displayed crossings, e.g.

All of these are valid relations, but the right equation is not a mirror of the left equation.

5B. Braided categories. First, the main definition of this section: \ \
\ \
Definition 5.4 A braided category (C, 3) consists of = )
e a category C € MCat; \/ \\ N\

e a collection of natural isomorphisms \
A

(5-1) Bry: XY = ¥x, /\ =< G

for all X,Y € C, called braiding; x@® \ll 7( Y
S ——

such that —>Y ®>< r—s
(i) the braided O equalities hold, i.e. we have commuting diagrams
Bxy,z
<D
z)

(XY)Z —2 5 Z(XY)

X(Y /Q, (ZX)Y -
idx®py,z Bx,z®Qidy
X(zY) W (X2)Y 7
x(vz) — 2% (v2)x D ( > -

/1/ Y(ZX) 5 AN
ﬂx,v@id\A /dwi;ﬁx,z

for all X,Y,Z € C.

Remark 5.5 Similarly as in Remark 2.5, there is a hidden braided D equality:
,_\A—W

f
7x —22 oy

(5-3) ﬁx,zT TBY,A ) X Y

XZ ——— YA 7
f®g
which holds for all for all X,Y,Z,A € C and all (f: X = Y),(g: Z— A) € C. Y/
X

Lemma 5.6 In any braided category C we have the Reidemeister 2 moves, i.e. for all
o v
X,Y € C there exist a natural isomorphism ﬁ{;: YX — XY such that A
<

N X7

X
(5-4) B\]_,)%BX,Y = idyy, ﬁx,vﬁy_,;% =idyy (& By_,)%ﬁx,v =idxy = 5Y,x5x_7%) <
X
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Proof. (5-1) implies that fx y has an inverse, and we denote by By, ; Note that Sy % is natural in
X and Y because fxy is.

Bx,y®idz
=

Lemma 5.7 In any braided category C we have the Reidemeister 3 move, i.e. /
= e
(YR)Z SEZ) y(xz) 'TrEhy Y(ZX) (YZ)X
L \/} - ﬂv,z@ldxx 7 ?
(5-5)  x(Y2) 7/ \ (f @ (zY)X

m@&{x | /\
X(ZY) A (XZ)Y —— ~ — Z(YX)

,B_E)_d'(ZX)Y @ Z(XY) ey

(XY)Z

commutes for all X,Y,Z € C.

Proof. The diagrammatic proof is easy as we will see in Lemma 5.14 below, so we are done after
strictification, cf. Theorem 5.24 stated below. O

—_—

Definition 5.8 A braided category C is called symmetric, if @_’Y xBxy = idxy holds for all

X,Y € C. L> \§ _ )I

¥ Y
(a) The category Set with ® = x and 1 = {e} can be endowed with a symmekc braiding

by using the swap map o v \\_; ® D
Ty XY = YK, (z,y) = (1,7). SKAY — \fx X

Example 5.9 The motivating examples are the usual ones:

(b) Similarly, Vecy or fdVecy with ® = ®y and 1 = k can be endowed with a symmetric
— P gy~ —
braiding by also using (the k linear incarnation of) the swap map. /I & 4

As usual with choices, they are often not unique: /{\

v VA2 (6) 19 -1

Example 5.10 The category Vecc(Z/ 2Z) with its standard monoidal structure can be endowed
with two braidings (note that braidings f; ; € Endyec.(z/22)(1j) = C are scalars):

(—)®

e by using the so-called standard braiding ﬁffl =1;

e by using the so-called super braiding 7" = —1. (

Proposition 5.11  For any braided category C its Grothendieck classes Ko(C) form a commu-
tative monoid with multiplication and unit

X)[y] = [xv] = [Y][x], 1=[1].

Proof. The only thing we need to observe in addition to Proposition 2.10 is that the existence of

the braiding gives [X][Y] = [Y][X] because we have (5-1). O

Example 5.12 The category Vec]k(G)(vvlth its standard monoidal structure can only be braided

if G is abelian. To see this observe that K (Vec]k(G)) = G as groups, and thus Proposition 5.11
e

applies.
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5C. Feynman diagrams for braided categories. Example 5.15 already suggests the following

diagrammatic conventions. We take the ones for monoidal categories, see e.g. (2-7), together
with diagrammatic rules for braidings:

-
(5-6) Bry e~ X ) ﬁx,s} o \
where (5-1) implies that fxy has an inverse. Being inverses gives the Reidemeister 2 moves,
i.e. the diagrammatic analogs of (5-4): 7
XY XY Y X Y X XY XY Y X / -
J \ J \ -
(5-7) @ = ) = < () = = Q \_
A\ ' A\ '
XY XY Y X Y X XY XY Y X

hold for all X,Y € C.

Remark 5.13 We usually, following history, use the right-hand side in (5-7) as the Reidemeister
2 moves. Further, beware that Sy % is the inverse of fBxy and not Bx. T

The diagrammatic incarnations of the braided () and [_] equalities in (5-2) and (5-3) are

T e
O ALY v

Z XY z xx vzzx vz x &

(5-8) \%/ —\%, V = V ,
A N\ R N

XY Z XY 2 Y Z X YZ

Similarly as in Lemma 4.49, we call the right relation sliding. We also have the Reidemeister
———

-

‘ >

3 mowe, i.e. the diagrammatic analog of (5-5):

Lemma 5.14 In any braided category C we have the Reidemeister 3 move, i.e.

Z Y X Z Y X \
(5-9) / / N
XYZ XY Z

holds for all X,Y,Z € C.

Proof. We use (5-8) for a specific choice, i.e.
YX Z N\
YX | oz
X=XY,Y=VXZ2=AY=4A (f] = %,: |, \
XY Z
XY Z

with the right-hand sides of all equations being the choices. This shows (5-9). O
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In the symmetric braided case we have By xfxy = idyy, which implies that

Y X Y X Y X
Bry = By « =N =X,
XY XY XY

where the right-hand side is thus an appropriate shorthand notation. Hence, in symmetric braided
categories the Reidemeister moves (5-7) and (5-9) then become

Z Y X Z Y X
I XY XY
lw\\ _ _
—0 - | _ ,
LXY XY
XY Z XY Z

Example 5.15 Again, we have the notions of being “free as an XYZ”:

(a) The free braided category generated by one object e is qSym from Example 3.29. This

category is important, so let us be completely explicit. We let qSym = (S, T | R) with

P S TR § || &S //Q?

(We do not take mirrors.) RB ﬁ y . /\ y

(b) The free symmetric braided category generated by one object e is Sym from Example 3.21.

To see that this we observe that for one object (5-7) and (5-9) are equivalent to the braided ()

and [_] equalities in (5-2) and (5-3). ' Z

Remark 5.16 Note that qSym has only overcrossings appearing in its definition. The under—

crossings come into the game via invertibility. In particular,

s Y />

and all other versions of Reidemeister 3 moves are consequences and need not to be imposed.

The formal rule for braided Feynman diagrams is thus:

“Two diagrams are equivalent if they are related by scaling,
o5-11 .
( ) by a planar isotopy, or braided () and [_] equalities (5-8).”

Theorem 5.17 The graphical calculus is consistent, i.e. two morphisms are equal if and only if
their diagrams are related by (5-11). o

Proof. The statement of the theorem just summarizes the discussion above: we have the Reide-
meister 2 and 3 moves for strands, see (5-7) and (5-9), and we can slide coupons (5-8). O
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5D. Braided functors. As usual, we want the notion of functors between braided categories.

To this end, recall that a monoidal functor (F,¢,&1) was a functor with an additional choice of
data, cf. Definition 2.20. In contrast, being braided is a property:

Definition 5.18 A functor F € Homg (C, D) between braided categories is called braided if

B
=S FOF()

Ex,vi l&,x ,
F(XY) 4>F(ﬁx,v) F(YX)/

commutes for all X,Y € C.
We proceed as usual:

Lemma 5.19 The identity functor on a braided category is braided. Moreover, if F and G are
braided functors, then so is GF. O

Example 5.20 We get the category of braided categories BCat and the category of

braided functors Homg(C, D), whose natural transformation are monoidal natural transfor-

mations.

Definition 5.21 C,D € BCat are called equivalent as braided categories, denoted by

N

Example 5.22 We also have the category of braided pivotal categories BPCat and the l/
notion of equivalence for these is denoted by C ~g, D. These equivalences use braided rigid

C ~3 D, if there exists an equivalence F € Homg(C, D).

functors which also form the category of braideﬁigid functors Homg,(C, D).
Definition 5.23 A category (C, ) is called strict, if it is strict as a monoidal category.

As usual:

Theorem 5.24 For any braided category C there exists a strict braided category C*t which is
braided equivalent to C, i.e. C ~g C*t, \/

Proof. This is an almost immediate consequence of Theorem 2.32, see [JS93, Thoerem 2.5] for a
detailed argument. O

\
5E. Classifying braidings. Classifying braidings, meaning finding all possible braidings

on C € MCat up to braided equivalence, is very difficult. So Theorem 5 26 below is quite

remarkable. Before we state it we need some preparation. ‘/ R ’

Lemma 5.25 Let G be abelian. Then the braidings on Vect (G) (with its usual monoidal
structure) are classified by twisted group homomorphisms f: G x G — k*, i.e. maps satisfying

w(k7 Z?])B(Z]7 /-c)w(z,], k) = B(Zv k)w(z, ka])ﬁ(]a k)

(5-12) w(j ki) B, ) (i, 5, k)" = B, k)w(i, i, k) B(3, 5).
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In particular, if w is trivial, then braidings are classified by group homomorphisms 5: G x G — k*.

Such maps as in Lemma 5.25 are also known as (twisted) bicharacters. The above thus says
that every braiding has an associated twisted bicharacter, which we denote by the same symbol.

Proof. By comparing (5-2) and (5-12) we see that each such § can be used to define a braiding,
and vice versa. O

A general philosophy, which we already have seen in Remark 2.27, is that “Some cohomology
theory should measure the obstruction of two braiding to be equivalent.”. In fact, it is easy to
see that functions satisfying (5-12) for fixed w form an abelian group Z2 (G, k*) , which are the
3 cocyles of a cohomology group H3(G,k*), see e.g. [EGNO15, Section 8.4] for the definition.
Indeed: 7\

Theorem 5.26 Let G be abelian and fiz a 3_cocycle w. Then (Vecy(G), B) = (Veci(G), 5')

if and only if B and ' are cohomologically equivalent.

Proof. In the end this is just a careful, but demanding, check of the invgived definitions and
O

6=

Example 5.27 Via Theorem 5.26 we get the following, alwgfs using the standard monoidal

structures. ( b
[ ]
(a) The G = 1 case of Theorem 5.26 implies that fdVecy allows_only one braiding if one

commuting diagrams. Details are discussed in [EGNO15, Section 8.4].

fixes its standard monoidal structure since one can check that H;(1,k*) = 1. See also
« AN
(b) For G = Z/27 and non-trivial w, has only two braidings:
Byo=Br1=Bo=1 P ==+icC.
The crucial calculation hereby is
(1,1, DAL, Dw(1,1,1) = (—1)1(=1) = A1, (1B, 1) = A1, (1,1, 1)8(1,1)
= B(1,1)* = —1.

Example 6.23 later on.

It turns out that these are equivalent, i.e. H3(Z/27,C*) = 1, and has only one (non-trivial)

braiding up to equivalence. R

(c) For G = Z/2Z and trivial w, we find prec1sewwo possible solutions to (5-12) and recover
Example 5.10.(a) and (b), since H}(Z/27,C*) = 7./27. +‘4
5F. The Reidemeister calculus. Recall that Theorem 3.26 identifies 1Cob algebraically. We
are now ready to state the analogs for 1Tan and 1State. __ o
L ad S ——

q v N\ l\ A
But first things first, let us be clear aboutWBr and oqBr: \ \

Example 5.28 The (generic) quantum Brauer category Br|1s the braided p1vota] cate-

gory generated by one self-dual obJecEth relations \/ ,
(5-13) R:Q:r\,mzm, Q.)ghf ?(\/
RA=keRB=n R i =k
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including mirrors,'With structure maps

o

\ . . .
A o000, /N\:ee— 1, \_J: 1 — ee.

Example 5.29 The (generic) oriented quantum Brauer category}qu;iS the braided
pivotal category generated by one object e with relations

(5-14) , R:Q:n,m:N,J

including mirrors, with structure maps

&/:: ee—ee, M\ e 1 \:(eF)e— 1, A1 —>IE’*, A1 — (e%)e.

The category gBr is also called BMW (Birman—Murakami—Wenzl) category in the litera-
ture, while ogqBr is sometimes called quantum walled Brauer category.

Remark 5.30 Note that (5-13) and (5-14) are not all defining relations as some are hidden in
the phrase “generated as an XYZ’. For example,

Y/ \/\
\ pu—
N A
A \
holds in both categories (with upward orientations for oqBr) and is part of being braided.

Clearly, 1Tan and 1State are braided and pivotal with the evident structures. Recall also that
we have the Reidemeister theorem:

“Two (oriented) tangles in three space are isotopic if their projections

(5-15) (also known as tangle diagrams) )
/{\ are related by planar isotopies and Reidemeister moves 1-3, see (5-16). ﬂ %
The topological Reidemeister 1, 2 and 3 moves are all versions (not just mirrors)

S e IR R 2

\ J/
Remark 5.31 Traditionally the topological Reidemeister 1 moves are usually illustrated verti-
cally as in (5-16), while their analogs in the Brauer calculus are traditionally sideways, see e.g.
(5-14), as it is a shorter composition of the generators. By (4-15), these are the same data, and
we will call the both the Reidemeister 1 moves.

, In our language, the categorical version of the Reidemeister theorem (5-15) is:

Theorem 5.32 There exist braided rigid functors \7
N \ \
qR:qBr—)lTan,oHo,AHK,f\Hf\,UHU, 6

~. A A
oqR: oqBr — 1State, o — o, /t»—> 3T 2O AN 2 A\ U

Both functors are dense and fully faithful, thus, qBr ~g, 1Tan and ogBr ~g, 1State.
————
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‘ Proof. Let us sketch a proof. Exactly as for TheGrem 3.26, the main problem is to prove that
these functors are faithful. To show faithfulnéss one needs to identify the generating relations of,

S
say, 1Tan. In words, one needs to identify what “isotopies of tangles” means for their projections.

To this end, the first step is to show that any tangle, appropriately defined, has a piecewise linear
Morse presentation. A Morse presentation was already needed for the proof of fullness and has
exactly the same meaning as in (3-4), while piecewise linear basically is

g

Here the B denotes the boundary points of the piecewise linear parts. (Note that all pictures in
this proof are meant to represent topological objects.)

Then one needs to identify what isotopies are on these piecewise linear presentations and one
gets the notion of A equivalence ~ via A mowves:

A move:INA }

Here the triangle is not part of the link, but rather an illustration that no other strand is allowed
to pass through it while performing the A move. In words, two piecewise linear tangles are
isotopic if and only if they are A equivalent.

The first consequence of A equivalence to notice is subdivision, i.e.

Thus, it remains to analyze how A moves generically and locally project. In fact, the main upshot
is that there are only finitely many possibilities one needs to check and one ends with precisely
all possible versions (not just mirrors) of the Reidemeister moves e.g.:

 SIEIS SR

This established the Reidemeister theorem that two tangles are isotopic (in three space) if and
only if their projections are related by planar isotopies and Reidemeister moves.

The final thing to check is that oqBr has enough relations to obtain all versions of the Reidemeister
moves as well as all possible planar isotopies. Again, this is non-trivial as we e.g. imposed only
l certain types of Reidemeister relations such as only upwards oriented Reidemeister 2 moves. [

5G. Twists. Recall that the Reidemeister 2 and 3 moves (5-7) and (5-9) are consequences of the
axioms of a braided category. For a braided pivotal category a good question would be whether
the Reidemeister 1 moves as in (5-16) follows from the combined axioms. Let us address this
question.

bruded > (R
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Definition 5.33 For X € C with C € BPCat the right ty and left t* twists are defined via

I X X
'_\tsz t* = :
uped

1

There are three possible version of Reidemeister 1 moves. To explain them fix X € C for
C € BPCat. First, the (classical) Reidemeister 1 moves are

(5-17) ’_\ x Cj; ﬁ /\ E/‘g/@/)

Second the ribbon equation is

X X X
/ X [ A
5-18)/ P - (‘J 2 — | = A
* X | —
X X X

Finally, the framed Reidemeister 1 moves are

IS

X X X

Example 5.34 Clearly, (5-17) = (5-18) = (5-19). But:

(a) In fdVecy with its standard monoidal structure, pairing and braiding we have
—

tx: X=X, 25 D 0 T QT @) = Y 1 @ X @ T 1y, RA /

X=X i QT ®T Y T QT ® X > T

(Recall hereby our notation from Example 4.11.) Thus, (5-17) holds.

(b) For Vecc(Z/2Z) we have discussed two pivotal structures in Example 4.64. If we take
——
the second pivotal strucutre therein together with the trivial braiding, then

tiil =1ty =—1, th:i1 -1 tt=—-1. 7\

Thus, (5-19) and (5-18) hold, but (5-17) fails to hold. /D f' A -4 (:j\
a— ~ - :
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(c) For Vecc(Z/3Z) and ( € C a primitive third root of unity we have discussed a pivotal
structure in Example 4.59. Taking this structure together with the trivial braiding we get

ti:1— 1, ty =C2 t2:2—2, ty=¢,
thh1 o1 tt=¢, t2:2— 2 t2=C2

Thus, (5-19) holds, but neither do (}é or (5%

Lemma 5.35 FizX € C for C € BPCat.

(i) The right and left twists are invertible with inverses

X X
(5-20) (tx) ' = qT, ()~ = lb
X X

(i1) We have sliding, i.e.
X X X X

(iii) With respect to duality we have

including mirrors.

X

X
()" =t = CJ () =t = lp
X

>

— ——

(iv) All of the above maps are natural, i.e. they assemble into natural transformations.

Proof. (i) See [TV17, Lemma 3.2].

(ii). Using (i) and Reidemeister moves we get

P4

X X

>

(iii). This is a direct application of sliding (ii) and zigzag.

(iv). The naturality of the twists is a direct consequence of the naturality of the braiding and the
dualities. O

Lemma 5.35 immediately implies:
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Proposition 5.36 For C € BPCat and all X € C the equation (5-19) holds. O

Remark 5.37 By definition and Example 5.34 we have

Framed Reidemeister 1 <= ribbon equation <= Reidemeister 1,

framed Reidemeister 1 # ribbon equation # Reidemeister 1.

Example 5.38 The (generic) oriented framed quantum Brauer category ofqBr is the
braided pivotal category generated by one object e with relations

(5-21) RN 9\&/\‘] &(1

including mirrors, with structure maps

%: ee—ee, M0 51 M\ (eF)e =1, AL ee” \ M1 — (e%)e.

Note that Proposition 5.36 implies that !5—192 holds in ofqBr. In fact, a non-trivial argument
shows that ofqBr is the free braided pivotal category generated by one object.

Example 5.39 Without further definition, there are of course also a non-oriented fqBr, non-
quantum of Br and only framed fBr versions of ofBr.
—— C— —

5H. Ribbon categories. We have seen that the Reidemeister 1 moves (5-17) are motivated
from the topology of tangles in three space. As we will see, the framed Reidemeister 1 moves
(5-19) are also related to topology, but only in the form as in (5-18). This motivates:

Definition 5.40 A category C € BPCat is called ribbon if (5-18) holds for all X € C.

Example 5.41 The two categories in Example 5.34.(a) and (b) are ribbon, while Exam-
ple 5.34.(c) is not. It will also follow from Lemma 5.43 that the non-spherical category from
Example 5.34.(c) can not be ribbon.

Example 5.42 Note that being ribbon is a property and not a structure. So we can let the
category of ribbon categories RiCat be the corresponding full subcategory of BPCat.

Lemma 5.43 Let C € RiCat. Then C is spherical. /V (\ e %

Proof. Using the Reidemeister calculus and sliding this is the calculation

where the last step uses (5-18). O
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Remark 5.44 The name ribbon comes from the following. If one takes a strip of paper (a thin
and long strip works best) and performs the following

zI : Z[T—b
(5-22)

then we get the ribbon equatmn (5-18). However, the paper strip is twisted, so (5-17) does not
hold. This motivates the definition of an important category in low-dimensional topology, called
the category of ribbons (a.k.a. paper strips) 1Ribbon, which is, of course, a ribbon category.
This category consists of oriented ribbons embedded in three space, e.g.

DI a Tal

By making them arbitrary thin, these ribbons can be identified with the usual diagrams in the
Reidemeister calculus with (5-22) being the difference between ribbons, which have two sides, say

green and white colored, and strings, which do not have any sides.

Example 5.45 The (generic) oriented ribbon quantum Brauer category orqBr is the
braided pivotal category generated by one object e with relations

|93 28 > L0

including mirrors. The structure maps are the usual ones, see e.g. Example 5.38.

The following is the point, but again non-trivial to prove.
——

Theorem 5.46 There exist a braided rigid functor

~N
orqR: orgBr — 1Ribbon, e — e,

%H*’mHm»ﬂHn,UHU,UHU.

The functor is dense and fully faithful, thus, orqBr ~g, 1Ribbon.
——

Proof. A version of this theorem, which can be used to prove the formulation of it as above, is
proven in [CP95, Section 5.3]. O

51. Algebras in braided categories. Let us conclude this part with an continuation of Sec-
tion 3E. A classical problem which we will address is to determine what condition on an algebra
A € Vecy ensures that Modc/(A) is monoidal. Two known answers are:

e The category Modc(A) is monoidal if A is commutative.
e The category Modc(A) is monoidal if A is a bialgebra.
We will now discuss the categorical versions of these facts. L /k
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Definition 5.47 A commutative algebra A = (A, m, i) in a braided catqgory C € BCat is
an algebra in C such that

L
SRS EIN

(5-23) -é.:*. =3
g T R

b”

A cocommutative coalgebra C = (C,d,e) in a braided category C is, by definition, a commu-
tative algebra in C°P.

By up-down symmetry, we can focus on algebras, since all constructions and statements for
coalgebras are similar.

Example 5.48 Definition 5.47 generalizes the notions of (co)commutative (co)algebras, which
can be recovered by taking C = Vecy. More generally, as we will see later, commutative algebras
in (Vec]k(Z/QZ), Bﬁ), see Example 5.10, are supercommutative algebras.

A classical result is that for commutative algebras the notions of left, right and bimodules agree.
Categorically this is also the case:

Proposition 5.49 Let A € C be a commutative algebra.

(i) Every M € Modc(A) has the structure of a left A module.
(ii) Every N € (A)Modc has the structure of a right A moduleﬁ ®4‘A
(iii) We have equivalences of categories ‘ Q

E/Iodc(A) ~ (A)Modc ~ (A)Modc(A).

Consequently, Modc(A) is a monoidal category with ® = @, and 1 = A.

A—A

Proof. (i). We can define a left action Lol M_via,

)
!
/
We now need to check associativity Reidemeister calculus as well a the

diagrammatics for right actions:

|
=
,>>\
e LT T

A A A A M
Note that the forth equality uses commutativity (5-23). Similarly, we compute

A : )
so DN
M M M M H r
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This shows (i). l
(ii). By symmetry. (/\ -

(iii). The following verifies that right and left action commu N
M M M M M
] Aua awa AV A AMNA  ANMA AMA |

Thus, we can define a bimodule structure on M € Modc(A) and also, by symmetry, on N €
(A)Modc. Moreover, we can also match the equivariant morphisms, e.g.

One then easily verifies that one gets the claimed equivalences of categories. ([

We can also define the monoidal structure on Modc(A) diagrammatically:
M N P N P N

(5-24) , right A action:

B emmmem =
&
R
|
R
R ——

Thus, a good question would be whether Mlodc(A) is also braided. This is not quote the case:

Definition 5.50 For any commutative algebra A € C let Modg(A) C Modc(A) denote the
full subcategory with objects satisfying

M M
(5-25) ) -

'~ \

M A M A

The right A modules satisfying (5-25) are also sometimes called braided for the following reason.

Proposition 5.51 For any commutative algebra A € C the category Modg(A) is braided with
braiding inherited from C.

Proof. This is Exercise 5.64. U
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Example 5.52 If C € BCat is symmetric, then, using Reidemeister calculus, we see that

(5-25) becomes

N\

M
M

A

which holds for all objects, i.e. Mod’g(A) = Modc(A). Furthermore, we have Mlodc(A) € BCat
is also symmetric. In particular, classically, the module categories of any commutative algebra in

Vecy, are symmetric.
\

Another answers is that Modc(A) is monoidal if A is a bialgebra. We will see that the same is

true categorically. Since this is important let us be precise:

Definition 5.53 A bialgebra A = (A,m,i,d,e) in a category C € BCat consist of

= — e

e an algebra A = (A, m,i) € C; /I\

e a coalgebra A = (A,d,e) € C;

such that
(i) we have the unitality conditions

A A
A A

(ii) we have the compatibility condition

A A
A =191 Y =%4 al=o
A A

Proposition 5.54  For any bialgebra A € C the assignment as in (5-24) but
'

M
(5-26) right A action: E_-EQ
M

defines a monoidal structure on Modc(A).

Proof. First note that (5-26) is a well-defined right A action.

M N M N M N
N NN
M N M N M N

, |
B '1 7

\Y

b

For exampl?, "

B oemmm-m =

R el

, ) ]—1
!
v !/

T
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verifies unitality, where the first equality is using Definition 5.53.(i). Moreover,

Mel(R) €

~\ shows that A equivariant morphisms go to A equivariant morphisms under ®, showing that the
assignment is well-defined, i.e. ® stays within Modc(A). Verifying that this assembles into a

1 monoidal structure works then exactly in the same way as for any horizontal juxtaposition. [J

5J. Hopf algebras in braided rigid categories. To get our examples later on, we do some
i diagrammatics again.
Definition 5.55 A pre Hopf algebra A = (A, m,i,d,e,s) in a category C € BCat consist of

e a bialgebra A = (A,m,i,d,e) € C;

M IQ ] e an antipode (s: A — A) € C, illustrated by
e
% 7 A
. ¢
A

such that

(i) we have the antipode condition

A A A

(5-27) _ .

!

A A A

If's is invertible, then we call A %Hopf algebra. \
—
Hopf algebras kind of generalize commutative algebras, e.g. compare (5-23) to:

Lemma 5.56 For any pre Hopf algebra A € C for C € BCat we have sliding, i.e.
A A
A ?L‘}
A A A A

Proof. Via the Reidemeister calculus and (5-27), see e.g. [Ma94, Lemma 2.3]. ‘ O

including its horizontal mirror.

Further, the following should be compared to Proposition 5.49:

Proposition 5.57 Let A € C for C € BCat be a pre Hopf algebra.
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(i) Every M € Modc(A) has the structure of a left A module.
(ii) Every N € (A)Modc has the structure of a right A module.

Proof. Of course, (i) and (ii) are equivalent up to right-left symmetry, and it suffices to prove (i).

(i). We can define a left action on M via

M

(5-28) y

M
A M A M
Using sliding Lemma 5.56, we see that (5-28) satisfies associativity: ﬁ
M

A AN A AN A AN

(Note that this is almost the same argument as in Proposition 5.49.) The easier proof that (5-28)

also satisfies unitality is omitted. O

Let us say right rigid and left rigid in case only the right respectively left duals need to exist.
Theorem 5.58 For any pre Hopf algebra A € C where C € BRCat we have:

(i) The category Modc(A) is right rigid with duality inherited from C.

(ii) The category (A)Modc is left rigid with duality inherited from C.

(iii) If A is a Hopf algebra, then both, Modc(A) and (A)Modc, are rigid with duality inherited
from C.

Proof. (i). First, Proposition 5.54 shows that we get a monoidal structure, and by Proposition 4.65
we then get that right duals, using this monoidal structure, have an action of A, but from the
wrong side. However, by Proposition 5.57 we can swap sides of the actions.

(ii) By (i) via symmetry.

(iii). To define a left action on the left dual *M we first denote the inverse of the antipode by

A
s e $
A

In order to define a right action on *M recall from (5-28) that M has a left action. Thus, we can
define a right action on *M via

*M *

M
A AN
:
1 1
1 .

"M A “MA
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The invertibility comes into play since one needs e.g.

M
oA
The second claim in (iii) follows again by symmetry. O

!

Example 5.59 Again, this generalizes several notions:

(a) Hopf algebras in Vecy are classical Hopf algebras. A particular example iA k[G\ Thus,
—_— 5
we recover the classical result that fdMod (k[G]) is rigid.

N (b) Hopf algebras in Vecc(Z/27) with its super braiding could be called super Hopf algebras.

5K. Summary of the interplay between topology and categorical algebra. Some (the
most important) Brauer categories we have seen are summarized in the following table.

\/ Y o et | i
H monoidal | braided ‘ pivotal ‘ symmetric ‘ self-dual e ‘ Reidemeister 1 ‘ \)pOlOZ
| Br Y Y Y My b Y Cdb

|
‘ gBr Y Y Y Y Y 1\hn I
)
I

ogBr || [ Y Y Y N Y 1S}ate

I orqBr l Y Y W b‘
quantum”

We leave it to the reader to fill in all the various versions using the adjectives “oriented”, “

and “ribbon”. Let us use the placeholder _, which can be filled in with these adjective.

The point is that they are all equivalent to their topological incarnations while “free XYZ with
properties ABC”. Thus, we “define”:

A quantum invariant Q is a structure preserving functor

Q: _Br —» Cyf— é: p
where C is “a linear algebra like category”.

The aim of the following lectures is to make precise what “a linear algebra like category”,
“a category where we can compute”, might mean, the guiding example being fdVecy,.

5L. Exercises.

Exercise 5.60 Prove that (Vecc(Z/2Z), 55")) #3 (Vecc(Z/2Z), 35" ), where the standard and
super braidings are defined in Example 5.10.

Exercise 5.61 Verify the claims in Example 5.15 and Remark 5.16.

Exercise 5.62 For any C € BCat show that C°P, C®, C“° ¢ BCat by defining braidings on
\ them using the braiding of C.




QUANTUM TOPOLOGY WITHOUT TOPOLOGY 73

Exercise 5.63 With respect to Remark 5.30, write down all only implicitly stated relations for
qBr and oqBr. What about e.g.

eIk

Exercise 5.64 Prove Proposition 5.51 and verify the missing claims in Proposition 5.54.

6.‘ADDITIVE, LINEAR AND ABELIAN CATEGORIES — DEFINITIONS AND EXAMPLES

p—

A topological invar

sh‘ould be cor@table, i.e. within the realm of linear or homological

homological glgebra in a categorical language?

6A. Conventions. We keep all conventions from before, including all abbreviations which we

algebra. So:

What is the analog ¢

used. Let us stress one:
Convention 6.1 Similarly as in Convention 2.3, we will write e.g. @ instead of ©¢.

Convention 6.2 We will see a lot of objects defined via some universal property. By a very
general type of argument, which we will call a universality argument, see Section 6D, such
objects are unique up to unique isomorphism. Since these arguments are very similar, we usually
omit the corresponding proofs. Moreover, these objects usually are objects together with extra
data such as a morphism, but we tend to treat them as objects if no confusion can arise.

74
Convention 6.3 Recall from Section 3E that a k algebra is an algebra in Vecy. Similarly, a
ring for us is an algebra object in Vecy (the category of abelian groups, see Example 1.8), in
particular, associative and unital. Moreover, throughout, S denotes commutative ring, i.e. a

commutative algebra in Vecy. ° A— 5 - i \ \<
8 / | " L

6B. A motivating example. As we have already seen, the “multiplication” @y of Vecy gener- 2

alizes to the notion of monoidal categories. Let us now focus on the “addition” @ of Vecy.

e First, we note that Homvec, (X,Y) € Veck. Or in words, hom spaces between k vector I
spaces are, of course, k vector spaces again. In particular, they are abelian _groups, E'

meaning that we can add and subtract morphisms f, g € Homvec, (X, Y) ax the results

f + g are still in Homyec, (X,Y). There is also an additive unit, the zero mgp 0, additive

inverses and composition is biadditive. /
e

Remark 6.4 We can, of cour

also use scalars from k, and this property will below be
called k linear. However, fg#now the condition of being an abelian group or, equivalently,
7 linear is releva,

e Second, we have a zero object, the zero k vector spaces 0, which satisfies:
——— —

|(6—1) For all X € Vecy, there exist unique morphisms 0: X — 0, 0: 0 — X.

The morphisms in (6-1) are called the zero morphisms and they are the zero maps.
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e Finally, we consider the pair category (see Definition 1.12) Vecy x Vecy and we have a

bifunctor ’ K @ I K ,K \

@: Vecyx Vecy — Vecy, ®((X,Y)) =XaY,a((f,g) =fdg,

called the direct sum, using again abbreviations of the form X @ Y instead of @(( ))

We note that the object XY has a universal-t S TIAIIICI DY ‘ubere exist mesphisms

lx,ly, x, Py € Vecy such tha
ppEX@Y - Q—QXEBY—*77X XQY

% @@ pxix = idx, pyiy =idy, { ixpx + lYPY = idxgy- \/ \\I

+

The two morphisms ix and iy are called inclusions, the other two px and py projections

(of X and Y, respectively).

6C. An even more down t rth motlvatlng example. Let us be completely explicit and
consider the situation of Maty. In this case the three observations above take the following form.

e

e Matrices can be added and this is bilinear with respect to multiplication o, e.g.

(e o))l 1)) = (0 2)=0 )

I e There exists a zero 0 and a zero matrix 0 = (0). \/

e We can add numbers and there exist block matrices and corresponding inclusions and

projections of blocks, e.g.

1 1 1
2m2—a 5= ol = |22 = 0}0 0) o (0 ol 0\
_— 00 10 0 1f0 0 0 o0jo 1

6D. A brief reminder on universality. Let F € Hom(C, D) be a functor between categories
C,D € Cat. Then a pair (X,f: Y — F(X)) in D satisfies a universal property for Y and F if

for any g: Y — F(Z) there exist a unique u: X — Z making

Y—> X X GC—
-—-} ~(X) B e § X

N 2w INTA 8 )’-—-’E(’(\

(R

commutative. A universal property for F and Y is defined similarly, with C°P and D®P instead
of C and D.

Example 6.5 Let D = Set. Then the product'Xl X Xg,comes with the two coordinate projections
p1 and pe and satisfies a universal property. This universal property will take place in SetxSet
(the pair category from Definition 1.12) can be formulated as follows. First, let F: Set — SetxSet
be the diagonal functor. Then the pair (X1 x X2, (p1, pg)) satisfies a universal Terty from F to

v
X = Xx X
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(X1,X2), i.e. we have 3_

X %X KSa
(p1,p2)

(Xl,Xz) — (X1 X X9,X1 X Xo X1 X X9
< X

; (u,u) H!Tu : . 2
& (z,‘z) 7\2 z NL]

Lemma 6.6 A pair (X,f) satisfying a universal property for Y and F, Jif it exists,|is unique up
to_unique isomorphism, i.e. if (X', 1) is another pair, then there exists a unique isomorphism
h: X = X' such that ' = F(h)f. Similarly for pairs F and Y.

Proof. Tt follows by substituting (X’,{’) into the definition for (X, f) that h exists uniquely, i.e.
—

<
y — 7 x) y byory) X
3‘ F(X') F(x’ X/

5_;

However, there already exists a morphisms X — X making the outer part above commutative,
namely idx. Thus, h'h = idx and, by symmetry, hh’' = idy. v O
S bue/ £

Notions defined by universal properties are unique_ if they exist, but they do not have to exist in
general. Nevertheless, recall from Convention 3.4 that we do not write “assuming that XYZ exists”
below, and these will be implicit assumption for e.g. statements such as the ones in Lemma 6.31
to make sense.

6E. Linear algebra in categories. We generalize the situations okaec]k and Maty,. )

Definition 6.7 A category C € Cat is called S linear if the space Homc(X,Y) is an S module
for all X,Y € Cat and ¢omposition js.S hilinear. Y]

Z

Definition 6.8 A category C € Cat is called additive if

b

e it is Z linear;
N—

e there exists a zero object 0 € Cat (meaning an object satisfying (6-1));

—

e for all X,Y € Cat there exists an object X ® Y called direct sum, which satisfies the
universal property in (6-2).

Example 6.9 The properties of being S linear and additive are parallel to each other: one asks
for linearity of hom spaces, the other for existence of direct sums.

F (X )
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(a) The category Set is neither S linear nor additive.

(b) The categories Vecy and fdVecy are k linear additive.

(c) The categories of the form Vecy (G) are k linear, but not additive.

(d) The category Vecy is additive, but not k linear (but, of course, Z linear).
—— a—— ——
~ a ?ﬂ"
Example 6.10 Additive categories need to be closed under &. For example, the full subcategory
evenVecy C fdVecy of even dimensional k vector spaces is k linear additive, while the full

subcategory oddVecy, C fdVecy, of odd dimensional k vector spaces is only k linear.
———

< 3 nel &

The following is (almost) immediate.

I Lemma 6.11 Let C € Cat be additive. Then there exists a bifunctor @&: CatxCat — Cat
called direct sum. 0

We again can say “the” direct sum, justified by the following lemma whose proof is a universality

argument:
I Lemma 6.12 Up to unique isomorphisms, X ® Y is the only object in C satisfying (6-2). O

Definition 6.13 An S linear functor F € Hom(C, D) between S linear categories is a functor

such that the induced map
Homc¢(X, Y) — Homy (F(X), F(Y))

is S linear for all X,Y € C.

On the first glance Definition 6.13 looks like the “wrong definition” for additive categories since
it does not involve the direct sums. However, the slogan is “linear implies additive”:

Lemma 6.14 Let F € Hom(C,D) be Z linear, and let C and D be additive. Then there exists
CEEEEE——— S ————
a natural isomorphism F(X®Y) 2 F(X) ® F(Y).

Proof. Note that being Z linear gives us the equality

F(f+g) = F(f) + F(g). \/

Thus, all of the equations in (6-2) are preserved by F which implies that F(X @) is a direct sum
of F(X) and F(Y), and the claim follows from Lemma 6.12. O

The following is as usual not hard to see:

Lemma 6.15 The identity functor on an S linear category is S linear. Moreover, ifX_and G
are S linear functors, then so is GF. O

Example 6.16 By Lemma .14, we get the categories of S linear categories Cats and the

category of additive categories Catg at ‘the same time, morphism being the appropriate

linear functors. Also important is the category Catsg of S linear additive categories, the

v
0
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morphisms being S linear functors, as well as the corresponding functor categories Homg(C, D),
Homg (C,D) and Homsg(C, D).
———

——————

Definition 6.17 C,D € Catgg are called equivalent as S linear additive categories,

denoted by C ~sg D, if there exists an equivalence F € Homgg (C, D). Similarly in the S linear

and additive setup, using the appropriate linear functors.

6F. The linear extension and the additive closure. The following constructions allow us

to perform linear algebra in almost all categories.

Definition 6.18 The S linear extension of C € Cat, denoted by Cs, is the category with
Ob(Cs) = Ob(C) and -

[Home, (x.¥) = 8{Homc(x, Y)}

and the composition being the evident S linear extension of the composition in C.

In words, the hom spaces of Cg are the free S modules with basis set being the corresponding
hom space in C.

Example 6.19 To match our previous conventions, let S = k.

(a) We have@]k ~p Vec]lJ (——- "4
(b) We have|Vec(G)i ~ Veck(GL) ¢

Example 6.20 For diagrammatic categories such as the Brauer category Br, taking the S

linear extension amounts to taking formal sums of pictures with the same endpoints, e.g.

B 1= E) R R

Since each diagram is a basis e?ﬂb, by definition, simplification of scalars is only allowed if the

diagrams are the same. Moreoybr, composition is bilinear, meaning e.g.

,X_%.X)}55.Q—8-Q:55‘A—S~Q,

where we have used one of the Brauer relations (3-2) in the last step.

N o X
L

AV
Recall our notation for free monoids from Section 3B. n Q N O Q
N

~
Definition 6.21 The additive closure of C € Cats, denoted by CQ, is the category with

Ob(Cg) = (Ob(C) | 0) (the composition is written &) and

Homc, (X1 @ ... DX, Y1 @ ... B Y,) = {(fm):llﬁ | fij € Homc(Xj,Yi)},

geooy

=

and the composition being matrix multiplication.

XyYe Ve
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In words, the objects of Cg, are formal (finite) direct sums of objects of C and tge hom spaces of
Cg are matrices whose entries are morphisms of C:

f11 flc 8; '¥
Eyoirem | 8w ] )( ® \( oL E
fr1 . fre - — P

In particular, the following is clear, saying that the additive closure is a closure:

Lemma 6.22 For all C € Catg we have Cg ~g (Cg)g. O

Example 6.23 With respect to Vec(G) we have interesting examples:

(a) In Vecyq(G), which is defined as first taking the k linear extension and then the additive
closure of Vec(G), objects are formal direct sums of group elements, while morphisms are
honest matrices with a restriction on entries coming from Homvsec, (qy(1,3) = 0 if i # j.

(b) The category Vecyg(G) is called the category of G-graded k vector spaces. Impor-
tant special cases are:

e For G =1 we have Vecyg (1) ~ fdVecy. In particular, Theorem 5.26 implies that,
—— —
after choosing the monoidal structure, fdVecy has only one structure of a braided
category.

e For G = 7/27 another common name is the category of (finite dimensional)
super vector spaces. This category has two braidings by Theorem 5.26, the

non-symmetric one is called the super braiding.

As in Example 6.23 the notation S@ means taking first the S linear extension, and then the
———

additive closure.
e

Example 6.24 For diagrammatic categories we get a diagram calculus of matrices. For example

( 1o (© ) ) = X
~)1(Qloo (Y ~-F3)
(o o S \UH
N AN
are computations in oBrgg.
—
«
Proposition 6.25 We have the following. A iy

(i) For any C € Cat we have Cs € Cats. ﬁ > Q
— ®

(i) There is a dense and faithful functor L: C — Cg given by S linearization.
e~

f C € Cat is monoidal (or rigid or pivotal or braided etc.),‘ then so is Cglwith its
‘ ‘

ucture induced from C.

Stmilarly j%“ Cg, except that the corresponding functor in (ii) is fully faithful, but not dense.

Proof. This is Exercise 6.93. g
———

Here is the analog of Proposition 6.26.
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Proposition 6.26 Let F € Hom(C,D). Then there exists a unique Fs € Homg(Csg, Ds) such
that we have a commuting diagram -

= .
Similarly for additive closures. ?\ﬂ M
i Proof. The functor Fg is the S linear extension of F. L// z a g

Proposition 6.25 and Proposition 6.26 in words say that we can do linear algebra in categories
without loosing our original category: one can check that “all properties we care about behave
nicely with S linear extensions and additive closures”; e.g. if F' is monoidal, then so is Fg.

6G. The first steps towards homological algebra in categories. First, the generalization
of a kernel: O'C \ém

Definition 6.27 For a category C € Catg and f € C we say Ker(f) = (Ker(f), k: Ker(f) — X)
is a kernel of f if it has the universal property of the form

(6-3)

Universality gives:

Lemma 6.28 Up to unique isomorphisms, Ker(f) is the only object in C satisfying (6-3).
Stmilarly for the cokernel. O

Example 6.29 As usual with universal objects, they might not exist:
(a) In Vecy and fdVecy (co)kernels exist and are the usual (co)kernels.

(b) The category evenVecy d%ot have (co)kernels in general since the morphisms in
evenVecy might be of odd*fa

J (c) Diagrammatic categories such as Brig usually)(ot have (co)kernels.

The usual convention to identify kernels with their objects Ker(f) is a bit misleading, in particular

in skeletal categories:
J O’A ‘ h \ - ame

Example 6.30 In Matg (co)kernels exist and can be described as follows. Take e.g. the matrix
f=12). Then, for any a € Q, the pairs

- Ker(f) = (1,(22)), Coker(f) = (1, (2a —a)

e [
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are kernels and cokernels of f, respectively. The unique isomorphism u in (6-3) for different scalars

is the corresponding scaling map.

The following should remind the reader of a classical fact from linear algebra and gives us a
good way to describe monic and epic morphisms, isomorphisms, subobjects, quotient objects etc.
(Recall that these notions as defined in Section 1F'.)

Lemma 6.31 Letf € C with C € Catg.

(i) We have Ker (Ker(f)) = 0 and Coker (Coker(f)) = 0.

(ii) Ker(f) = 0, respectively Coker(f) = 0, if and only if f is monic, respectively_epic.
—_——

(7ii) The morphism k of Kexr(f) is monic, and the morphism c of Coker(f) is epic.

(iv) Ker(f) = 0 = Coker(f) = 0 if and only if { is monic and epic if and only if f is an
isomorphism.

(v) If f is monic, then Y/X = Coker(f) is a quotient object of Y.
e ———

Proof. By symmetry, it suffices to prove the claims for the kernels.
(i). We write
Ker(f)
of N\
0 ——X
and observe that the zero object clearly satisfies the universal property of a kernel.

(ii). For th = fi we calculate th — fi = f(h — i) = 0. Hence, letting k" = h — i, we see that h —i =0
by (6.27). Conversely, if f is monic, then fg = 0 gives g = 0, which implies that the zero object is
the kernel of f.

(iii). By combining (i) and (ii).

(iv). We already know by (ii) that the first two statements are equivalent, and one direction of
the last statement is always true, see Lemma 1.32. So suppose that f monic and epic. Then
f = Coker (Ker(f)) = Coker(0), the latter always being an isomorphism.

(v). By the definition, we have a morphism c¢: Y — Y/X, which is epic by (iii). O

Note that we use the notation Y/X in Lemma 6.31.(v) for quotient objects since there is a natural
choice for the epic morphisms in this case. The same notation will be used below, and we will
also write Y C X for subobjects, partially justified by Theorem 6.44.

Definition 6.32 An epic-monic factorization (f,m,e) of f € C with C € Catg consists of

e a kernel (ker(f and a cokernel (coker(f for f;
(xex(f) (L) (coker(f)(c

e a kernel for ¢ and a cokernel for k;

e an object I and two morphisms e: X — I and m: I —Y;
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such that : :
(i) f = me; W_W X-— MM'K © W

(ii) we have (I,e) = coker(k) and (I,m) = ker(c) giving a sequence

6-4) ( ker(f) - X @.ﬁ Y -5 coker(f) .
X

Using Lemma 6.31 we get:

Lemma 6.33 In (6-4), the morphism e is epic qnd the morphism m is monic. O

Definition 6.34 For f € C with C € Cat we spy In(f) = (In(f),m: Im(f) < Y) (thus, we
assume that m is monic) is an image of f if it has|the universal property of the Iorm

i T\‘e\ \
g e 4 ‘> Q

A coimage of f, denoted by Coim(f) = (Coim(f),e: Coim(f) — Y), is an image of f in COp.

>

Example 6.35 Images in Vecy (in its various incarnations) are the classical images of mor-
phisms. To be completely explicit, take f = (I% 1) € Matq. Then we can let

Im(f) = (1,(3)),\ e=(12), f=(3)o(12)=me.
An epic-monic factorization 1s also illustrated above. ( /l 3 L

C—

Lemma 6.36 Forf € C with C € Catg we have:

(i) For an image (Im(f), m) the morphism e is unique and epic. Similarly for coimages.

(ii) Im(f) = Ker(Coker(f)) and Coim(f) = Coker (Ker(f)).

(iii) If f has an epic-monic factorization, then Im(f) = I in (6-4).
Proof. This is Exercise 6.94. g

Consequently, by universality:

Lemma 6.37 Forf € C with C € Catg with an epic-monic factorization and an image, this
factorization is unique up to unique isomorphism. O

Remark 6.38 Since we will later almost always work k linearly, let us stress that, clearly, all
the statements above have analogs for C € Catgg instead of C € Catg. Similarly, all statements
below can be (appropriately) linearized. For example, Theorem 6.44 holds verbatim with A then

being a k algebra, called a presenting algebra of C.
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6H. Abelian categories. Most invariants of classical topology take place in the following type

of categories.

Definition 6.39 A category C € Catg is called abelian if every morphism f € C has a
E epic-monic factonzathT)

Example 6.40 Abelian categories are in some sense “rare” as we will see in Theorem 6.44.

(a) The names comes from the fact that VecZ7 see Example 1.8, is abelian.

>
(b) Of course, Vecy and fdVecy are a,bellan 0‘@ W

(c) The categories Ve G) are all abelian.~"

(d) Diagrammatic categort are usually not abelian.

Remark 6.41 In Section 6F we have seen linear and additive closures of categories, which

allowed us to extend the power of linear algebra basically to any category. There are also several
notions of an abelian envelope (one classical reference is [Fr65]). However, they always come

with some form of catch: either they do not preserve structures one might care about, e.g. of
being monoidal, or they do not exist in general. In words: we can not naively abelianize our

favorite categories.

Definition 6.42 Let A be a ring, which we view as an algebra in Vecy. Then category of
right A modules is defined to be Mod(A) = Modvsec,(A), cf. Section 3F.

‘ The prototypical example of an abelian category is Mod(A) as well will see in Theorem 6.44. o

Remark 6.43 Note that Definition 6.39 implicitly assumes that kernels and cokernels exist.
(This, by Lemma 6.36, implies that images exist.) In fact, there are many equivalent definitions of
abelian categories. However, all of these are meant to be intrinsic descriptions of the “definition”

of the concrete abelian categories in Theorem 6.44. : _ﬂ |74

The following, called the!F’reyd—Mitchell theoremJjis the reason why all of the above looks

very familiar. Note that some of the involved notions will be defined later, but we want to have

the theorem stated as soon as possible: ‘7
Jome, l; o

Theorem 6.44 We have the following. \é

(i) For every abelian category C € Catg, there exist a ring A such that

C << Mod(A) , M'(ﬂ—l /AJ

i.e. C is equivalent, as an abelian category, to a full subcategory of Mod(A).

(ii) If C is additionally finite, then one can find a finite dimensional A such that

c oy & P Mesd( )

i.e. C is equivalent, as an abelian category, to fdMod




QUANTUM TOPOLOGY WITHOUT TOPOLOGY 83

Proof. We will sketch a proof later, for now see e.g. [Fr64, Theorem 7.34 and Exersice F]. ([

The ring A in Theorem 6.44 is called a presenting ring of C.

Remark 6.45 The psychologically useful statement in Theorem 6.44 in words says that we

can think of objects of an abelian category as being A modules and of the notions we have seen
above, such as e.g. kernels, as being the ones from linear algebra. However, the statement has

two drawbacks: neither is A unique nor easy to compute in practice.

Example 6.46 For Vecy one can let A = k in Theorem 6.44, but A = M,,,(k), the k algebra
of n X n matrices with values in k, works as well for any n € N. (This is a special case of Morita

equivalence. Roughly, both, k and M, «,(k ly_one simple module, which is either k
or k™ with the evident action.) In this casd Vecy ~ie Mod(A)Yor any such A, and these are

equivalences of abelian categories.

In order to define appropriate versions of functors between abelian categories (these are called
exact in Theorem 6.44) we need to understand abelian categories better.

I

61. Exact sequences and functors. Recall that in homological algebra one always has certain
sequences satisfying exactness properties. Here is the analog:

Definition 6.47 A cohomologically written sequence, or short, in C € Catg

is a collection of objects X; and morphisms f;: X; — X;41 for i € Z. We write (X;,f;)® € C for such
sequences, with zero objects being spmetimes omitted. A homologically written sequence in

C € Catg is a cohomologically written sequence in CP. P

)
7 VX2
The usual way to illustrate these is - 128 ; = —_—)
£ £ f; £ fi— fi— f; £ ‘ m
2 Xi—1 ! X; Xi+1 4+1> ey o % 2 X1 ¢ : X; ¢ Xi+1 (i e .

By symmetry, we can focus on cohomologically written secgences from now on.

—_— / o

‘ Definition 6.48 A sequence (X;,f;)® € C is called exact in i if Ker(f;) = Im(f;_1), and’exact

if its exact in ¢ for all i € Z.

Example 6.49 A so-called short exact sequence (SES) is an exact sequence

W LA ==

xﬁYzﬁz\: ...#&0 O, x sy -Pyz 0 0%...,

where i is monic and p is epic by exactness and Lemma 6.31. Note also that Z = Y/X.

(a) To be completely explicit, here is a SES in Matg: (4 & /” /\o 01
(10 S (0
=(55) | =t =388 , =) -A-3

(6-5) 2« > 3 » 1, 24 3 > 1.

The right sequence is a so-called splitting of the left sequence, meaning that

(6-6) pli=idy, pi’=idy, ip’ +ip =ids.

By comparing (6-6) to (6- 2) we thus, not surprisingly, get thati3 = 2 @ 1.! L) + "SQ
A—L03 —ﬁa’! ' A
—=d -

PPN i L




C{'_{/(fc d,’{/’,kf——oq{/,
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(b) A SES in Vecc is L
L )

P ]
‘ED’ CM}Q&ﬂQC[V@%%C&Xﬁiiﬁﬁcu} F’C = 0

R
1—0,X—X
%

c(x) S/ 2 e, x) 5T Seqy

The bottom sequence is a splitting of the top, and thus C[X]/(X?) = C{1} ® C{X}.

There are a few things to check: First, we have to make sure that the used morphisms are in
the correct category. (This sounds obvious, but is crucial: a lot of categories we will see are
subcategories of Vecy, but not all k linear maps are in general in such subcategories.) Second,
we need to make sure that the left morphism is monic and the right morphisms epic. Third, we
have to check Ker(g) = Im(f). (All of this is easy to see for (6-5) and (6-7).)

Definition 6.50 A functor F € Homg(C, D) is called exact if
<(X<—>Y—»Z SESE):C (v) 2% pz) SES)
As usual: JE{_) S FI‘

Lemma 6.51 The identity functor on an additive category is exact. Moreover, if F and G are

exact functors, then so is GF. U
e

Example 6.52 We have a (non-dense, but full) subcategory Hor@C D) € Homg(C,D),
the category exact functors.

Exact functors are the correct functors between abelian categories:

T

Lemma 6.53 Le@E Horg-c-'7 D) be a functor between a&i@'an categories. Then:
\I/ (i) If (Xl,f) € C is ezact, then (F(X;),F(f;))® € D is also ezact.

E" E (ii) If (Kex(f),k) € C is a kernel, then (F(Ker(f)),F(k)) € D is also a kernel. Similarly for

cokernels

‘d"-”lk (i) If (Im(f), m) € C is an image, then (F Im(f)),F(m)) € D is also an image. Similarly for

cozmages
E——

(iv) If f is monic, respectively epic, then F(f) is monic, respectively epic.

B0 1t it 0 ot
dZ. (v) If
s

ker(f) = X -5 I 2 ¥ - coker(f)
o i

18 an epic-monic_factorization in C, then

F(ker(f)) — F(X) — F(1)

s also an epic-monic factorization in D.
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’ Proof. (i). Note that being an exact sequence implies that we have

Ker(fi—1) Im(f;)

F(Im(fi-1)) F (Coker(fi11))
with still has SES diagonals. Then
Im(F(fi—1)) = Im(vu) = Im(v) = Ker(w) = Ker(xw) = Ker (F(f;)),
shows the claim.
(ii). Kernels and cokernels are special cases of exact sequences.
(iii). We use (ii) and Lemma 6.36.(iii).
(iv). By (ii) and Lemma 6.31.(iii).

(v). Clear by the other statements. H

Example 6.54 We get a (non-full) subcategor Catg, the category of abelian
categories with morphisms being exact functors.

Definition 6.55 C,D € Caty are called gguivalent_as gbelian_categories, denoted by
if there exists an equivalence F € Hom.(C, D).

Recall hom functors from Example 1.22, which will now again play a crucial role.

Example 6.56 As we have seen, any C € Cat 4 is equivalent as an abelian category to some
full subcategory of Mod(A) for some appropriate ring A. The additive versions of the Yoneda
embedding, cf. Proposition 1.56, almost do the job:

Y: C — Homg(C?,Vecz), Y?: C?? - Homg(C, Vecy)

is fully faithful, and thus, C is equivalent as an additive category to a full subcategory of right
C modules. (Here we think of Homg (C°, Vecy) as right C modules.) However, an SES is in
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general not preserved since

Homg(—,1)

Homa(_, X) Home(_,Y) —22CPh Homea(,2) |
(6-8) .
Homc (X, -) Home(, -) Homc(Y, —) Home(p, -), Homc(Z,-) ,

are not exact in the rightmost, respectively leftmost, position, even if one starts with an SES.

So the Yoneda embedding is not exact and does not prove Theorem 6.44, at least not directly:

Proof. (Sketch of a proof of Theorem 6.44.(i).) It is easy to see that Homc(_,X) is an additive
and right exact functor, meaning that it sends a SES to a sequence as in the first row of (6-8),
which is exact except at the far left. Such functors form a category Hom,., (COP, VecZ), and one
shows the following (non-trivial) statements:

e The category Hom,..(C°P, Vecy) is abelian.

e The adjusted Yoneda embedding Y™*: C — Hom,. (COp, VecZ) with X — Homcg/(_, X) is
additive exact and fully faithful.

e There exists an object I € Hom,., (COp7 VecZ) whose endomorphism ring

( A= EndHomm (CDP,VecZ)OP(ID

provides an abelian category Mod(A) equivalent to Hom,.(C°P, Vecy) as an abelian

category. ]

The projective, respectively injective, objects correct the “failure” in (6-8) (in fact, the object I

y from the above sketch of proof is a certain nice injective object called a cogenerator):

Definition 6.57 Let C € Catg.
Sy

(i) P € C is called projective if we have \K W
Homc(P, -) € Hongg, VecZ).

(ii) I € C is called injective if we have

Homg(-,I) € Ho@COp , Vecy).

The following are (almost) immediate. \\
o

Lemma 6.58 [f C € Cat 4, then P € C is projective if and only if it has the universal property
of the form

P
| 7
3'/ lp7
s u
|%e
X

Y -

for any epic morphism p. Similarly for injective objects in abelian categories. U

l Lemma 6.59 Being projective is an additive property: two objects P,P' € C are projective if
and only if P & P’ is projective. Similarly for injective objects. O
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Example 6.60 By Lemma 6.59 we have two additive full subcategories Proj( C ), the category
of projective objects, and Inj(C) the category of injective objects, for all C € Cat 4.

.

Note also that we can define the same notions (projective, injective and their categories) for any
Ce Cat@. .

Definition 6.61 Let C € Caty and X € C. We say P(X) = (P(X),f: P(X) ‘4() is a projective
cover of X if P(X) is projective and has the universal property of the form

P
(6-9) o lp, where P is projective.

-
7 u

W

P(X) - X YV

An injective hull of f, denoted by I(X) = (IX),i: X< I), is a projective cover of X in CP.

The philosophy is a bit that every object is a quotient of a projective object and a subobject of

an_injective object, and the projective cover and the injective envelope are the universal objects

achieving that. Thus, not surprisingly:

Lemma 6.62 Up to unique isomorphisms, P(X) is the only object in C satisfying (6-9). Similarly
for the injective hull. O

6J. The “elements” of additive and abelian categories. There are (at least) two competing

ways to define “clements”: Either these are objects without substructure, called simple (the
words “simple” is meant in the sense that they are “as simple as possible”, and not meaning they

are easy). Or these are objects that can not be decomposed further, called indecomposable.

Definition 6.63 Let C € Catg. /'

(i) A non-zero object L € C is_called simple if
‘ (XCL)=X=0o0rX=1L). ]
(ii)) A non-zero object Z € C is called indecomposable if

C Z§X®Y:>(X:OorY:®

We also say a decomposition X' = X @Y is non-trivial if neither X nor Y are zero. Similarly, a

subobject Y C X is non-trivial if it is neither 0 nor (isomorphic to) X.

Remark 6.64 Note that indecomposable means that an object has no non-trivial decomposition,
while simple means that an object has no non-trivial subobjects.

The following lemma is clear and it enables us to define the set of simples Si(C) C Ob(C)/ =
respectively indecomposables In(C) C Ob(C)/ = (up to isomorphism). We, abusing notation,
write e.g. L € Si(C) for simplicity.

Lemma 6.65 The properties of being indecomposable or simple are preserved under isomor-
phisms. O



88 DANIEL TUBBENHAUER

Note that being projective or injective is also preserved under isomorphism. Hence, by Lemma 6.59

we also have the sets of projective indecomposables Pi(C) C Ob(C)/ = and injective indecom-
—

posables Ii(C) C Ob(C)/ =, respectively.

Lemma 6.66 FEvery simple object L € C is indecomposable.
Proof. Clearly, any non-trivial decomposition L =2 X @ Y gives non-trivial subobjects X and Y. [

Example 6.67 Being simple or indecomposable depends on the ambient category, compare
(6-10) and (6-12):

PN )
(a) Foit is easy to see that Si(Veci) = In(Vecyk) = Pi(Vecy) = li(Vecy) = {k}.
Thus, A = C[X]/(X?) € Vecc is neither simple nor indecomposable and we have
——

(6-10) A¥C®C, (in Vecc),

cf. (6-7). Moreover, every object in Vecy is projective and injective.

(b) Consider now A = C[X]/(X?) as a C algebra. Then A acts on itself by multiplication,
thus A can be seen as an object A of (the C linear abelian category) Mod(A). The C
algebra A also acts on C via evaluation, and we hence have two objects C,A € Mod(A).
Choose {1, X} as a basis of A. Looking at the action matrices on this basis gives

0 0 lower right block entry «~ C,
(6-11) 1— , X ,
0 upper left block entry «~ C.
This shows that C is a subobject of A (indicated in (6-11)), and hence A is not simple.
However, the very same action matrices show that the complement space C{1} is not a

subobject (the entry 1 in the lower left ruins this). However, one easily sees that A is

(projective injective) indecomposable and
(6-12) 0cC=Cca A%C ®C, (in Mod(A)), (d}
—— =

B 1A=T,

with the right copy of C being the upper left block entry and the left copy of C bemg the
lower right block entry in (6-11).

The difference between Yecy and MQQ(A) is that the maps defining the decomposition from
(6-10) are not A equivariant, i.e. they are not morphisms in Mod(A). Precisely, we still have

M= c{x} =X o)y (x?) =20 oy =@ ses,

but it does not split in contrast to (6-7).

Thus, Lemma 6.66 and Example 6.67 give:

indecomposable < simple,

indecomposable % simple.

The following is known as Schur’s lemma (or at least (i) of it).

Lemma 6.68 Let C € Catg.
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(i) If C has kernels and cokernels, then, for any L,L" € Si(C) with L. 2L/:

Endc(L) 4s a division ring, Homg(L,L") = 0. g ! _) L_|

(71) For any Z € In(C) we have .

T
Endc(2) is a local ring.

- o )

Proof. This is Exercise 6.96.

Schur’s lemma, part II:

|
Lemma 6.69 Let C € Catgy with K being algebraically closed. Then, for any L,L" € Si(C)

with L 2 L, we have

(6-13) Endc(L) 2K, Homg(L,L') =0.

Proof. This is also Exercise 6.96. U

rExample 6.70 With respect to Example 6.67 we have y, AT d-fgj/ x\

Endvec.(C) = C 2 Endyoa(4) (€). )
EndVecC ((C[X]/(XQ ) = Mat2><2((cla EndMod(A) (C[X]/(XQ)) = C[X]/(XQ)a

)

)
and the idempotents (), (%) € Matay2(C) give the decomposition in (6-10).

Note that any (“finite”) X € C with C € Catg, by definition, decomposes additively into
indecomposables. However, Example 6.67 shows that it is too much to hope that X decomposes
additively into simples. We rather need the analog of (6-12):

Definition 6.71 Assume that C € Catg, has kernels and cokernels. For a non-zero X € C a
sequence of subobjects of the form

(6-14) 0=XyCXC..CX1CX,=X
_—
is called a filtration by simples or a composition series if X;/X;_1 = L; € Si(C). A non-zero

X € C is called of finite length if it has such a filtration, and in this case the appearing L; are
called the simple factors of X.

We stress that the main point in (6-14) is that successive quotients are simple:

0=2XoC c...canxn:x.
L] an\

Definition 6.72 For a non-zero X € C with C € Catg a decomposition of the form

(6-15) X272,6...02,

is called a decomposition by indecomposables if Z; € In(C). A non-zero X € C is called of

finite decomposition length if it has such a decomposition, and in this case the appearing Z;

are called the indecomposable summands of X.

(=]
L



90 DANIEL TUBBENHAUER

—
Example 6.73 In Vecy an object is of finite length if and only if it is finite dimensional.

Moreover, for finite dimensional k vector spaces (6-14) and (6-15) agree.
e

The following theorem is our justification for using the analogy to elements in chemistry, where
Theorem 6.74.(i) is known as the Jordan—Hélder theorem, and (ii) as the Krull-Schmidt

theorem. S-E . E [ l .

‘Theorem 6.74 Let C € Catg,.

(i) Assume that C € Catg has kernels and cokernels. Let X € C be of finite length. Then a
filtration as in (6-14) is unique up to reordering and isomorphisms of subobjects.

(ii) Let X € C be of finite decomposition length. Then a decomposition as in (6-15) is unique

up to reordering and isomorphisms of summands.

In particular, we can define the following numerical invariants of such X.

e The length {(X) of X can be defined to be n in (6-14), and the decomposition length
d(X) of X can be defined to be n in (6-15). -

e The multiplicities of L (simple) respectively Z (indecomposable) in X denoted by
[X:L] =#{i | X;/Xi-1 =L}, (X:Z2)=#{i|Z2; =1}

e The sets

{(L,m) | L is a simple factor of X with multiplicity m},

{(z,m) | Z is an indecomposable summand of X with multiplicity m }.

Remark 6.75 We will use the notion “numerical” quite often and this is to be understood
as reducing notions from categorical algebra to “something easier” such as classical algebra,
combinatorics, linear algebra etc. Thus, a “numerical invariant” for us is not necessarily a number,
but simply something that is “easier” than the problem at hand.

Proof. We only prove (i), the arguments for (ii) are similar. The proof works by induction over
n > 1, with n being the smallest possible length of a filtration by simples. For n = 1 there
is nothing to show since X is then itself simple. So assume that n > 1 and that we have two
filtrations

0=XpCX C..CX,1CX,=X, simple factors Lq,...,L,,

/
n'y

0=X,CXjC..CX, ,CX,=X simple factors L}, ..., L

~Y

with n being minimal. There are now two cases. First, if X; = X{ = L; = L] we are done
by induction since X/X; = X/X] has a shorter filtration with simples factors being either L; for
1= 2,..,n, or L;- for j = 2,...,n/, and we can use the induction hypothesis to see that these
simples agree up to reordering and isomorphisms. Otherwise, X; 2 X} and Schur’s lemma implies
that X; @ X] is a subobject of X and we can consider Y = X/(X; @ X}). It is easy to see that Y has
a filtration by simples, say with simple factors LY, for k = 1,...,7 < n. We then observe that:

e X/X; has a filtration with simple factors X, Lz for kK = 1,...,7, but also one with the
original simple factors L; except X; = L;.
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e X/X| has a filtration with simple factors X;, L} for &k = 1,...,7, but also one with the
original simple factors L’ except Xj = L.

By the induction assumption, this means that the collection of simples Xq, X} and LY fori =1,...,r
coincides (up to reordering and isomorphisms) on the one hand with L; for i« = 1,...,n and on the
other hand with the L’ for j = 1,...,n". O

6K. Finiteness assumptions. For what will follow we need and want to go to the finite

dimensional world:

Definition 6.76 Let fdVecy C Vecy be the full subcategory of torsion free abelian groups

of finite rank.

Without harm we can think of Definition 6.76 as being the Z linear version of fdVecy C Vecy,
and the “fd” refers to finite dimensional: having always an underlying field in mind, we say “finite
dimensional” instead of the mouthful “torsion free of finite rank”.

Definition 6.77 Let C € Catg,, and assume that Homc(X,Y) € fdVecy, for all X, Y € C.

(i) If C is abelian and any X € C is of finite length, then we call C locally (abelian) finite.
e ———

(ii) If any X € C has a decomposition as in (6-15) satisfying the Krull-Schmidt theorem
Theorem 6.74.(ii), then we say that C is locally additively finite.

Example 6.78 Here are some prototypical examples:

(a) Not all objects in Vecy have finite length and hom spaces are not finite dimensional, thus

Vecy, is not locallz finite. X N

l (b) The full subcategory fdVecy C Vecy, is locally finite.

(c) For any group (it may be infinite) G and any w, the category Vecy,(G) is locally finite,

because in the additive closure we only allow finite direct sums.

Note that we have

locally additively finite < locally (abelian) finite,
locally additively finite #- locally (abelian) finite,

the latter being justified by Example 6.81. Before we can state it, we need the analog of
Definition 6.42 in this finite setting:

Definition 6.79 An algebra A in fdVecy is called a finite dimensional algebra. The
category of finite dimensional right A modules for such an algebra is defined to be
fdMod(A) = Mod¢gvec, (8). We also have full subcategories fdProj(A) C fdMod(A) and
fdInj(A) C fdMod(A) of finite dimensional projectives and finite dimensional injec-

‘ tives, respectively.
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Definition 6.80 For any algebra A € Vecy let fdMod(A) = Mod¢gvec, (A) C Modvec,(A)
denote the corresponding full subcategory of finite dimensional modules. Similarly for finite

dimensional projective and injective modules. A _ ¢ E
L AFRPIVAN

Example 6.81 Let us come back to Example 6.67. The C,A € fdMod(A), and fdMod(A)
is locally finite. However, C _is neither projective nor injective. Hence, A does not have any

composition series in terms of projectives or injectives. Thus, neither fdProj(A) nor fdInj(A)
are locally finite, but one can show that both are locally additively finite.

The following are the abelian categories which we will use most of the time.

Definition 6.82 A category C € Caty is called (abelian) finite if

e C is locally finite;
——

e the set Si(C) is finite;

e every simple L € C has a projective cover.

L
For any such C we have the full subcategories fProj(C) and fInj(C) of finite projective

respectively finite injective objects. We also have the category of finite abelian categories
being the corresponding full subcategory Cat ;s C Cat 4.

Example 6.83 Back to Example 6.78:

(a) The abelian category fdVecy, is finite.

(b) For any group G and any w, the abelian category Veci(G) is finite if and only 1@9
finite. -

We have already seen the explicit description of finite abelian categories, see Theorem 6.44.(ii).
We now sketch a proof.

Proof. (Sketch of a proof of Theorem 6.44.(ii).) Since Si(C) is finite by assumption, we can
number the simples therein L; for ¢ = 1,...,n. Also by assumption, they have projective covers
P, = P(Li). Take

A= Endc (@?:1 Pi),

with €D;._, P; usually called a projective generator. Note that A is finite dimensional because

the hom spaces are, again by assumption, finite dimensional. Also fdMod(A) is finite abelian,
by classical representation theory. It is then not hard to see that this is the category we need, i.e.

Homc (@], Pi,—): C —< fdMod(A) .

Note hereby that the hom functor is exact since @}, P; is projective. Finally, Homc (€D}, P;, X)

for all X € C is a right A module via precomposition. O

Remark 6.84 Let C C Catsy. Note that the indecomposable projectives in fProj(C) are the
projective covers of the simples in C, while the indecomposable injectives in fInj(C) are their
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injective hulls. In particular,
#Si(C) = #Pi(C) = #Ii(C).
In fact, in view of the Freyd—Mitchell theorem Theorem 6.44.(ii), as a right A module
[ (6-16) A =@, dim(L;)P;

Example 6.85 Let us discuss the above proof in two examples.

(a) In fdVecy a projective generator is for examp]@ and Endggvec, (k) = k) so that
fdVecy, ~. fdMod (k). However, k & k is also a projective generator and 1 this case one

gets fdVecy, ~, f{dMod (Mat2><2(1k)).

J( b) In Example 6.67 the only simple object is C itself, and P(C) = A. Clearly the corresponding
algebra A = Endggnioa(cyx)/(x2))(P(C)) is isomorphic to C[X]/(X?).
— ——

These are, of course, rather boring examples as the abelian categories already are of the form
fdMod(A). However, what we want to stress is that the above proof is a generalization of the
fact that every monoid M is isomorphic to the monoid End (M), which we have already seen in
the proof of Theorem 2.32.

Finally, recall the Grothendieck classes, see Definition 1.44.

Definition 6.86 Let C € Caty, and let D = C or D € {fProj(C), fInj(C)}.

—

(i) We endow Ko(C) with the structure of an abelian group via

| =t ) s Gx oy 2z sps). |
(i) We endow K((D) with the structure of an abelian.group via
) (M=K+[2) < (Y=xa2). \

In order to distinguish the two structures we write K§(_) for the one involving SES and K (-)
t‘(')r the additive version. —

The following are easy and omitted.

!Lemma 6.87 Let C € Catyq, and let D € {Catsy,fProj(C),fInj(C)}. Enumerate the
simples in C or D by L; fori=1,....,n, and let P; and I; for i = 1,...,n be their respective
projective covers or injective hulls. Then:

(i) Definition 6.86 endows K§(C) and K§ (D) with the structures of finite dimensional
abelian groups.

R

(i) The set Si(C) is a basis of K§(C). We have
[X] =220 [X: L] - [Li] € KG(C).

(iii) The sets Pi(D) and Ii(D) are bases of K (D). We have
[X] =323 (X : Py) - [Pi] € K'(D),

d and similarly with injectives. O
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Lemma 6.88 Let C,C’' € Catyy, and let D,D’ € {Cat 4, fProj(C), fInj(C)}.

(i) Any functor F € Hom.(C, C') induces a group homomorphism
K§(F): K§(C) — K§(C').

Further, if F is an equivalence, then K§(F) is an isomorphism.

(ii) Any functor F € Homg (D, D’) induces a group homomorphism
K§(F): K§(D) — K§(D).

Further, if F is an equivalence, then K(?(F) is an isomorphism. O
The final definition in this section which is well-defined by Lemma 6.87.

Definition 6.89 Keeping the notation from Lemma 6.87, the projective and injective Car-
tan matrices are the n x n matrices

n

Cp(C) = ([Pl : Lj])Zj:l’ CZ(C) = ([Iz : Lj])i,j:l'
Let us finish this subsection with a bigger example. Before that, let us recall:

Remark 6.90 Let p’ € N be a prime and n € N~g. Recall that there exist a unique, up to
isomorphism, finite field Fy of order ¢ = (p')™ explicitly constructed by:

o Ifn=1, then ¥y =7Z/p'Z;

e ifn>1, then Fy = Fy [X]/(X7 - X).
The algebraic closure of IF, is Fq = Um€N>O [Fgm. (Finite fields can not be algebraically closed by
the folk argument: “If F = {z1, ..., 2}, then p(X) =1+ [[;_, (X — 2;) has no root in F.”)
Let further m € Nsg and consider the polynomial p(X) = X™ — 1. Then:
(6-17) p(X) has ged(m, g — 1) roots in Fy.

In particular, if m = p is itself a prime, then there are primitive mth root of unity in ?p/ if and
only if p # p'. Explicitly, and easy to generalize, if p=>5, k € Nyg and p’ =5 or p’ =7, then

5 ifk=0mod (p— 1),
ged(5,55 — 1) = 1, gcd(5,7k—1):{ ! mod (p

)
~ BIC(Z /5]
Example 6.91 Let us consider A = F5[Z/5Z] and let C = fdMod(A). ——
As already stated, see Remark 6.84, the sets Si(C), Pi(C) and li(C) have all the same size in
general, while In(C) might be bigger. Let us see this explicitly.
For A we can determine a module structure on a F5 vector space by specifying the action of the
generator 1 € 7/57 since Z/5Z = (s | 8> = 1) and the isomorphism is given by sending 1 to s.

We define five modules /'x/’
Loz =1 l)




QUANTUM TOPOLOGY WITHOUT TOPOLOGY 95

Li WL ) zs, s

, filtration 0O

¢
,Miltration 0 — Ly — Ly — Ly — Ly — Zg, l1

¢ 4¢ 2
4
,filtration 0 — J& — 3 — I(— D{—K— Zs, S-

'D = ?YLE/S-]

where we gave the action matrices of 1 and the filtrations by simples, where we give the successive

simple quotients. In this case the characteristic 5 version of the Jordan theorem gives

_S_iig@ Pi(C) (P )= 1i(C), n(C) = {21, 25,7524, 25},
K§(C) = K§ (fProj(C)) = K§ (fInj(C)) =.Z

L —

However, the evident group homomorphism

(K (fProj(C)) — K§(C), [X] > [X] e Z — Z, 1155, )

is not a group isomorphism since [P1] = 5[L1] in K§(C), and it corresponds, as indicated, to
multiplication by 5. We also have C’pi C) = (5). Similarly for the injectives.

6L. Exercises.

Exercise 6.92 Show that the two morphisms

(139 1)

are orthogonal idempotents in Brgg,, meaning that e? = ey and eter = 0.
Exercise 6.93 Prove Proposition 6.25 and Lemma 6.36.

Exercise 6.94 Describe (co)kernels, images, the epic-monic factorizations, simples, projective
and injectives in Vecyg(G). Moreover, find a presenting algebra A, cf. Theorem 6.44.

Exercise 6.95 Prove Schur’s lemma(s) Lemma 6.68 and Lemma 6.69, and find an example for
k = Q where (6-13) does not hold.

Exercise 6.96 For a,b,c € C let A = C[X]/(X — a)(X —b)(X — ¢). Consider the cases (a)
a=b=c=0,(b)a=b=0,c=2and (c) a=0,b=1,c =2 and show (e.g. via the Chinese
reminder theorem) that
CIX]/(X?) case (a),
A~ {C[X]/(X?) @ C[X]/(X -2) case (b),
CX]/(X)® CX]/(X -1)®C[X]/(X —2) case (c),
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l (What could the general statement for C[X]/][;_, (X — a;) be?) Then compute the Cartan
matrix of fdMod(A) in the above cases.

7. FIAT AND TENSOR CATEGORIES — ENRICH THE CONCEPTS FROM BEFORE

Recall that the Grothendieck classes of an additive or abelian category have an addition. So, in
some sense, they categorify abelian groups. Thus, a natural question would be:

What are suitable categorifications of ring or algebras?

7TA. A word about conventions. We keep the previous conventions and use additionally:

N Y
“stack” the
at 4 Ineans

Convention 7.1 From now on we have categories with several structures, an
notation; being careful with the hierarchy of the notions. For example, C €
that C is a rigid (for which C needs to be monoidal) k linear abelian (for which C needs to be

additive) category.

’Convention 7.2 Note that “topological properties” of categories are usually written in front
e.g. RCat means rigid categories, while “algebraic properties” are usually in subscripts, e.g.
Cat; 4 means locally finite abelian categories.

Convention 7.3 We tend to drop the “up to isomorphism” if no confusion can arise. For
example, “has one simple” is to be read as “has one simple up to isomorphism”.

Convention 7.4 We write k - X short for X @ ... ® X (k summands). We also use the symbol
X € Y for “X is isomorphic to a direct summand of Y”.

7B. “The philosophy of idempotents.” Before we can answer the main question of this
section, we want to be able to take Grothendieck classes of a bigger class of categories. To this

end, here is some motivation.

First, let us come back to (6-2), say for Vecy. We write ex = ixpx and ey = iypy. Let us also

write Z = X @ Y. There are now several crucial observations: @
e We have ey = idz — ex, and Im(ex) = X and Im(idz — ex) = Y. U\ XQ Y
oA NS
e We have idempotency, i.e. t 'L N/
6)2( = €x, (ldz — ex)g = ld% — 26){ + 6)2( = ldz — €x.

The property in (7-1) means that ex is an idempotent. We also have

@ ex(idz — ex) = €ex — 6)2( =0= ex — eg = (ldz - ex)ex,c_ ex ea - 0

ex + (idz — ey) = idy, EX-I-Q):/{

with (7-2) and (7-3) being called orthogonality and completeness, respectively.

R
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e We calculate that we have a commuting diagram

R
idz {)\) (Qx G»\ \ a

( idzeiex ) (ex idz—ex )
—_—

—
(ex idz —ex )

(7—4) Z ———— Im(ex) D Im(ldz — ex)

\_/

id1m (ex)@Im(idz —ex)

which implies th;@g Im(ex) ® Im(idz — e;D‘ he isomorphisms, in the corresponding
directions, are the two matrices in (7-4).

e Note also that the above works both ways: Having a decomposition Z =Z X ® Y we get
the idempotent ey satisfying all the above properties. Conversely, having an idempotent
e: Z — Z we get a diagram as in (7-4).

{o The algebra above is very basic and only uses the existence of images and no other specific

properties of Vecy. G 1 4

All of this together is called “The philosophy of idempotents.”; i.e. idempotents decompose objects
into direct sums. This is, of course, most useful if the object one might care about does not
come directly as X @ Y, but rather in some disguise. Here we do not want to take the trivial
idempotents 0 and idz, and idempotents not of this form are called non-trivial.

Example 7.5 Let A = C[X]/(X?) and B = C[X]/(X? —1). We claim that these are quite
different algebras in the following sense. An element in either A or B is of the form a 4+ bX =
a-1+b-X, where a,b € C. We calculate that

< 2 4 2abX in A,
(a+bX)? —a +2abX +p2x2 £ 10 T2 m
—_—— a? + b +2abX inB.

Thus, trying to solve the equation (a + bX)? = a + b§ ;or A gives only the trivial solutions
a=b=0and a=1, b=0, and hence there is no non-trivial idempotent in A. In contrast, in B
we get two non-trivial solutions

CEErTy m

which satisfy (7-1), (7-2) and (7-3). Thus, as C algebras, we get:

C[X]/(X2 — 1) 2 Im(e4) ® Im(e_) = C[X]/(1 + X) & C[X]/(1 — X) = C & C. ﬁ,wa
C

7C. The idempotent closure. The above says that we might want images, but we only need
them for idempotents.

Definition 7.6 The idempotent closure of C € Cat, denoted by @ is the category with

e objects being pairs
Ob(Ce¢) = {(X,e! |XeC,e: X=X jdempotent};

(X'n\
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e morphisms being f: (X,e) — (Y,¢’) with (f: X — Y) € C such that we have a commuting
diagram

e the identities are id(x ) = €;
’_

e composition is composition in C.

Good news, this works well:

Proposition 7.7 Let C € Cat. Then we have:

(i) Ce is a category. v X — (><’ L,(//X J

(i) There ezists a well-defined fully faithful functor \/

(iii) If e € C is an idempotent, then it has an image Im(e) = (X, e) in Ceg.

K: C — Cg¢, X+ (X,idy),f — f.

(iv) We have Cg ~ (Cg¢)e and one can find an equivalence preserving images of idempotents.
AT

(v) If C € Cat is S linear (or additive or monoidal or rigid or pivotal or braided etc.), then

so is Cg with its structure induced from C.
—

(The notation K comes from the alternative name of Cg: it is sometimes called Karoubi
completion.)

Proof. We only prove (iii), the rest is Exercise 7.58. To see that Im(e) = (X,e) we just observe
that
(X,e)
RN
(X,e) <> (X,e)
commutes, since e is an idempotent and e = idx ¢)- O

We use Proposition 7.7.(iii) to write Im(e) for the objects of Cg, and we also write X instead of

(X,idx). Moreover, we call a category C idempotent complete if C ~ Cs. Let us also write
Cke = (Cx)e etc.

Example 7.8 The idempotent closures is a technology for non-module-like categories:

(a) We have Vecy ~, Vecye, which is thus idempotent complete. The same is true for any
abelian category, or any category having images.

/ (b) Categories of the form fdMod(A), fProj(Mod(A)) or fInj(Mod(A)) for a finite dimen-
sional algebra A are idempotent complete.
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\ (c) Categories of the form Vecf, (G) are idempotent complete.
Example 7.9 Diagrammatic categories are almost never idempotent complete and we like to

think about the idempotent completion of them as coloring with idempotents: Recall the
category Sym see Example 3.21, and let us make i Q inear additive. Then

3 (] 1) el o=t |—>D Y{X

are orthogonal and complete idempotents in Symgg,, see also Exercise 6.92. Thus,

(7-5) ee =Im(e) ®Im(e_), (in Symgge) )

We can think of this as coloring the diagrams with the idempotents e, and e_, illustrated say red

(and dashed) and green, and (7-5) becomes

1 QErD e 2+ |

Note that Symgyg,e Is idempotent complete, but non-abelian. S—

!
§
:

Remark 7.10 Example 7.8.(a) and Example 7.9 show that, for additive categories,

idempotent complete <= abelian,

< idempotent complete % abelian. )

B s

Here is the analog of Proposition 6.26.

Proposition 7.11 Let F € Hom(C, D). Then there exists a unique Fg € Hom(Cg,Dg¢) such
that we have a commuting diagram

- C—— DY) & a’ﬂ'ﬂf

Proof. The functor F¢ is defined by

Fe: Ce = D¢ (X,e) — (F(X),F(e)), f — F(f),

which satisfies all required properties. O

As for S linear extensions and additive closures, as one can check, “all properties we care

about behave nicely with idempotent closures”, e.g. if F € Homg(C,D), then so is Fe¢ €

H0m®(C€T-D€). In particular, we basically get direct sum decompositions for free:

Lemma 7.12 Let C € Catg. Then

X = Im(e) & Im(idx —9

holds in Cg.

Proof. The proof is verbatim (7-4). O
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Example 7.13 Being idempotent complete is a property, and thus, additive functors are the

correct maps between additive idempotent complete categories. Hence, we have the category of
additive idempotent complete categories Catgyg. C‘\'

g

7D. Tensor and fiat categories. Before going on, we need the additive analog of Definition 6.82:

Definition 7.14 A category C € Catg is called (additively) finite if

e C is locally additively finite;

We have the category of additively finite categories being the corresponding full subcategory
Catf@ C Cat@.

The following are either additive or abelian categorifications of S algebras, as we will see below.
(The rigidity is strictly speaking not needed to categorify algebras, but it makes life easier.) Here

W

“w=weakly”,

m=multi” and “l=locally”.
e N

e The bifunctor ® is S bilinear.

If additionally
e C € PCat, we drop the “weakly”;
e Endc(1) = “multi”;

e C is finite in€he sense of DefinWion 7.14, then we drop the “locally”. &)

e C is locally finite in the sense of Definit1o

e The bifunctor ® is S bilinear. a r-‘ L/ ]

If additionally

e C € PCat, then we drop

e Endc(1) =S, then multi”;

e C is finite in the sense of Nefinition 6.82, then we drop the “locally”.

Wf)jh loner & Suple,
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Remark 7.17 The above terminology is not linearly ordered. For example, a wm fiat category
can not directly compared to an I tensor category. However, we clearly have e.g. that w fiat is a
stronger notion that wl fiat.

Example 7.18 We have already seen plenty of examples:

(a) The category fdVecy is a tensor category. More generally, the categories of the form

Vect . (G) are | tensor categories, where we can drop the I if and only if G is finite.

(b) Closures of diagrammatic categories such as Brie can be made into 1 fiat categories, see

Section 7E, but not tensor categories.

e

Example 7.19 All of these should be thought of as generalizing Mod(A) for certain “nice”
algebras A. “Nice” means roughly: @

e Bialgebras, see Section 5I, endow Mod(A) with a monoidal structure;
e Hopf algebras, see Section 5J, provide the duality; (\ V

e finite dimensional algebras and finite dimensional modules provide the various finiteness

N-3

Example 7.19 in words says that fiat and tensor categories should be thought of as generalizations
of fdMod (lk[G]) for G being a finite group. Explicitly:

Example 7.20 Back to Example 6.91, the category C = fdMod(WﬁZ ) is actually pivotal,
which we will see completely explicitly in (7-14) below. Moreover, we have -— P
7= 7q

(7-6) ZiP1 =Py, ZoP1 =2-Py, ZgP1 =3Py, ZyP1=4-Py, ZsP1 =5-Py, (P)" =Py,

conditions, see Section 7G. c e

C' = fdProj(F5[Z/5Z)) }s also pivotal (without monoidal unit). The category C is a tensor
categ f L d five indecomposables. In contrast, the category C' is a fiat category
without monoidal unit but with a pseudo idempotent instead:

PiP1 =25 -P; (evv» 62:56), \

and with one indecomposable. Finally, C itself is also a fiat category (by which we mean that we
care about indecomposables rather than simples) with five indecomposables.

Note that we already know the right functors between fiat respectively tensor categories: such
functors should be S linear additive rigid respectively S linear exact rigid. Hence:

Example 7.21 We have the category of fiaf, categories Fiat, objects being fiat categories

and morphisms being S linear additive rigid functors. We also have the category of tensor

categories Ten, objects being fiat categories and morphisms being S linear exact rigid functors.

” o«

Finally, we also have the various versions adding the adjectives “weakly”, “multi” or “locally”.

For a wm fiat category C, by definition, we know that the set In(C) is finite, so we can enumerate
and denote the indecomposables by Z; for ¢ = 1,...,n. Similarly, we let L; for ¢ = 1,...,n denote
the simples of a wm tensor category.

D I
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Lemma 7.22 Let C € wmlFiat. Then:

(i) The functors @, _* and *_ are S linear additive.
(ii) If C € wlFiat is k linear, then 1 € In(C).

(i) If C € wmFiat, then the functor _* induces a bijection

(1) @ ?,‘ —, Z*_:

Stmilarly for *_.

Proof. (i). Since k linear implies additive, see Lemma 6.14, the claim is immediate.

(ii). Note that Endc(1) = k implies that 1 is indecomposable as its endomorphism k algebra
does not have any non-trivial idempotents.

(iii). This follows since the dualities are S linear additive monoidal functors by (i), so the property
of being indecomposable is preserved by them. Moreover, by Proposition 4.24, they are invertible,
thus, induce bijections. O

Proposition 7.23 Let C € wmfFiat or C € wmfTen and X € C. Then (X® _), (- ®X) €
End.(C).

Proof. Since we have duals, we can use Theorem 4.16 to see that both functors have right and
left adjoints (in the sense of Example 4.10). It is then not hard to see that such functors preserve
the property of being a SES. U

Here is an interesting fact: projective and injective objects form a monoidal ideal (cf. (7-6) for
an example — tensoring with a projective gives a projective) in the following sense.

Proposition 7.24 Let C € wmfFiat or C € wmfTen. Let further P € Proj(C) and X € C.
e ——

Then PX,XP € Proj(C). Similarly for injective objects.

Proof. Using Theorem 4.16 we get e.g.
Homc (PX, Y) = Homc (P, Y(*X)),
which shows, using Proposition 7.23, that the hom functor for PX is exact. All other cases follow

by symmetry. 0

7TE. Semisimplicity. Recall that the elements of, say, an abelian category, are the simples, cf.
Section 6J. The simplest compounds are:

Definition 7.25 An object X € C with C € Catgg is called semisimple if
—— v

X¥L&..8L, wherel; € Si(C).

Definition 7.26 A category C € Catgy is ca]]if all of its objects are semisimple.

Example 7.27 Again, we already know several (non-)examples:

Z

)
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(a) The archetypical example is fdVecy, since every finite dimensional vector space X is
isomorphic to r - k for some r € N. _g

(b) Let G be a finite group. Clearly, all categories of the form Veci,(G) are semisimple since
——
all objects are direct sums of simple objects, by definition. s

(c) Non-examples are the categories fdMod(A) and f{dMod (F5|Z/5Z)) from Example 6.67.(b)
and Example 6.91, respectively. In both cases there is on]z one simple and its projective

’E Y @

Recalling Schur’s lemma Lemma 6.69, the following says that semisimple categories have control-

cover is not simple, but indecomposable.

lable hom spaces:

Proposition 7.28 Let K be algebraically closed, and C € Catge be locally additively finite.
Then C is semisimple if and only if, for any X,Y € C, we have an isomorphism

(7-8) Dresic) (Home(X, L) x Homg(L, Y)) = Home(X,Y),  (f,g) — gf.

Proof. By decomposing X and Y into their simple components, one direction is a direct consequence
of Lemma 6.69. To see the converse, note that (7-8) is equivalent to saying that the finite
dimensional K vector spaces Z = Hom¢(X,L) and Z* = Homc(L,X) are duals. In particular,
if these are non-zero, then the evaluation and coevaluation from Example 4.11 provide the
idempotent coevievy € ZZ* = Endc(X), showing that L € X. Finally, since Endc(X) is finite,
there are only finitely many L € Si(C) for which Hom¢(X,L) and Homc(L, X) are non-zero. [J

Lemma 7.29 Let C € Catge be locally additively finite.

(i) If C is semisimple, then Si(C) C Pi(C).
(i) If Si(C) C Pi(C), then C is semisimple.
(iii) If C is semisimple, then Si(C) C Ii(C).
(iv) If Si(C) C Ii(C), then C is semisimple.

Proof. (i). Using Schur’s lemma Lemma 6.68 and semisimplicity, we can fill in the universal
diagram as follows. We can only have an epic morphism p: L — X from a simple L to a non-zero
X if L &€ X. Similarly, we can only have an epic morphism f: Y — X from a non-zero Y to X if X € Y.
In particular, L € Y, and we can define the required u: L — Y by the universal property of the
direct sum.

(ii). Assume that X = Z; & ... & Z,, is a Krull-Schmidt decomposition and that f: X — L is a epic
morphism to a simple L. Since L is projective we can use its universal property and get

L

.
=1
idg, -
// u L
%

X T L

The morphism fu is an idempotent since fufu = fidpu, so L € X. This implies that L = Z; for some
1. Now proceed inductively.

(iii)+(iv). From (i) respectively (ii), by symmetry. O

L

q
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In particular, we get: r w = PP}@-

0 A locally additively figite category C € Catge is semisimple if and only if

Clearly, we have the category of semisimple categories Catg C Catge being the correspond-

ing full subcategory. More surprisingly:

. SS' ~— > .
‘ Theorem 7.31 We have Catg C Cat;4. )
—-—
In words, semisimple implies locally finite abelian. W

Proof. For C € Catg take P = @LGSi(C) L, which is a projective object by Lemma 7.30. We

consider

A = Endc (P)
Then we get an exact equivalence
Homg(P, _): C =% Mod(A).

Thus, C is abelian. That it is also locally finite is a direct consequence of the definition of
semisimplicity and Schur’s lemma Lemma 6.69, since each object of C is a finite direct sum of
simples. 0

Example 7.32 Example 7.27 and Theorem 7.31 immediately imply that Vecf,(G) are all
belian (for G being a finite group).

Definition 7.33 An algebra A € fdVecy, is called semisimple ifidMod(A))is semisimple.

Example 7.34 The classical Artin—Wedderburn theorem, see e.g. [Be91, Theorem 1.3],
says that a k algebra A € fdVecy is semisimple if and only if fdMod(A) = @;_, fdVecy. Thus,
the prototypical examples of semisimple algebras are k and direct sums of it.

Proposition 7.35 A category C € Catyry is semisimple if and only if C ~, @2_1@

for some r € N.

Proof. That €P;_, fdVecy is semisimple is clear. The converse follows from Theorem 6.44.(ii)
and Example 7.34. U

In words, Proposition 7.35 says that semisimple categories are categorically boring. However, this
is not taking e.g. the monoidal structure into account. (The analogy on the Grothendieck classes
is that whenever one has a ring, one should not forget the multiplication.) Thus, let us come back
to fiat and tensor categories. The following is the categorical version of Maschke’s theorem:

7.36 Let C € wmlFiat or C € wmlTen. Then C is semisimple if and 0@

and only i

Proof. By combining Proposition 7.24 and Lemma 7.30. O
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Example 7.37 The classical formulation of Maschke’s theorem is the following: “Let G be a
finite group ofuaxder.m = #G and K be algebraically closed. Then fdMod(G) is semisimple
if and only The original proof of Maschke uses Theorem 7.36 in the following

incarnation: F1rst;-obgerve that K[G] € f{dMod(G) is projective, and so are its direct summands.

Further, the sum of all group elements

z=Y" g9 € K[G] = Endgamoa(c) (KIG]), G ={g1,-.., gm},

spans a copy of the trivial G module 1, which is the monoidal unit in fdMod(G). Now the

= I<l
@aEd)

Thus, if m # 0 in K, then we get an idempotent % - x showing that 1 & K[G]. Hence, 1 is

crucial calculation:

projective.

Lemma 7.38 For any k linear C € wmfTen the k algebra Endc(1) z;{ semisimple. )

Proof. We already know that Endg(1) is a commutative k algebra, cf. Proposition 2.36, which
is also finite dimensional. By Artin-Wedderburn, it thus remains to show that f? = 0 implies
f=0 for all f € Endc(1). So assume that we have such a morphism. We observe that

Im(f)Im(f) = Im(f?) = In(0) = 0, Im(f)Ker(f) = Ker(f)Im(f) = 0.
Thus, ® multiplying
Ker(f) < 1 —2% Im(f) SES

with Im(f) shows, by Proposition 7.23, that Im(f) = 0 and we are done. O

e

7F. A bit more diagrammatics. Let us revised the categories TL, see Example 3.23, and Br,

see Example 3.24. q’ n U

Definition 7.39 Let ¢*/? € S*. The Rumer—Teller— Wey] category TLZ . _ is the quotient of

S@@

TLsge by the circle removal

(7-9) O-= —(q+q‘1) \
We further endow TLg@E with the structure of a braided category by

(7-10) C/ e I R mi =0 |+ D 4

U
A

Clearly, (7-10) implies the so-called Kauffman skein relation —( q-_l_ ﬂ'

10 RoX=w B (1R A u
“a
Lemma 7.40 The category TLS@@ 18 ; ith the braiding in (7-10)) ,atego g

roof. First note that (7-9) and isotopy invariance shows that the hom spaces of TLZ

Spe are finite

dimensional. To see this we first observe that diagram bending Theorem 4.16 shows that it is
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\enough to verify that endomorphism spaces are finite dimensional. For endomorphism spaces we

have the defining relations
u= uw? = —(q¢+q Hu, wuju, =w if i — 5] =1, wu; =uju;if |i —j| > 1,

Lvhich we wrote in algebraic notation, where the subscript indicates the position, reading left-to-
right, of the left strand. The above implies that

Endprg (1) =5,

(this follows because the Skein relations imply that every link can be reduced to a linear
combination of circles) showing that we can drop the “multi”. The claim that (7-10) is a braiding

is Exercise 7.61. , O

A calculation shows that

-~ =N,

)
b

holds in TL¢ .,

which is ribbon:

and thus, TL%@@ satisfies (5-18). Hence, we get ouf first quantum invarianf),

Proposition 7.41 There exists a well-defined functor

1rTan§TL§®€, orre, 32X = 2, MM\ U\,

of braided pivotal categories.

Proof. By construction, there is almost nothing to show: 1rTan is the free braided pivotal category
generated by one self-dual object, and thus there exists the claimed functor by Lemma 7.40. [J

Example 7.42 The value RT2 ,(1) of a link 1, which, by definition, is a morphism 1 €

’pf link: ﬁ

Then we calculate p/ )

R, () = _.& @,@

=q(qg+q* +qvlgq_1(q+q_ B=¢+q+qgt+q?,

which, up to normalization, is the Jones polynomial of the Hopf link.
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Similarly:
|
Definition 7.43 Let q,a € S*, with q # ¢~ '. The quantum Brauer category rqBrggE is the
quotient of qBrgg by the the circle removal

(7-12) O = (=1 +1),

and the Kauffman skein and twist relations

(-] |XIQAG1-A, QZMD

The following can be proven analogously as Lemma 7.40 apd omitted for the time being.

(7-13)

Lemma 7.44 The category rqBrSea@ is a braided (withjthe braiding in (7-13)) lﬁat category. U

Note that we have

'PW# I

apply to the left , apply to the right I

This implies that rqBrg6 is indeed ribbon since it satisfies (5-18). Hence, we get another quantum
invariant, the proof being the same as before:

Proposition 7.45 There exists a well-defined functor

RTBCD 1rTan%rqBrS@E, o e, % — %, M=, U= \U,

of braided pivotal categories. O
&

‘ Example 7.46 For the Hopf link as in Example 7.42 we get

-3 09

T

(q—
“_a_1+1) + ( (a—a” __1+1

(+q )@ +1+ q_?’B

\Where we substituted a = ¢? in the last equation to get a nice and short formula.

Remark 7.47 Actually, adding orientations would give quantum invariants of 1Ribbon.
Moreover, one can normalize the two invariants above and similar invariants to get a quantum
invariant of 1State, i.e. with honest Reidemeister 1 moves (5-17).

—

7G. Multiplicative structures on Grothendieck classes. Let us come back to Defini-
tion 6.86.
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Definition 7.48 Let C € Fiat and D € Ten. Then we define the additive Grothendieck
classes K (C) of C respectively the SES Grothendieck classes K§(D) of D verbatim as in
Definition 6.86.

Clearly, we have the analogs of Proposition 4.27 and Lemma 6.87:

Proposition 7.49 Let C € Fiat and D € Ten. Then:

(i) Definition 7.48 endows K (C) and K§(D) with the structures of finite dimensional
abelian groups.
e =

(ii) The set In(C) is a basis of K§'(C). We have
[X] = 300, (X2 Zi) - [2i] € K§'(C).
(7ii) The set Si(D) is a basis of K§(D). We have

X] =225 X Li] - [L] € KG(D).

(i) For both, K§(C) and K§(D), the additional structures in Proposition 4.27 are compatible
with the S linear and additive structures. In particular, Kg (C) and K§(D) are finite

dimensional Z algebras. O

By Lemma 2.28 and Lemma 6.88 we also have:

Proposition 7.50 Let C,C’ € Fiat, and let D,D’ € Ten.

(i) Any functor F € Homyg, (C, C') induces a Z algebra homomorphism

K§(F): K7 (C) —» K7(C'), [X] = [F(X)].

Further, if F is an equivalence, then K(?(F) is an isomorphism.

(i) Any functor F € Homy,(D,D’) induces a Z algebra homomorphism

K§(F): K5(D) = K5(D'), [X] = [F(X)].

Further, if F is an equivalence, then K§(F) is an isomorphism. ]
This gives a (coarse) numerical invariant:

Proposition 7.51 Let C € Fiat, and let D € Ten. The the ranks rk(C) and rk(D), i.e. the
dimensions of K§ (C) and K§(D), respectively, are invariants of C respectively D O

Remark 7.52 All of the above finiteness condition prevent that we run into the Eilenberg
swindle: If X = Y® YD YD YD ... would be an allowed object, then X &Y = X which gives [Y] = 0.
This would then hold for any object, as Y was arbitrary.

Example 7.53 In Example 7.20, we have isomorphisms of rings

[P1] = 5~ K&(C') 5 5Z C Z < K§(C) v 1 = [Ly].

FrCz)
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__ g

Further, the endofunctor — @ P1: C — C gives
[ ®P1]: Z—2Z, 1+—5.

Moreover, L1 = Z1 is the monoidal unit of C, P1 = Z5 a “big pseudo idempotent” and

ofQll = | oz | Zi Z

1.9 43 Zy VA
Z1 @ Z3 Zy D2y Z3 D Zs 2-Z K (C)
ZoDZy | Z1 DL3DZLs Zy®ZsDZs 3-24 b
Z3DZs | LoD Zs DL |21 DLs DZs D L5 | 4
2.7 R IA 4.7 5. 75

)

(7-14)

N
w

Nl s lnal Ny | N
w

ot

(One can check this using the Jordan decomposition over F5.) Thus, we have an isomorphism of

@C) 22, (2] i)

Finally, note that (7-14) also shows clearly the pivotal structure, since Z; = 1 & Z;Z; if and only if

rings

i =7 and i < 5. This shows that all indecomposables are self-dual (since Zs is the projective cover
of Zy, the monoidal product Z5Zs has a map to Z, regardless whether Z; appears as a summand

L S

of it).
Remark 7.54 All of the above have appropriate versions in the “weakly” and “multi” setup.

7H. Finite dimensional algebras in vector spaces. Here is the main source of examples of
tensor categories:

-
Theorem 7.55 Let A € fdVecg be T@ fdMod(A) € mTen. ! )

Proof. Combining Theorem 6.44.(ii), showing that fdMod(A) is finite abelian, and Theorem 5.58,
showing that fdMod(A) is rigid, and observing that everything is compatible with the k linear

structure. O

So Hopf algebras play_a crucial role in the construction of quantum invariants. As an aside,

another nice fact about Hopf algebras is that they are “group-like”. Let us make this precise. To
this end, let SAlg denote the category of S algebras, objects being S algebras and morphisms

S algebra homomorphisms. Further, let Gr C Mon (recall Mon being the category of monoids,
cf. Example 1.6.(a)) denote the full subcategory whose objects are groups, i.e. the category of
groups.

Definition 7.56 We call F € Hom(SAlg, Gr) representable if ForgetoF € Hom(SAlg, Set)
is representable in the sense of Example 1.37.

Proposition 7.57 Let F € Hom(SAlg, Gr) be represented by A € SAlg. Then:

(i) For all A € SAlg, the set Homgaig(A,A) has a group structure.

(i) The multiplication and unit in (i) come from a comultiplication and an antipode on A,

making A into a Hopf algebra.
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For this reason one can say that Hopf algebras are cogroup objects in SAlg.

Proof. This is Exercise 7.62. O
71. Exercises.

Exercise 7.58 Prove the missing points in Proposition 7.7.

Exercise 7.59 Try to make Remark 7.17 precise by drawing a hierarchy chart and by giving
examples whenever Notion A 7 Notion B.

Exercise 7.60 Understand Example 7.20 and make all claims made in that example precise,
e.g. the monoidal structure.

Exercise 7.61 Show that (7-10) defines the structure of a braided category on TLg@E. Compute
the quantum invariant RT4_,(_) for

l"v- - 'l .

1= 2 ,1/ = % S Enlean(]l).

This is the trefoil knot and its mirror image. Deduce that they are not equivalent.

Exercise 7.62 Prove Proposition 7.57. Hint: Yoneda.

8. FIAT, TENSOR AND FUSION CATEGORIES — DEFINITIONS AND CLASSIFICATIONS

Fiat and tensor categories categorify algebras, and, in some sense, as we will see, when they are
semisimple they categorify finite groups. A first thing one would try when studying finite groups
is to classify them, maybe after fixing some numerical invariant such as the size of the group. (A

 d
statement of the form “All finite groups of prime order are cyclic.” comes to mind.) So:

Can one hope to classify (semisimple) fiat and tensor categories, maybe after fixing some
numerical invariant?

The answer will turn out to b(“Yes and no.’. )

8A. A word about conventions. Of course, we keep the previous conventions.

Convention 8.1 We will identify directed graphs I" and their adjacency matrices M, which

we see as matrices with values in N, and we will write I for both if no confusion can arise. The
translation between these two notionls is best illustrated in an example:

{

v

1 3
V1 V2 ( 3
1 0Q ~\
ey O R R S )

%02 v1 V\/

XA

)

where labels mean parallel edges, with the label 1 being omitted from illustrations.

.

FR_ ’CT.‘
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Convention 8.2 Qut notation convention for objects is:

X e~ general object, L e s1mp e object, P «~ projective inde. object,

I «~ injective inde. object, ‘)Z «~ indecomposable object,

(We also tend to use projectives instead of the dual notion of injectives.) Recall also that for
semisimple categories

X is simple < X is projective inde. < X is injective inde. < X is indecomposable.

Although we are mostly concerned about indecomposables, we will use the notation L in the
semisimple case to stress that this case is easier than the general situation.

8B. Representations of groups and Hopf algebras. We start by discussing a very nicely

behaved case in details: Let G be a finite group of order #G =.m, and let p be the characteristic
of the algebraically closed ground field K. Recall that k[G] = (K[G],m,i,d, e,s) is a Hopf algebra
in Vecg. The explicit structure maps are the multiplication and unit in K[G], and x x

dlg)=9©g, elg)=1,5s(9) =g~ -
Thus, fdMod (K[G]) is K linear abelian rlgld (actually, it is even pivotal). Moreover, by (6-16)

we have

We also know by Lemma 7.29 that equality holds in (8-1) if and only if fdMod 1 semisimple.

The latter, by Maschke’s theorem Example 7.37, happens if and only if p/m.

Remark 8.3 In fact, (8-1) holds for ay finite dimensional k algebra A, j.e.‘z

Griamz)sr, dinL.)gim(e:)

with equality if and only if A is semisimple.

Example 8.4 Let us perform the cula‘m}/ ‘[
= Then c/aIL/
—> (X —1)P =X — 5/1( + 10K _10-X7 4 M LR P

which is called Freshman’s dream. Hence, in_characteristic 5 there is only the trivial 5th root
of unity ¢ = 1. In all other cases there are five primitive roots of unity {1 = ¢, ¢*, (%, (%, (), eg.

or K.=.C we could let ( = exp(2mi/5). (See also (6-17) and the text below.) Let us now come
back to G = Z/57Z, see also Example 6.91, where L/" KR | z_/r C

(}000(,1
0000
l
00‘14

000

5
P

0

0

0

A
Is o
is the matrix for the multiplication action of 1 on K[Z/57], which has the characteristic polynomial
X? — 1. We also gave the corresponding Jordan decompositions. Thus, we get two different cases:

.(&
\!_é'

o o o O
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e IfK is not of characteristic 5, then A é %/ l
6 _.--) Li=1: (”), Lo: (.D, Ls: (.), Ly: (H), Lsimv

defines five simples, all of dimension 1. (They, of course, correspond to the five elements

of 7/57Z, as indicated by ('.) They are also projective, the idempotents splitting them
from K[Z/5Z] can be obtained by using the change-of-basis matrices from the action
matrix to its Jordan decomposition. Hence, formula (8-1) takes the form

i+12+12+12t1_2:5. :d" g/\{\ :S_

e We have already seen the case where K is of characteristic 5, say K = Fs, in detalil,

see e.g. Example 6.91. In this case we have one simple Ly = 1 and its projective cover
Py = F5[Z/5Z). Thus, (8-1) takes the form

ote that (8-1) implies that the set of simples Si(fdMod (K[G])) (or of projectives indecompos-
ables or of injectives indecomposables) of fdMod (K[G]) is always finite. What about the additive
version, i.e. what about the set of indecomposables In(fdMod (K[G]))? We have already seen in
the case G = Z/5Z that #Si(fdMod (K[G])) < #In(fdMod(k[G])) with equality if and only if
we are in the semisimple situation. Actually, the difference can get arbitrary big:

Example 8.5 Klein’s group of order four is@: 7)27 x )27 = {(s,t | s> =12 = 1,st = ts), )
with its defining action on the complex plane C? = {a +ib | a,b € R} given by reflections:

x> s
5//] =4 | + s (a+ib) = —a + ib, L"'i"' 2 A~ 1

/'\

+ « (a+1b) = a —b. -~

; t«(a+ib) l L'l'l _ n
L .+

For K not of characteristic 2 the category fdMod (K[V4]) is semisimple with four simples of

dimension one. The case K = [y is very different, and we will discuss it now. In this case we have

Falvi 5 A =R, Y/ Y2, (oo X+ Lt ¥ 4 1)

\/ \./
by Freshman’s dream. / /7 4 XY

Let us first discuss the simples and projectives of A. It is easy to see that A has one simple Ly

a . ’
o S G <§”

whose projective cover Py is A itself:

(/

Here we use a graph to indicate the modules. This is to be read as follows: the vertices correspond
to basis elements while the arrows indicate the non-zero actions of X and Y.

In contrast, there are infinitely many indecomposables, which are not projective. Here is the list
of all of them, using the same notation as in (8-2):
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e For all 21 + 3, where | € N (thus, 2 -0+ 3 = 3 is the smallest case), there are two
indecomposables Zg; 1 and Z3; ,, which are duals:

; y v
X Zgl_i_l:oéo%o(ioﬂoé...ﬁo,

Y Y Y
ASIRE o et e et 0t e,

Here and below, the subscript indicates the dimension, i.e. the number of vertices.

a—

S &
e For all 21 + 2, where | € N, there is a self-dual indecomposable Zo;: $¢-— ~D

)( ( ) X y X y X y X
Zo:

oi— 0 > 00— 0 > 0<— ., 0<— @

e For j,l € N with j|l, and an irreducible polynomial f € Fa[Z] of degree l/j, let Oy ;; =
Yot 02t = f(Z) with ©, = 1. For all 21 + 2, where | € N, and any © = Oy ;; there is
another self-dual indecomposable Z?l:

Zg:oxosoxosoé...% <Lo}>

[ ]
0 I+1 1 1+2 2 I 2041 9

where at one end, as indicated, Y acts by Y (20 + 1) = """, ©yi.
(An explicit example of this family of modules is the case f(Z) =1+ Z + Z%, j =1 and
Il =3. Then Z(? is six dimensional, of the form
79. o o et o liet el
>0 3 1 4 2 59 7

and Y acts on the vertex5 asY(5)=1-0+1-14+1-2.)

The above discussion summarized is:

Proposition 8.6 Let G be a finite group of order #G = m, and let p be the characteristic of
the algebraically closed ground field K. Then:

) e have o atg if and only i m ° B‘<
(i) We have fdMod (K[C]) € Caty if and only if pfm. Z\'L..\}_, <

(ii) We have fdMod (K[G]) € Ten.

(iii) We have fdMod(K[G]) € Fiat if and only if pfm or the p Sylow subgroup of G is cyclic.

Proof. The only things we have not addressed above are: First, whether EndfdMod(K[G])(]l) = K.
However, since 1 is the trivial module, Schur’s lemma Lemma 6.69 provides the result. And
second, the if and only if condition in (iii) which follow from a classical result giving an if and
only if condition for whether #In(K[G]) < oo, see [Hi53]. O

Remark 8.7 The proof in [Hi53] is effective: Let H be a p-Sylow subgroup of G. Then
Higman shows that every indecomposable K[G] module Z can be obtained as a direct summands
Z € K[G]®gu) 2’ for some indecomposable K[H] module Z'. Because the dimension of K[G] @) Z'
is |G/H| dim(Z') there can thus only be finitely many indecomposables if K[H] has only finitely
many indecomposables.

2 are fundamentally different: For 7./47 the 2-Sylow subgroup is cyclic and the representation

%/@ v @=é7/'1 ) Vﬁ;&: .

anmple 8.8 The two cases of G being either Z/4Z or Klein’s four groupn characteristic
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subgroup not cyclic and F3[V4] has infinitely many indecomposables as listed in Example 8.5.

theory of F3[Z/AZ)] can be treated verbatim as for Fs Z/5Z], see Example 6.91. For V4 the 2-Sylow

Recall that a finite dimensional Hopf algebra A is, by definition, a Hopf algebra A = (A, m,1,d, e, s)

in fdVecg, and fdMod(A) is its module category in fdVecs. The version for Hopf algebras,

where finite representation type means that #In(fdMod(4)) < oo, is:

Proposition 8.9

Let A be a finite dimensional Hopf algebra. Then: .
L= a.Q'E,aos«
(a) We have fdMod(A) € wTen. S dM l—, = VWA

(b) We have fdMod(A) € wFiat if and only if A is of finite representation type. @

Proof. All discussion above works for finite dimensional Hopf algebras in general, not just for

finite groups: By Theorem 5.58 we know that fdMod(A) is rigid, and its also clearly S linear and
abelian with S bilinear ®. Moreover, (8-1) holds for any finite dimensional algebra, so fdMod(A)
is always finite, and additively finite if and only if A is of finite representation type, by definition.

Moreover, A has a trivial module 1 obtained by using the counit e: A — S, and 1 is the monoidal
unit of fdMod(A) giving Endggniod(a) (1) = S. O

l Thus, fiat and tensor categories can be seen as generalizations of Hopf algebras.

8C. Non-negative integral matrices. The arguably most important numerical invariant as-

sociated to a fiat (or tensor category) C are integral matrices.

Definition 8.10
fusion coefficient

>
L& C € wmFiat. JThen, for i,j,k € {1,...,n}, the fusion rules and the
S Ni’fj € N are

< Z;Z; = EBZ:li Zk,> where Z; € In(C).

Thus, the fusion coefficients are the structure constants of the Z algebra K§'(C). These are most

conveniently collected in the fusion matrices:

Kga (— ® Zj) = M(j) = (Ni]fj)zigﬂ = Z NE. € Maty,xn(N).

'—7-\ . ————

In words, the fusiox
can associate a gra
which we identify Y
captures all the fus

‘-l 2Q 3; = Z,2;

matrix M (j) captures the right ® action of Z; on C. Recall\further that we
h T'(M) with n vertices to each matrix M € Mat, «xn,(N), see
wvith M. Thus, we have another numerical invariant of fiat c4tegories which

v

onvention 8.1,

ion rules:

Definition 8.11 }

Let C € wmkFiat. Then, for i € {1,...,n}, the fusion graphs are the

directed graphs I'; = F(M (z)), i.e. the graphs associated to the fusion matrices.
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Similarly, the fusion graph of X € C is the directed graph 'y associated to the right ® action
of X on C.

The following is evident, where the sum of graphs is the graph one gets summing the corresponding
matrices, using the identification of these, cf. Convention 8.1.

Lemma 8.12 Let C € wmFiat. If X € C decomposes as X = @ (X : Z;) - Z;, then I'x =

The fusion graphs are invariants:

Proposition 8.13 Let F € Homyg,(C,D) be an equivalence of categories C,D € wmFiat.
Then, up to reordering, the fusion graphs of C and D are isomorphic as graphs.

Proof. By Proposition 7.50. r'| 0
1)

—
Note that the fusion grapssociated to the monoidal unit 1 is always a completely disconnected
graph with one loop per vertex, e.g.

000
C 7 Z2A£D
0 0 0 — —_
F]lz =
0 0 0
000 C 2 23 O

We call these the trivial fusion graphs, and all the others non-trivial. Moreover, in tables

we omit the row and column for the fusion rules of 1 as they are trivial, see (8-3).

Example 8.14 Let us consider two examples of semisimple fiat categories and their fusion

graphs: ( Z/(__I !

(a) The category fdMod(C[Z/ 4Zl) has Simpli 3 N -A. N >' 7
Owu-z ()2 @) o o ().

which act on fdMo [Z/ 4Z]) as the elements, in order, ﬂ, 2 and 3 in Z/4Z. Hence,
the non-trivial fp€ion graphs are

1 1L2\>< 1 Ly "
, I's= T
3

Ly L3 L

(P) The category fdMod(C[V4]) (Klein’s four group, see Example 8.5) has simples also
corresponding to the elements 1, s, t and st = ts in V4. Hence, the non-trivial fusion

graphs are
\/ 11— L,
=T gy T Hl H t x
- ’ e X
Lt(—Lts Lts
———

Thus, although f{dMod(C[Z/4Z]) and fdMod(C[V4]) are equivalent as categories, theyg@re not

equivalent as ﬁ& tegories. -
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Example 8.15 Let S3 be the symmetric group in three letters, which is of order 6. The
category fdMod(C[Sg]) is a semisimple fiat category with simples Ly = 1, Ly and L_; satisfying
the following fusion rules:

& Ll L Lq/
@ | = =L L H L ‘ LS L1
(8—3) Ls L1 @ Ls @ Lll Ls — 1 1 S 1/
Ls Ls L1 Ls &b Ll’ Ls
Ly Ls L
Ly || Ly Lg Ly
Thus, we get the non-trivial fusion graphs
e R 0 01 //—_—\)\
I's = 1 = ﬂ—>Ls<:> v, I'v=]10 1 0]=1 L Ly

Example 8.16 The fusion graphs are certainly not a complete invariant of fiat categories as
they do not_involve the morphisms in any way. To be completely explicit, the categories of

the form Veci(G), for G being a finite group, are fiat categories with the same fusion graphs,

independent of w.

Recall that strongly connected for graphs means connected as a directed graph.

Definition 8.17 Let C € wmFiat. We call X € C a fusion_generator of C 1'41“)( is strongly

connected.)In case C € wmFiat has a fusion generator, we call C transitive.

Example 8.18 In Example 8.14.(a) both, L1 and Ls, are fusion generators, but Ly is not a
fusion generator. In Example 8.14.(b) none of the simples are fusion generators, but

Li L ~ ' oL, =

is a fusion generator.
The term “generator” is to be understood in this sense:

rLemma 8.19 Let C € wmFiat be transitive, X € C be a fusion generator and Y € C any

object. Then there exist k € N such that Y € X*. \/
@ X@... ®oX

Proof. If X and Y are indecomposable, then k can be taken to be the length of a shortest path in

I'x from the vertex corresponding to X to the vertex corresponding to Y. For general X and Y the

claim follows thus by additivity. O

8D. Perron—Frobenius. The classical{Perron—Frobenius (PF for short) theore@is one of

the cornerstones of linear algebra, very useful in many areas of mathematics and will turn out to
be of crucial importance for us as well. Here it is:

Theorem 8.20 Let M € Matan(RZO’S. Then: /"(h’l ~ (\"D'W

=0
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(i) The matriz M has an eigenvalue \yr(M) é R>g }which satisfies p&

(8-4) Apf(M)| > ||, for all eigenvalues p of M.

Moreover, M has an eigenvector v,r(M) with eigenvalue Ay (M), which can be normalized

such that vyr (M) € RZ,.
- 29
>

(i) If additionally M € Matyxn(R>0), then A\yp(M) € Rso, vpr(M) € RY (after normaliza-
tion), the eigenvalue \p¢(M) is simple, and the inequality in (8-4) is strict. Further, the

eigenvector vyr(M) is the unique (up to scaling) eigenvector of M with values in Rxg.

Apf(M) is called the PF eigenvalue of M, and vy,r(M) is called the PF eigenvector of M.
——

Proof. (i)-Existence. The idea is to use Brouwer’s fixed-point theorem. Assume that M does not

have an eigenvector vo(M) € RZ of eigenvalue zero. Then, since there are no cancellations due
to non-negativity,

Mo
2im (M),

defines a continuous map from the standard n simplex %, = {v € R, | 371" v; = 1} to itself.

X, =%, ve

Thus, Brouwer’s fixed-point theorem gives us a fixed point w of f, which, by construction, satisfies
Mw = pw, where p € R>p, w € RY.

We can hence define A,¢(M) to be the maximal eigenvalue of M having a non-negative eigenvector
vpr(M). Since this also works in case M does have an eigenvector vo(M) € RY, of eigenvalue
zero, we have now constructed the required eigenvalue and eigenvector, and it remains to show
the claimed properties.

l(ii)—Positivity. If M € Mat,xn(R>0), then the just constructed eigenvalue A, (M) and eigenvector
vpf(M) are also strictly positive.

(ii)-Simplicity. The eigenvalue A,¢(M) is simple: If w € R™ is another eigenvector of A,¢(M),
then define z = min{w; — vpr(M); | ¢ = 1,...,n}. Now we observe that w — z - v,r(M) € RZ,
is another eigenvector of M with eigenvalue \,(M). However, this, by positivity, implies that
w — z-vpp(M) =0 as it has at least one entry being zero. Thus, A\,¢(M) is simple.

(ii)-Uniqueness. Assume now that there exist another strictly positive eigenvector w with
eigenvalue i, and let v, r(MT) denote the PF eigenvector of v, (M7T). Then A, (M )vyr(MT)w =
vpf(MT)Mw = pw, s (MT)w, which, by positivity, implies that ;1 = A\, z(M). Hence, we also have
w = v, (MT), by simplicity.

(ii)-Inequality. For w € C" let |w| = """ |w;|vpp(M);. Then one checks that |[Mw| < X, ¢(M)|w|
and equality holds if and only if all non-zero entries of w have the same argument. Hence, if w is
an eigenvector of M with eigenvalue p, then |p||w| < Apr(M)|w|, which implies that || < Apr(M).
Finally, if |u| = Ap¢(M), then all non-zero entries of w have the same argument and we can
normalize w to be strictly positive. Hence, pn = A\, ¢(M), by uniqueness.

(i)-Rest. Using (ii) and

My=M++%|: ~ | €Matyun(Rso), Jim My =M,

1 ... 1
this is an easy limit argument. O I
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Remark 8.21 If one works ove{ Q> fnstead of R>q, then there is an alternative and constructive

proof of the PF theorem. (This is a ¢onsequence of Barr’s theorem [BaT74].)

Example 8.22 Note the difference between strictly positive and positive, and various other

properties as e.g. “converting to zero” or “nilpotent”:

1
5 0 0
3 3 3
Let us call them “CaS(y,) “C&e 2” and “Case 37, re}s; ively. Then:
<~/
Apf = 2, = (1,1), Apf = %, Apf =0,
Case 1: { pf =3 upr = (L) Case 2: { pf— 3 Case 3: { el

pr =0, v =(-11), Upf = @()7 vpr = (OK)-

Here is the version of the PF theorem for positive integral matrices, a.k.a. graphs, which has
slightly better statements: > /,

Theorem 8.23 Let I' € Mat,«,(N). Then the PF theorem Theorem 8.20 ayplies and we have
additionally:

(i) If T h directed cycle, then A = /l 04
1 as a directed cycle, then pf(M)€R>1.[ — - D
\ 4

(it) If I' is_strongly connected, then Apr(I') € R>1, vyr(M) € RY, (after normalization),
and all p satisfying equality in (8-4) are not in R~qo. Further, the only strictly positive
eigenvectors of M are of eigenvalue A,p(M).

Proof. Note that I'* counts the number of paths of length k in T. . .. : ) Pi

(i). As T has an oriented cycle, I'* # 0 for all k € N. Moreover, since I" has entries from N we
also know that limy_,oo I'* # 0. This implies that the PF eigenvalue has to be at least 1.

(ii). We get a strictly positive matrix

T=fI) =YY" T" € Matyxn(Nsg), where f(X)=>",X"
Hence, we can apply Theorem 8.20.(ii) to 7', and simultaneously Theorem 8.20.(i) to I'. These
imply that Y Apr(T)F = A\pp(T), thus A\ps(I') € Rxq, and moreover v,(T') = v,¢(T) € RZ,.
The other claims follow by observing that the non-zero roots of f(X) are the nth complex roots
of unity. O

Example 8.24 Let I'1, I’y € Matsy«3(N) be

0 01 010
'i=1|1 0 0f = Fi=|111)|=1—s—1.
010 010
(These are action matrices of fusion géerators of fdMod(C[Z/3Z]) and fdMod(C[Ss]), respec-




QUANTUM TOPOLOGY WITHOUT TOPOLOGY 119
Apf =2, vpr = (1,2,1),
Case 2: ¢ py=-1, vy =(1,-1,1),
wh=0, vy =(-1,0,1).

Note that |p1| = |u2| = A\py = 1, but neither p; nor ps are real numbers.

By Proposition 8.13, we get the following invariants of fiat categories.

Definition 8.25 Let C € wmFiat and X € C. The PF dimension of X is PFdim(X) =
Apf(Tx). The PF dimension of C is PFdim(C) = >, PFdim(Z;)?. £ : L \

Note that we always have PFdim(1) = 1. (We will omit this case from examples.) However, PF
dimensions need not to be integers:

e

—
Example 8.26 There exists a semisimple fiat category Fib, cal]e4 Fibonacci category, ywhich

has two simple objects Ly = 1 and L = Ly with

1221 L. = ﬂ@L

Thus, letting ¢ = %(1 ++/5) denote the golden ratio, we get 4‘ L - !
e -

K(A/\ =/

Aps(T1) = PRdim(L) = ¢,

(({ 1) L _> LD = vpr(I'L) = (¢, 1), P
M L/(-) PFdim(Fib) = 1+¢2 $(5+V5).

——

Lemma 8.27 Let C € wmFiat. Then: \b"f-(— d)a\ ,AX -

(i) For X,Y € C we have PFdim(XY) = PFdim(X)PFdim(Y).

(ii) If X € C is invertible (see Definition 4.34), then PFdim(X) = 1.
R ————

(iii) For X € C we have PFdim(X*) = PFdim(X) = PFdim(*X). Moreover, all action matrices,
Ty, I'x and I'sx, agree up to transposition and permutation.

(iv) The self-dual object T € C, called the total object, defined by
T= Z?:l Zi)
e ———

is a fusion generator of C if and only if C is transitive.

(v) If C is transitive, then there exists a strictly positive virtual object R € C (meaning a
formal R~ linear combination of indecomposables), called the regular object, which is

the, up to scaling, unique object satisfies the equality

[XR] = [RX] = PFdim(X) - [R], (in K§(C)®zC),

for all X € C.

(vi) We have PFdim(C) = PFdim(R).
L=

As we will see in e.g. Example 8.29(i), all of this should be thought of as generalizing very familiar
notions from representation theory of groups.
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Proof. (i). This follows since the PF eigenvalue is multiplicative.

(ii). As an invertible object can not have a nilpotent action matrix this follows from (i) and
PFdim(X) > 1, see Theorem 8.23.(i).

(iii). By Lemma 7.22.(iii), the functor _* preserves the property of being indecomposable and
induces a bijection as in (7-7). In other words, duality acts as a permutation on the set of
indecomposable objects. Thus, (ZX)* = (X*)(Z*) shows that, up to permutation, the action matrix
for X* is the transpose of the action matrix for X, which implies that PFdim(X*) = PFdim(X).
The other claim follows by symmetry.

(iv). The second claim is clear by additivity, the first, that T is self-dual, follows from the bijections
as in (7-7).

(v). Since C is transitive, the total object T is a fusion generator, see (iv). By Theorem 8.20.(iii),
we can thus take [R] = v,r(I'r), which is unique up to scaling and strictly positive. Hence, we
can interpret R as a strictly positive sum of indecomposables of C. By this construction and
Theorem 8.20.(iii) it follows that [XR] and [RX] must be proportional to [R]. To see this observe
that [XR|]I't = A,¢(T) - [XR] = I't[RX]. (Note that I'r is symmetric by (iv).) This implies that [XR]
and [RX] are strictly positive eigenvectors of I'r, and the claim follows from Theorem 8.20.(iii).

(vi).

Clear by additivity of the PF eigenvalue. O
A crucial feature of PF dimensions is that they come in discrete values:

Proposition 8.28 Let C € wmFiat and X € C. Then the PF dimensions PFdim(X) and

PFdim(C) are algebraic integers, i.e. roots of some p € Z[X], and > 1.

1 Proof. To show that they are algebraic integers we can take p € Z[X] to be the characteristic
polynomial of I'y, and the claim for C follows by additivity. For the second claim we observe
that PFdim(X)? = PFdim(XX*), by Lemma 8.27.(i), and PFdim(XX*) > 1 by Theorem 8.23.(i):
I'xx» can not be a nilpotent matrix as there should always be a non-degenerate (co)pairing to 1.
Hence, PFdim(X) > 1 which finishes the proof since, as before, the statement for C follows by

additivity. ;\ ‘f O

Le—o

Example 8.29 Let S3 be the symmetric group in three letters, which is of order 6, and let
K be algebraically closed. By Proposition 8.6.(iii) we know that fdMod( [Sg]) is fiat, and by
Example 7.37 it is semisimple if and only if the characteristic of K is not 2 or 3. So we basically
have three cases:

(I) The case K = C, which we already glimpsed upon in Example 8.15. In this case we get
e ——
Ly =1 and ; ‘

i gg«(ﬁ@)@mm EGIES

1 1 1
T—]]_@L @Lll FT: 1 3 1 ey
1 11

=
A

(R=1@2-1. &L, = C[S,) PFdim(fAMod(C[Ssl)) = 11422+ 1.1 = 6 = PFdim(®).
Qa 2 A}
A X +41 "=¢
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Note that the regular object is the regular representation of C[Ss] on itself, hence the
name. The PF dimension in this case is the dimension of C[S3], a.k.a. the order of Ss.

r(?I) The case K = FB- We want to use the construction in Remark 8.7. First, we have a
3-Sylow subgroup 7/37 and we want ot consider F3[Z/3Z]. Similarly as for the case of
7./57Z, see e.g. Example 6.91, we get that F3]Z/3Z)] has three indecomposable modules,
given by Jordan blocks for the eigenvalue 1: a 1 x 1 Jordan block Z), a 2 x 2 Jordan block
Z4, and a 3 x 3 Jordan block Z} = F3[Z/3Z]. Let z be the basis element of Z, and let 1, s
be the elements of Sy = S3 /(Z/3Z). Then:

F5[Ss] ®g, 737 21 = 21 ® Z1 = L1 & Ly,

for Ly & 1 and Ly as in (I), which are also the only simples of F3[S3]. To see this we
simply observe that we can base change

F3[S3] ®g, 237 21 = Fa{1®@ 2,5 © 2} = F3{5(1 + 5) @ 2, 5(1 — 5) ® z}.
(Also recall the idempotents ex from Example 7.9.) Moreover, we see analogously that
F3(Ss] ©f, (237 20 = 22 © Zor,  F3([S3] ©f, (/57 25 = P(L1) ©P(Ly) = 23 © Zy,

which are all of the indicated dimensions. Summarized:

Si (fdMOd(F:g[Sg])) = {Zl =1,Zy = Lll}, Pi (fdMOd(Fg[Sg])) = {23 =Py, Zy = Pll},
In(fdMod(F5(Ss))) = {Z1,21/, 22,29, 23, Z3 }, dim(Z;) =i = dim(Zy).

To be more explicit, the Jordan—Hdélder filtration are of the form

Z1 = 1 is simple, Zy, = Ly is simple,
0—1—-Ly—2Z3, 0—Ly—1—2Zoy,
0—1—-Ly—-—1—-23, 0—Ly—1—Ly—2Zy

These satisfy the fusion rules:

f ® H Zy Pq Py Zoy

Zo || P1 © Ly P1 ® Py P1 @ Py 16 Py
Py Pir®Py | P1®P1®Py | Py BP1 &Py | P PPy
Py || P1DPy | Py PSPy | Py &Py &Py | Pp Py

Zoy 1 ¢ Py Py @ Py Py @ Py Py @ Ly
L Lv Zoy Py Py Zo
Thus, the action matrices and their PF eigenvalues and eigenvectors are:
000 0 ff

0
0

vp(T1) = (1, 1, 1,1,1, 1)
’ o) =1, &

vpf(Fll) (1,1,1,1,1,1)

1 Toaa™ 22,339

o O O o o
o O O
o O O O
o O O O O

0
0
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000010 010000
100000 000001 Apf(mﬁ@
S I U B 0011 1 0f v2=(0,01,10,0),

“loot1t 1 1ol Jor11o0o0f Aps(T'a)
o nool) e e ) rsanitoo
000000 000000 AF@
000000 000000 pf (L)

. L1210 o o112 1| ul)=(001100)

Tlor 127 {1211 0| Aps(T3)
N e

Note that none of the indecomposables are fusion generators, and only the one dimensional
ones are invertible. The total and regular objects are also not fusion generators:

110011 12 0 0 21 ) — 19
110011 21 0 0 1 2 pr(T'3) =12,
. 13663 1| 3 8 14 14 8 3| vpr(T's)=(0,0,1,1,0,0),
T — sy LR — )
136 6 3 1 3 8 14 14 8 3 Ay (Tg) = 28,
]. 1 0 0 ]. 1 2 1 0 0 1 2 'Upf(rgl) — (07071’ 1’0’0)
110011 12 0 0 21

The PF dimension of the category itself is PFdim

—

C) = PFdim(R) = 28.

(III) The case K = Fo works mutatis mutandis as (II) above. Doing the calculations gives four
indecomposable modules Z1 = Ly £ 1, Zo = Ly, Z3 = Py and Zy = P, which are of the
indicated dimensions. The fusion rules are:

® | L P | P
Ls ||L1 ®P1 | Py ®Ps Py ® Py

Py || P1®Ps |2-PyDPs | Py D2-Pg
P, || P1 &Py |P1D2-Ps |2 Py DPy
\ To compute the PF dimensions etc. is Exercise 8.59. “_2,13 'gav

Example 8.30 Let us again consider S3, but now rather the category Vec]k@(Sg), for any 3

cocycle w. Let S3 = {1, s,t,ts, st, sts = tst}, where, in graphical notation,

L= | ps=S< |t th—mst Nmi}% }{jm

By definition, the fusion rules of Vecy,(S3) are exactly the multiplication rules of S3. Thus, the
action matrices are just permutation matrices, e.g.

000100
0000TCO01 &

r 010000 Apr(Lsts) = 1, P

71000 01 0 up(Tas) =(1,1,1,1,1,1)"
100000
001000
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Thus, all PF dimensions are 1, and all objects are invertible. Note also that PFdim (Vec?é@(Sg)) =
6 = PFdim (fdMod (C[S;g])l, the order of Sg.

8E. Fusion categories. Here are the categorical analogs of groups:

Definition 8.31 A semisimple category C € wmkFiat is called a weakly multi
category, and aemisimple category C € WFi@ is called a weakly{ fusion category ) If these

are additionally pivotal, then we call them multi fusion categories and@sion categories),

respectively.

Without further ado we get the full subcategories of the form e.g. wmFus C wmFiat (again,
potentially omitting the w and the m), called e.g. category of weakly multi fusion categories,

ival being ~ . 1 L: |
equivalence being ~sg.. Hh\ {. . \ — L ' &—
don c 0 LaL' SR
Example 8.32 We have already seen the prototypical exainples of (weakly) fusion categories,
namely Vecy(G) and fdMod (k[G]), where G is a finite group, in both cases, and #G does not
divide the characteristic of k in the second case, as well as fdMod(A) where A is a_sgmisimp]e
Hopf algebra. P*M

e —

Proposition 8.33 Fusion categories can be alternatively defined e.g. as follows:

“A semisimple category C € wmTen is called o weakly multifusion category.”

Proof. Clear since semisimple is a stronger notion than abelian, see Theorem 7.31. O

Proposition 8.34 Let C € wmFus. Then:
(i) If C € wFus is k linear, then 1 € Si(C).

.. * Y ok
(ii) If C € wFus, then X* =*X for all X € C.

(iii) The fusion coeﬂﬁcientsﬂfj are cyclic up to duality, i.e.

~ k o~ "
LiL; = @Zzl Ni,j Ly < (L)I;)Li = @Z:l N(Jk*),i ) L;'

(iv) A regular object is

R = Z?:l PFdlm(Ll) . Li-

—

ﬁ%’oof. (i). By End¢(1) = k, the monoidal unit is indecomposable, hence simple.

(ii). By additivity, it suffices to show L* = *L for all simples. Here we first note that
(Homg(1,L'L) 20) = (L' =L*), (Homc(L'L,1)%0) = (L' =*L),
by semisimplicity, (i) and Schur’s lemma Lemma 6.68. Moreover, also by semisimplicity,
Homg(1,L'L) = Homg(L'L, 1),
which then in turn implies the claim.
(iii). By noting that

Nf = dim (Homg(LiL;, Lg)) = dim (Home((L))Li, L)) = Niw s
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which holds by Theorem 4.16 and (ii).
(iv). Using the previous results, we calculate
LR = @), PFdim(L)) - LiL; = @}, PFdim(L;) - Nf;L, = @], PFdim(L;) - Ni,. L
~ @4, PRAim(Ly) - N7, i = @, PRdim((L})Ly) - Ly
=~ PFdim(L}) - (;_, PFdim(Ly) - L) = PFdim(L;) - R,

which implies the claim by uniqueness of the regular object. 0

Example 8.35 Let G be a finite group, and let k = C. Note that for any subgroup H C G we

get an algebra

A = @jpenh € Veces(G). ) ¢ ! a
These are of course the corresponding group algebras and thus 3

Mod(Ay) ~ca, fdMod (C[H]).

The generalization of this construction, as explained in details in [EGNO15, Example 9.7.2], takes
an algebra Ay € Vecg(G) together with a so-called 2 cochain v to twist the multiplication of
Ay. The corresponding module categories

fdMod;" (C[H]) = Mod(Ap), VQ4. l (:)
where Ay € Vecgy, (G) and v is a 2 cochain with dat) = w|nxHxXH, &M I(,)

are all fusion categories, and are sometimes called group-like fusion categories. \/e”_

S
Remark 8.36 The construction in Example 8.35 can also be done for arbitrary S instead of C,
by letting the cochains take values in S*.

ribbon and fusion and has simple objects

\
8F. Verlinde categories — part I. There is an important family of fusion categories, which

are of paramount importance for the construction of the classical quantum invariants, and also
for the theory of fiat and fusion categories. However, they are not easy to construct and we will

Covel

Theorem 8.37 For any finite dimensional semisimple complex Lie algebra g, any k‘g>h
(where h is the Coxeter number of g) and any q € C being a primitive 2kth root of unity there
exists a C linear category fdMod(g) € Fus.

— k )‘[/‘

postpone a more detailed discussion to the later sections. For now we just state the theorem:

The categories of the form fdModj(g) € Fus are called Verlinde categories. .S fo Lo

Proof. We will elaborate later, but the main construction can be found in e.g. [An92]. O

Example 8.38 To be at least #t more explicit, let g = slp where h = 2. Let us explain the
fusion rules of the categories fdMod] (sly) which only depend on k and not on g. So let us fix

k > 2 and choose q = exp(mi/k), for the sake of concreteness. The category fdMod] (sl2) is

Si(fdMod{(sly)) ={L; | i =0,...,k —2}, Lo=1, L}L,.

L/]M)gg.m,w/ln\/
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The fusion rules are given by thef truncated Clebsch—Gordan rule)

g

T min(z,5) o
(8_5) LiL; = l=max(i+j—k+2,0) Litj—a1- <—

Let us discuss a few cases for small k: \/é‘c QQ
a

e For k =2 we have fdMod3(sly) = Vecc. Hence, the fusion generator 1 has PFdim(1) =

2cos(n/2) = 1 giving PReim(FAModi(sly)) = 1 D (T AV

e For k = 3 we have that the fusion generator Ly satisfies

- 1
1=L 0 LiLi =1, I'= ((1)/[1)> , PFdim(T'y) = QCOS?;/?)). / D{
L

9 And thus, PFdim(fdMod(sl3)) = 2. One can actually show that fdMod] (slz) ~cex

Veccq(Z/)27). _/’ a'l' 4& - &

e For k = 4 the fusion rules take the form
———

N\

Thus, we get the fusion graphs
Y 60

0

r, = :% PFdim(T';) = 2 cos(/4),
0 K WL_,
=oAL ol=1%5 1 1L, PRdimTs) =1
0 0 v

Hence, PFdim (fdMod{(sl5)) = 2 + 2 cos(r/4)?.

For general k > 2 the object Ly will be a fusion generator of fdMod] (sly) linear fusion graph
EE— T

}1
—_
Il
=
+
[
_-
v
I
o

,Lka

and PFdim(L,) = 2 cos(w/k).

Example 8.39 Using the same notion as in Example 8.38, note that there is a full subcategory
fdMod} (so3) C fdMod} (sly) with \ .
1 (503) k(s12) Q, A . ’ )

(fdMOdZ(SOg)) = {Ll’ ‘ 1=0,....k—21 even},k Lo=1, LIr=L,;,

7

and exactly the same fusion rules, i.e. (8-5), just taking even indexes only. Again, let us discuss
some cases in detail:

e The cases k = 2 and k = 3 will now collide and are as in Example 8.38. \/Q

e The case k = 4 gives fdMod}] (so03) = Veccq (Z/27Z).

e For k = 5 one can show that fdMod] (so3) = Fib (the Fibonacci category, see Exam-

ple 8.26) for q = exp(mi/5).
>, 7,) ¢' - FF
e =
&. L
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e For k = 6 the fusion rules take the form

DANIEL TUBBENHAUER

®[ L Ly
Ly || 1®La®Ly | Lo s
wl A —a ——\
and we get the fusion graphs (7\
0 0 YZ
=11 11=1 : Lo : Ly , PFdim(T'9) =
010 U
— . =< .
F4 = 0 0 =1 L2 L4 5 PFdlm(Pl) =1.
0 0 U K

Hence, PFdim fdModq (s03 !T 6 In fact, fdMod{(s03) ~cax fdMOd (C[S3

e Finally, for k =7 we get

< g

® H Lo ‘ Ly
Ly || 1©&La®Ly [ LoD Ly -
Ly Lo Ly 1®dL,
Th : /’ S Ds b')"
us, the fusion graphs are
< g O
01
FQ = 1 1 =1 : L2 : L4 5 PFdlm(PQ) =
01 U U
00 P ——
r,=(0 1 — 15 1, = 1,, PRdim(T))=
11 U

For general k =21 > 4 or k =21+ 1 > 5 the object Lo will be a fusion generator of fdModZ (s03)
with fusion graph

Iy = ]1< Lo >L4< >...< >L2172<:>Ll ifk=2l24, 1
U U U

e = 1¢ Lo >L4< >...< >Lgl,2<:>Ll ifk=2l4+12>5.
U U U U

There is almost no redundancy:

S

Proposition 8.40 We have

(fdModg(s@) ~cay fdMody, (5[2)) e (k=K and (g=q orq

(fdModi(ﬁOg,) ~cex fdMod], (503)> & (k=K and (= orq

Qof. See [FK93, Proposition 8.2.3]. /
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Example 8.41 Note that the k = 5 case in Example 8.39 has now two non-equivalent cases:
fdModj (so03) = Fib, which happens for ¢ = exp(wi/5), and another fusion category appearing
for ¢ = exp(2mi/5).

E——
8G. Classifying fiat, tensor and fusion categories. Let us now address some classification
problems. Namely, we want to ask (in order) whether one can classify fiat, tensor or fusion
categories with a given K (), with a fixed rank rk(_) or a fixed PF dimension PFdim(_).

Remark 8.42 We will be a bit sketchy in this section because we want to state theorems which
are easy to understand (and worthwhile to be stated) but sometimes not easy to prove.

The arguable most important theorem in the theory is Ocneanu rigidity, which is a “uniqueness

———

of categorifications” type of statement:

Theorem 8.43 The number of k linear weakly multi fusion categories (up to ~yq. equivalence)

with a given K (_) is finite. ( [ EZ ‘.4 .

Proof. The (not easy) proof of this theorem can be found in e.g. [EGNO15, Theorem 9.1.4]. O

We have already seen two numerical invariants, which only depend only on KSB(,), of fiat
categories: the rank, ¢f. Proposition 7.51 and the PF dimension, c¢f. Definition 8.25, and both
discrete valued and > 1. Thus, Theorem 8.43 motivates the question whether one can classify
fiat or fusion categories of a given K§ (_), of a given rank or of a given PF dimension.

Let us start by fixing K§(_). w M) Gvu.w
)

’ Proposition 8.44 Let G be a finite group. If C € wmFus is C linear and ha{KSe(C) = 7Z[G]
as Z algebras, then C ~cgy VeQ@(G). )

Proof. By carefully writing down all equations coming from the associativity and unitality
constrains, see e.g. [EGNO15, Proposition 4.10.3] for details. O

For a finite group G let TY g denote the so-called Tambara—Yamagami fusion ring given by

adjoining a self-dual element X to Z[G] satisfying the fusion rules

9X =Xg=X, X’=3 a9

(Here we use the terminology from above for the Z algebra K (_) itself.)

Example 8.45 For G = Z/3Z the fusion rules etc. of TY 7,37 are

1
of1]2] X 000 1
1270 X 000 1 T .
N . PFdim(X) = /3.
2001 X X~ 1o o001 0= X — 2 im{X) f_
XX | X|0+14+2 1 1 10

For general G we have

PFdim(g) =1, PFdim(X)= /#G, PFdim(TY¢) = 2#G.
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Proposition 8.46 Let G be a finite group. If C € wmFus is C linear and has K (C) = TYq
as 7 algebras, then G is abelian. Moreover, for any abelian G there exists a C € wmFus with

Kg9 (C) 2 TYq as Z algebras, and such weakly multi fusion categories are parameterized (up to

~cax equivalence) by symmetric isomorphisms G — GY and a choice of sign.

Proof. This is the main result of [TY98]. O

Let us continue by‘ fixing the rank: )

Proposition 8.47 We have the following.

(i) If C € wmFiat is k linear of rank rk(C) = 1, then C ~yq, fdVecy.

(i) If D € wTen is k linear of rank tk(D) = 1 and k is of characteristic zero, then
D ~y.. fdVecy.

Proof. (i). Note that any object X € C is a direct sum of the unique indecomposable Z, i.e. there
exists a k € N such that X = k - Z. Hence, we have clearly

k-Z
(m <kl & 3 .- ip ,

-

K/ u

[-Z -z m-Z

showing that X is projective. Hence, we are done by e.g. Theorem 7.36 since C has to be
semisimple.

1 = k- Z for some k € N5, which implies that 1 is projective.

(ii). Recall that in each abelian category one can define the abelian group of extensions Ext& (X, Y)
to be the equivalence class (for an appropriate equivalence) of SES of the form

X 5 E 25y
The SES of this form which split, i.e. where E = X @Y, are trivial in Extg (X, Y).
Back to D € wTen, we claim that Ext{,(1,1) = 0.

To this end, suppose the converse. We want to show that Endp(P;) has under this assumption
infinitely many modules of dimension one, which is a contradiction since Endp(Py) is a finite
dimensional k algebra. Let E be a non-trivial extension of 1 by itself. Then Homp (Py,E) is of
dimension two, has a filtration of length 2 with quotients isomorphic to Homp(Py, 1). Note that
Endp(Py) acts on both, Homp(Py,E) and Homp(Py, 1), from the right. Thus, taking all of this
together and letting dp: Endp(Py) — k denote the character obtained from the right action on
Homp(Py, 1), we can find a basis of Homp (Py, E) such that the action matrices of Endp(Py) take
the form

Mo (dg(a) dl(a)> | (do(ab) dl(ab)) MMM, — <d0(ab) do(a)da (b) +d1(a)d0(b)> |

0 do(a) 0 do(ab) 0 do(ab)

where dj(a) # 0, satisfying dy(ab) = do(a)di(b) + di(a)dy(b), as indicated. Similarly, for any
k € Ng, we get a 2% dimensional Endp(Py) module Homp (Py,E¥), and one can show that the

corresponding dy(_) satisfies a recursive equality of the form
k
di(ab) = Yo7, ( i)dz’(a)dk—z’(b).
/
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This implies that we can define infinitely many distinct one dimensional Endp (Py) modules by
the formula

eala) = XZg 7 - di(a)a't’ € k((1)).
(Here we use that k is of characteristic zero because we need %, and this formally speaking ends
in k((¢)).) A contradiction, and we get Ext{ (1, 1) = 0.

i Finally, Ext{,(1, 1) = 0 implies that D is semisimple, and the claim follows. O

—_—
Example 8.48 Note the difference between Proposition 8.47.(i) and (ii): The first assumes the
number of indecomposables to be one, the other assumes the number of simples to be one. In
fact, as we have seen in Example 6.91, there are examples of tensor categories with one simple
objects which are not equivalent to fdVecy.

Let us try to go to rank 2:

Proposition 8.49 Let C € wmFus be C linear of rank tk(C) = 2. Then C is equivalent (as a
fusion category) to one of the following cases.

o C ~cgy (Vecc @ Vece).

o C ~yg, Veceq(Z/27).

o C ~cg, Vecty(Z/2Z) for the non-trivial w € H3(Z/2Z,C*) = Z/2Z.
b

W

o C ~cg, fdMod!(sly) for ¢ = exp(mi/5).

o C ~cg, fdMod](sly) for ¢ = exp(27i/5).

r_P7°00f. Let us sketch the proof, and a general proof strategy, details can be found in [Os03].

We start by observing that, if C is not transitive, then each simple spans a copy of Vecc and we
are in the first case. Similarly if 1 is not simple.

Thus, we can assume that C is transitive and 1 € Si(C). In this case we have another self-dual
simple object L and the fusion rules

(8-6) L>=2m-1®n-L.

First, the coefficient m of 1 has to be one, by rigidity. The main work is now to show that
there is no fusion category C for which n > 2 in (8-6). This is non-trivial and needs some clever
arguments, and is the main point of [Os03]:

(8-7) There is no fusion category with fusion rules as in (8-6) for m # 1 and n > 2.

So let us assume that n = 0 and n = 1 are the only possible solutions. In both cases we already
know solutions, namely the above listed cases 2 and 3 for n = 0, where K((C) = Z[Z/2Z],
respectively 4 and 5 for n = 1. A careful study of the associativity constrains (as we already
did for Ky(C) = Z[Z/27Z] throughout the previous sections) shows that there can not be other

solutions. O
e

Note that the proof of Proposition 8.49 had three main features which are part of a general

strategy to classify fiat and fusion categories, in increasing difficulty:
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e write down the possible solutions on the Grothendieck level, which was (8-6) above;
e use the categorical properties of C to rule out cases, which was (8-7) above;

e in the remaining cases construct the categories and analyze the various categorical
constrains to show that one has found all solutions, which was the last step above.

Example 8.50 To rule out the cases n > 2 in (8-6) requires all assumptions. For example, if
one drops the assumption on C to be semisimple, then m = 0 and n arbitrary can indeed occur.
We have already seen an example, namely fdProj(F,(Z/pZ)), see e.g. (7-14), where PyPy = p-P;.
(Formally speaking, we would need to adjoin the monoidal unit to fdPI‘OJ( »(Z/ pZ)) to make
this example solid.)

To continue to try to classify fusion categories by their ranks get tricky, and is doomed to fail
from some point on. Let us state the rk(C) = 3 result, ordered as in the strategy list above:

Proposition 8.51 Let C € Fus be C linear of rank rk(C) = 3. Let Si(C) = {L; = 1,Lg, L3}.
Then:

e The only possible fusion rules of C are:

® || Ly | Ls
Lo || 1Em-Lo®k-Ls k-Lo®dl-Ls
Ls k-Lo®l-Ls 1®l-Lo®n-Ly

I

where k,l,m,n € N satisfying k> + 12 = kn + lm + 1.

e Only the following cases can_occur:

® || Lo | Ls ® L | Ly ® || L
(A): Lo||L3| 1, (B): Ly||[1@La@Ly|La®Ly, (C): Ly|l1@Lg
Ly || 1 | Lo Ls Lo ® L3 1®Ly Ls Lo
® H Lo ‘ L3 ® H Lo ‘ L3
(D) Ly || 1®Lo®Ly|Ly, (E): Loy|| 1®2-Ly®Ls

L3 Lo 1 L3 Lo

—

o For (A) we have the solutions Vecg(Z/3Z) (note that H*(Z/37,C*) = Z/3Z).

o For (B) we have the solutions fdMod2( 503 \/M

e For (C) we have the solutions fdMod](sl3). M J'I
— ——

e For (D) we have the solutions fdMod(Ss3) and twists (as in Ezample 8.35).
——

e For (E) we have two solutions, a fusion category associated with a subfactor of type Fg
or its Galois conjugate. (See e.g. [HHO09] for the definitions.) b’

e There are no other solutions. W

Proof. This is proven in [Os13]. QAL,'/ ’6 -~ O
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Let us have a look now at the PF dimension.

Theorem 8.52 Let F € Homyg, (C,D), where C,D € wmFiat are k linear. Then:

(i) If ¥ is fully faithful, then
PFdim(C) < PFdim(D),
with equality achieved if and only if F is an equivalence.
(ii) If ¥ is fully faithful, then
PFdim(C) > PFdim(D),

with equality achieved if and only if F is an equivalence.

! Proof. This can be proven mutatis mutandis as in [EGNO15, Propositions 6.3.3 and 6.3.4]. O

—

Proposition 8.53 If C € wFiat is k linear of PF dimension PFdim(C) = 1, then C ~yqg,

fdVecy.
—

Proof. We already know that PFdim(C) > 1, see Proposition 8.28. Moreover, there is always
a fully faithful functor F: fdVecy — C given by k = 1 — 1. Thus, the claim follows from
Theorem 8.52.(i). O

F—

‘ The analog of “All finite groups of prime order are cyclic@

Proposition 8.54 If C € wFiat is C linear and satisfies PFdim(C) = p for p € N being a

prime, then C ~yq, Vects(Z/pZ). ' T—
e AN 7
(s~ s
Proof. See [ENOO05, Corollary 8.30]. O

' An extraordinary fact is that PF dimensions are quantized: )

Proposition 8.55 Let C € wFus be k linear, and let Ly € Si(C) be a fusion generator of PF
dimension PFdim(L;) < 2. Then:

R <
(i) PFdim(L;) = 2cos(w/k) for some k. /\ o= <$

T Awn by B)
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(i) The fusion graph of Ly is one of the following ADE types:

Type A: 1 Li — Lo

Ls
(8-8) Type Eg: H
1 L ¢ ’ Lo ¢ ? Ls
Le
Type E7: lT
1 L Lo p: > L3 Ly ¢
L7
Type Eg: lT
1 ¢ ’ L Lo ¢ ? L3 % ’ Ly

(iii) For all the graphs in (8-8) there exists a fusion category with a fusion generator having
the corresponding fusion graph.

(i) In type A the fusion category is of the form fdModj (sl2).

Proof. See e.g. [FK93, Chapter 8].

e ———

O

8H. A pseudo classification — or, summarizing the above. Let G be a finite group and let
us call Vecg (G) for non-trivial w a twist of Veccg(G). Similarly, we have twists of fdMod(G),
cf. Example 8.35, and we also call the Verlinde categories fdModj (g) for ¢ # exp(£mi/k) twists
of the standard choice ¢ = exp(mi/k). Then we have the following pseudo classification, motivated

by the above.

“Theorem” 8.56 All C linear fusion categories are one of the following types:

(I) Categories of the form Vecce(G) and twists.
_—

(II) Categories of the form fdMod(G) and twists.
E————

III) Categories of the form fdMod{(g) and twists.
k

(IV) Ezxceptions. VM -
\_ .

=

The crucial point, which we will explore in the following sections, will be:

The main source of quantum invariants are the fusion categories of type (III).
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The fusion categories of types (I), (II) and (IV) sometimes also give quantum invariants. But it

turns out that types (I) and (II) give rather “boring” invariants, while type (IV) remains to be
explored further.

8]. Exercises.

Exercise 8.57 Try to understand the claims in Example 8.5 and verify as many of them as
possible.

Exercise 8.58 Calculate the fusion graphs and PF dimensions of fdMod (F5[Z/5Z]) and of
fdMod (C[S5]). The latter is a semisimple fiat category and has the fusion rules L1 = 1 and

® | L Ly Ly | Ly
Lo | 1®L;®Ly®Ly | Li®Ly |Li®LyBLy ®Ly | Ly
Ly Lo ® Ly 1 &Ly @ Ly Lo & Ly Ly -
Ly | Li®Ly &Ly ®Ly | Li®Ly | 1®L DL ®Ly | L
Ly Ly Ly L 1

Exercise 8.59 Complete the discussion in Example 8.29.
Exercise 8.60 Verify the calculations in Example 8.45.

Exercise 8.61 Prove the last claim in Example 8.38 and Example 8.309.

9. FUSION AND MODULAR CATEGORIES — DEFINITIONS AND GRAPHICAL CALCULUS

The question we want to address is:

Can we separate “topologically boring” fiat categories from “topologically interesting” ones?
g y

The answer will turn out to be “Yes and no.”.

9A. A word about conventions. Of course, we keep the previous conventions.

Convention 9.1 We will revised several properties which we have seen before and which depend
on choices such as being braided. As before we tend to write e.g. “ABC is XYZ” instead of the
formally correct “there is a choice such that ABC is XYZ” etc.

9B. Hom spaces in fiat, tensor and fusion categories. Let us start by motivating the
diagrammatics which we will see below. L L
“qI~=1 " m

If Cc Catngand Si(C) = {L4, ..., Ly }, then Schur’s lemma Lemma 6.69 allows us to compute
hom spaces as follows. Let X,Y € C, and decompose them into simples

J-Mfwa( X2 P X: L)L, Y%@;’ils[Y:Li]iLi. L .
d

Then we have the decomposition and §limension_f

(9-1) Homc(X,Y) = @2, Maty.p,)x v (K), dim (Homc(X,Y)) = >0, [X: Li][Y : L. 3 T

XLAW id’Li“L,j \gz\g* L._,'#L"
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Example 9.2 Assume that X @ Li®Lly and Y=Ly ©Ls. Then

|L1 1L | )L L'I'LMLJ'

/10 60)’\\ Endo(x ]><] T 2 MataalK) & Moty (),

L Iy 1Lo

L‘\
0 9) 1 uues DO txr

= Matgx 1 (K), L_
-) ) @ 1 1
Ly L3
/ ( Endc T T = Mati«1(K) @& Mat; «1 (K),
\ (0 oV Ly L3 \l/\ & IK

illustrates the validity of the formulas in (9-1), where each arrow represents a, up to scalars
unique, basis element of the hom spaces. An object such as Y is also called multiplicity free,

referring to the decomposition of Y having each simple appear at most once.

Note that (9-1) fails in the non-semisimple case: For C € Catgge, Si(C) = {Li,...,L}, and
In(C) ={Zy,...,Z,}, Schur’s lemma does not hold between indecomposables and hom spaces need

not te be matrix K algebras, but rather matrix algebras over some local K algebra.
E——

Example 9.3 Back to Example 6.91: In{fdMod (F5[Z/5Z])| we have seen that 1 = Z; and its
projective cover P1 = Zs are non-isomorphic indécomposabies. However, by the definition of the

Ao

However, we still have the idempotent decomposition of idy, i.e.

projective cover, the hom space between them is non-zero.

@1 Z] 1 11]pzj7 ) plkljl = 6@]6kl1dz , )
iij 1 Zi; — X gth inclusion, Pi; X = Zj; Jth projection,

idy = Z?:l i;ps, le_] =0; ,jld X:Z; ) Z;9 /X ? ‘

1Z isotypic inclusion, p; = (x:Z;) Pi. 1sotyplc projection.
1 y 7=1 J

(This is just (6-2), but taking multiplicities into account.) The morphisms i;; and p;; are unique
up to scaling, and i; and p; are called the isotypic_inclusions and projections, respectively.

Example 9.4 For Endc(X) as in Example 9.2, but where the simples are only assumed to be

X= a7, &;?3\

indecomposable, we have
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71 Z1 Zo zl zl Zs 71 Z1 Zo
Z111 IO E Z1 Z110 O E
illpll A Zl 0 0 ; 112p12 haaad Zl 0 r i21p21 had Zl 0 0 )
Zo | 9=—6 0 Zo \E=0 0 Zo | 0= [T
VARVARYA) VARVARYA)

7.1 0 £ 7,10 0 z
Iipr e~ Z;|0 1 , dgp2 e~ Z;[ 0 O
7o | =6 0 7o | =6 T

Note that the colored zero have to be zero in the semisimple case, by Schur’s lemma, but not

necessarily in general.

9C. Feynman diagrams for fiat, tensor and fusion categories. Let us assume that have
have a strict multi fiat category. Then we get, of course, the diagrammatic calculus for pivotal
categories as in Section 4G. Additionally, we want to keep track of the morphisms i;; and p;;
from (9-2), as well as simples. We use the conventions:

(

(9-3

Note that we can distinguish between the 1nclu51o and the projections in (9-3) by the labeling
of the strands, so we can just use colored boxes as ifdicated. The relations in (9-2) then are e.g.
X '

2 ' ()
' - . - . . )

X ¢

We, of course, still have the topological relations which we have seen, e.g. sliding

T

If our category of interest is additionally braided, then we have the power of the Reidemeister

calculus, see Section 5F, as well, e.g.

XY Z XY Z
ﬁg‘

I
zZ'ZZ'\/
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Note that this graphical calculus is, having e.g. Theorem 4.52 established, is automatically
consisted as we simply used a special notation for special morphisms.

9D. Traces and dimensions revisited. Recall that we had the notions of traces and dimensions
for pivotal categories, cf. Section 4H. We can say a bit more now. But first an evident lemma:

r;emma 9.5 Let C € PCatg. Then l,,( W M‘(-L ( 629( z(’mLQ
uCf@g) =) + 1), Tu(f@g) = () + u(g),
dimC(X @ Y) = dim€(X) + dim€(Y), CdimX @ Y) = ©dim(X) + ©dim(Y),

" forallX, Y€ C and (f: X —X),(g: Y—=Y) € C. : O \

‘
Proposition 9.6 Let C € PCatggs and L € Si(C). Then we have @Z iy @'
¢
dim©(L) #0, ©Cdim(L) #0. !

More generally, if f: L 2L ds an isomorphism, then 10 )A?) f_“_ - /1
L trC(f) #0, Ctr(f) #0.

Proof. Note that dim©(L) = 0 would contradict Schur’s lemma Lemma 6.69: from dim® (L) = 0

we get (-

dim End¢(L) = dim Homg (LL, 1) > 1,

since we would get a map different from evy. Thus, we are done by symmetry as the argument
for the traces is exactly the same. O

Example 9.7 Proposition 9.6 fails in the non-semisimple case, i.e. for Z € In(C)

dim€(z) =0, Cdim(z) =0, WV
is possible. To give an explicit example, let us consider the Rumer—Teller—Weyl category TL%E (\
as in Definition 7.39, and let ¢ = exp(2mi/4) =i € C. Then the circle removal becomes

(9-5) O =0=dim (o), 2
and e is, of course, indecomposable. Using (9-5), we also get an isomorphism of C algebras . 1
Endpry_(¢2) 5 CIX]/(XY), | |= L~ X, =% 1

~— <
This implies that EndTL(‘é@ (8%) is a local C algebra and thus e € In(TL%EN have _ ' _ ‘ ;)- 4

Q = (B)-o-an™e fa1.) = 0 ;\) =0

More general, one can show that q V) Ro = o
(z € In(TLY,)) = (dimTLC@ (2) =0 unless 1 = Z). n

That dimensions of objects are non-zero is in some sense a property of semisimple categories:

Proposition 9.8 Let C € mlFiat. Then the following are equivalent:

(I) C is semisimple;
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:C : .
(1) dimS(P) # 0 for all P € Pi(C); ‘
(I1I) dim€(P) # 0 for some P € Proj(C);
e —

(1V) €dim(P) # 0 for all P € Pi(C);

(V) €dim(P) # 0 for some P € Proj(C). L

e

Proof. (I)=-(II). By Proposition 9.6 since all simple objects (and thus, all objects) are projective.
(I1)=(I11). Evident.
(III)=(I). Consider

coev? evp

1 <, p(*P) — = PP* y 1,

which calculates dim©(P). If this is not zero, then 1 € P(*P) € Proj(C). Thus, Theorem 7.36
implies that C is semisimple.

Finally, by symmetry, (IT) and (III) are equivalent to (IV) and (V), so we are done. O
I
Lemma 9.9 Let C € mFiat and X € C. Then we have \[ \

dim€(x) = 37, (X: Zi)digc(Li), Cdim(x) = 327, (X : Z;)Cdim(L;).

Proof. An easy calculation using (9-4) and sliding:

é’(’l'i\
o % G400

The other cases follows by symmetry. O

Definition 9.10 Let C € mFiat. Then the categorical dimension of C is

Dim(C) = 7", Cdim(z;)dim€(z;).

Note that, if C is spherical, then

(9-6) Dim(C) = S m

Example 9.11 The categorical dimension generalizes familiar concepts:

(i) For Vecy we get Dim(Vecy) = 1 = PFdim(Vecy).

(i) For Vecg (Z/27Z) we have already seen that there were two choices of pivotal structures
giving

(9-7) choice 1: Ql =1= 1@, choice 2: @1 =-1= 1@.
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The same work for a trivial w, i.e. there are also two choices of (co)evaluations satisfying
(9-7). Thus, for both choices, we get
Dim(Veccg (Z/2Z)) = Dim(Vecgy (Z/27)) = 2 = #(Z/2Z)

—

= PFdim (Veccg (Z/27)) = PFdim(Vecgy (Z/27)).

(iii) For the non-spherical category such as Veccg (Z/3Z) with the choice of (co)evaluations

from Example 4.59 we get
Dim(Veckg(Z/3Z)) = 3 = #(Z/3Z) = PFdim(Vecye (Z/3Z)).

Proposition 9.12 Let C € mFus be spherical and k be of characteristic zero. Then[Dim(C) %+
Q_)Vloreover, if k = C, then Dim(C) > 1.

Proof. Since C is spherical, we have (9-6) which immediately implies the claims. O

Example 9.13 Proposition 9.12 does not hold in finite_characteristic. For example, with

reference to Example 9.11.(b), we have

Dim(Vecr,(Z/2Z)) = 2 = 0 € Endyecy, ;,(z/22)(1) e@

Note however that R lK

PFdim (Vecy,q(Z/2Z)) =2 # 0,

since the PF dimension is, by definition, an element in Rx>.

Note that Example 9.13 also illustrates a crucial difference between the categorical dimension
and the PF dimension: The first is a categorical notion, is about morphisms, and lives in C. On
the other hand, the PF dimension is a numerical notion, is about objects and lives in R>q.

——
——

9E. The Alexander—Markov theorem and traces of braids. Recall that we had the cat-
egory of braids qSym, see Example 5.15, which is the free braided category generated by one

object. In particular, we get the Alexander functor

N\
(9-8) A:qSym — oqBr, e~ o,\—A > z /\\__)/\\/\\

The Markov quotient of qSym, denoted by qSym/MM, is the quotient of qSym by the

congruence spanned by the Markov moves MM. Formally:

Definition 9.14 We let gSym/MM = (S, T | R UMM) with

St ] </ /
(9-9)

= ; (g)(f)(gy(g)(g) 0
E R YT o oy o j’_——U:

L (D (21D (D) (....f.ﬂ L1 O

(The Markov moves are imposed for al%os&?mmber of strands and all morphisms f and g.)

/YW
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By definition, we have a full quotient functor
G/Ii qSym — qSym/MM, e+ e, X — y)

The classical )Ale:z:ander—Markov theoremytakes now the following form:

Theorem 9.15 We have the following. é‘, \/ |
(i) The functor A from (9-8) is fully faithful. \/

(i) The functor A gives a surjection

(9-10) A Unen Endqsym(o”G Endoger(1), > tr°9Br(A(f)).

(iii) There exists a bijection

AM_l : UnEN Endqsym/MM(.n®Endqur(ﬂ)a

Unen Endgsym (™) A » Endogpr(1)

AM_l |
(\\ Unen Endgsym /(") ) D M N

(i) and (iii) work also for left instead of right traces.

¢
o
%
1R

Proof. A proof can be found in e.g. [KT08, Chapter 2]. O

In words, Theorem 9.15.(ii) says that every link arises as a closure of a braid, see Example 9.16,
while Theorem 9.15.(iii) gives a precise condition for when two closures represent the same link.

Example 9.16 The Alexander closure A from (9-10) can be illustrated by “closing a braid
to the right”:

%5 E\f@@

The surprising result of Alexander is then that every link can be arranged such that it has a
purely upward-oriented and a purely downward-oriented part, with the latter being trivial. The
Markov moves then just take the form of sliding and Reidemeister 1:




140 DANIEL TUBBENHAUER
-] -] -]
aw]l ealian)

f
(& ] (8 ) (& )
-] [ = 1?2 -] = -] = T+ .
(D) (D) (D

These evidently hold in ogqBr. (See also Exercise 9.47.) The point of Theorem 9.15.(iii) is that
these are the only extra relations.

A
—

Remark 9.17 The functor in (9-8) has, of course, various cousins, e.g. we could equally well
go to qBr. Similarly for the Alexander—Markov theorem Theorem 9.15, which exists in a variety
of flavors.

9F. Colored braids and links. The previous section is partially a motivation for the following.

More general than Section 9E, if C € BCat is any braided category and X € C is any object,
T ——

then we get a coloring with X functor

X X N\

. \ A
Ax: qSym — C, OHX,AH /\\

Similarly, if C € BPCat is any braided pivotal category and X € C is any object, then we have a
more general coloring with X functor

X X
X X X X
Af:0gBr - C, e =X, 5L = BL v o MY N ) AU AU A
X X X X
X X

Remark 9.18 The coloring functors as above have the “flaw” that one can only color with one
color at a time. This can be corrected by considering the category of colored braids cqSym
or the colored oriented quantum Brauer category coqBr. The images of the coloring
functors are then called colored braids or colored (oriented) tangles, respectively.

Our main target for coloring functors (which thus, allow a diagrammatic calculus of colored
tangles) are:
Definition 9.19 Let C € mlFiat. Then:

e If C € BCat, then we call it a multi locally bfiat category. The corresponding
category is denoted by mlBfiat.

e [fC € BCatg, then we call it a multi locally bmodular category. The corresponding
category is denoted by mlIBMo.

e Finally, if these satisfy the ribbon equation (5-18), then we call them rfiat or rmodular,
with the corresponding notation for the categories.

Remark 9.20 A rmodular category is also called a pre-modular category in the literature.
Note also the hierarchy in the definitions above.
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Example 9.21 We have already seen plenty of examples:

(a) Of course, Vecy is bmodular.

(b) More generally, Veci,(G) is bmodular if and only if G is a finite abelian group.

(c) For G being a finite group the category fdMod ((C[G]) is bmodular.

(d) More generally, let K be algebraically closed and assume that the condition in Proposi-
tion 8.6.(iii) holds. Then fdMod (K[G]) is bfiat.

IE(ample 9.22 Whether a bfiat or bmodular is ribbon is trickier, as this depends on choices.

Let us discuss Veccg(Z/3Z) in details, where we recall Example 4.59 and Lemma 5.25. In
particular, their are several choices of (co)evaluations and braidings given as follows. (Some are
equivalent, but let us just list them anyways.) Let

di(i) =¢Y, i,k € {0,1,2},
where ( = exp(2mi/3) € C. Then, for k,l,m € {0,1,2},

. . ) _ j i
1 1 1 1
s —1 ) —aa), — a7 AL = di()da(),
i i u i i v ij
are choices. We then check that m
i i i i \/
P = di(i) 7 di(1)?- |, &I = djp(1)dy(1)* - \
i i i i

In particular, being ribbon does not depend on the choice of braiding, but is equivalent to
! Veccg (Z/3Z) being spherical.

Recall that for a C € BFiat being S linear we have a finite set of indecomposables In(C) =
{Z1,...,Z,} and also Endc(1) = S, and we can consider the colored Hopf braid

Zi j/ é

i Z
[
Sij = /szzziﬂziyzj = ) ) tr (S’L]) = Z] Z;, € S.
AN -

Zi Z;
These assemble into an important n x n matrix, called the S matri

S = (trc(sij))zjzl € Mat,,xn(S). 2 1 )- -- l?.V\

Note that, if the braiding is symmetric, then

|/

Example 9.23 Let us discuss the case of Vecyg(G) for small G. ,
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(a) Recall from Example 6.23 that Veccg(Z/27) has two braidings. However, both satisfy
sij = idpw,;. So they give the same result for the S matrix. Moreover, recall that
Veccg(Z/27) has two choices (co)evaluations, see Example 4.64. For these we get

11 v

. . 1 -1 ~
choice 1: S = (1 1) , det(S) =0, choice2: S = <_1 . > , det(S) =0.

(b) For Veccg(Z/3Z), enumerate Si(Veccq(Z/3Z)) = {0,1,2}, let ¢ = exp(27i/3) and take
a braiding such that s;; = ¢"*3. Then, for the standard rigidity structure,

&a\%g%

Example 9.24 Back to S3, cf. Example 8.15: The category fdMod (C[Sg]) with the swap map
as the braiding and the usual (co)evaluations is rfiat. With this choice the categorical dimension
is just the dimension as a C vector space. Thus, since the braiding is symmetric, we get

1 ¢ ¢
S=1¢ ¢ 1|l det(S
¢ 1 <

Lemma 9.25 For C € BFiat and any Z; € In(C) we have

sijsie = dim®(Z;) - 31y Nhsa.

Proof. The diagrammatic equation

Z
=L =1 =l
Z.

and additivity provide the result. O

Example 9.26 In Example 9.24 we can easily check that for i = 2 = j and k = 1 we have
8=2(0-24+1-440-2).

Lemma 9.27 Any C € BFiat has a symmetric S matriz.

Proof. A Reidemeister-type argument:

DD 1D

(The colors are meant to represent colorings with objects.) O
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Let us continue this section with an important lemma which should remind us that the Reidemeister
1 move (5-17) “is not as innocent as it looks”.

Lemma 9.28 Let C € mIBFiat be K linear and Z € In(C) and K algebraically closed. There

exits a(Z) € K* such that
) J . RA gl
(9-11) P:@- , | —al(2) |. W

Z z

Z z YA

N

N
N

Proof. After recalling that the twist is invertible with explicit inverse as given in Lemma 5.35,
this is a direct consequence of Schur’s lemma Lemma 6.69 if Z is simple. For general Z we also
use Schur’s lemma Lemma 6.68 and additionally observe that the invertible elements in a local
ring can be identified with the ground field. O

For C € 1BFiat we let

=[G =

both of which are in Endc/(1

Lemma 9.29 Let C € IBFiat Je K linear. Then: 4 C’\ M/\

(i) We have A, =7 | a(Z;)dim®(2;)? and Ay = 31, a(Z;)~ 1Cdlm( )2

(ii) If C is semisimple, then A, = >0 a(Z;)Cdim(z;)? and A; = 31 | a(Z;)~1dim©(z;)%
Proof. An immediate consequence of Lemma 9.28. 0

9G. Modular categories. The S matrix is symmetric, but e.g. Example 9.23 shows that it
might not be invertible. So:

Definition 9.30 A category C € BFiat with_invertible S matrix is called mfiat. If such a C
is additionally semisimple, then C is called modular.
— —

The corresponding categories are denoted by MoFiat and MoCat.

Example 9.31 Back to Example 9.21: ( /I)

(a) The category Vecy is modular.

(b) However, Veci,(G) is rarely modular, cf. % 9.23. (See also [EGNO15, Example
8.13.5].) )*

(c) For G being a finite group the category fdMod (C[G]) is only modular if G is the trivial
group.
—
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(d) More generally, whenever the categorical dimension is equal to the vector space dimension
a category with more than one indecomposable object can not be modular.

Example 9.32 The Verlinde categories, cf. Section 8F, are all modular.

The topological motivation for Definition 9.30 is:

Proposition 9.33 Let C € BFiat be k linear. Then C € MoFiat if and only if‘lll_ is the only
indecomposable object such that

(9'12) 52,]1[31,2 = idyz, ﬁ}l,zﬁz,]l =idzy, forallZe In DJ j

Proof. This is Exercise 9.50. bM M q'_

9H. More on Rumer—Teller—Weyl categories. Let us come back to TL{

Sepe 28 in Defini-

tion 7.39. This category usually has infinitely many simple and indecomposable objects, but

it has nice quotients. Here we use the usual quantum numbers, 1 e. for a 6 N we let [0], = 0,

1] = 1 and [3)=g+4q™" ‘1‘ FA14 qré\

(9-13) [a)y =q" 4¢P+ .+ q_“+3

For a € Z<o we let [a], = —[—a],. To this end, we need the following: /\\

Example 9.34 Note that [a], depends on the choice of q. To be explicit let S = C and let q be
either 1, (2 =i = exp(2mi/4), (3 = exp(2mi/3), (4 = exp(27i/8), or (5 = exp(2mi/5). Then

| e | 2l | Ble | [Mlg]5]g] [6] 7y | 8
; g=1] 1 2 3 A5 6 - 8
c4' 4_)q—g2 1 Q0 —1 0| 1 0 ~1 0
)‘q_gg 1 -1 0 1 | -1] 0 1 -1
,\q—c4 1 V2 A 0| -1 V2 —1 0
ﬁ A NI VB [0 -VA [ 1[0 [ 1 315V [ 20-5)

(Note the difference between whether the i in ¢; is even or odd.)

Definition 9.35 Let ¢g> € C* be not a second or third primitive root of unity. For i =0,1,2,3
define the ith Jones—Wenzl idempotent (JW idempotent for short) JW; € EndTL%@e (o) as

IOHOWS.'
Wo = ) Wi =¢ “2_| | [ .

_ 2] + 4 (Y [1] + 4
Wl R R R s/
Example 9.36 A calculation shows that we have the traces /\

trThee (JW;) = (—1)"1[i + 1], ’ ’ 4 —

m

For example, we calculate

TLC@@ JW2 @+ @ 2]2 1= [ ]q7

0=[)
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and ‘

Lemma 9.37 The JW projectors as in Definition 9.35 are idempotents.

Proof. This is an exercise, cf. Exercise 9.51. g

Definition 9.38 Let ¢> € C* be a primitive forth root of unity. We define the level 4 semisim-

plified quotient TL(%@6 of TL%@@ to be © OV)X 0 Q : i:

ThL). = TLL, /(% TW3)),

where the quotient is given by taking the ® ideal generated by the object (¢3,JW3).

Recall that we can identify objects of the idempotent completion with Im(e), see Section 7C.

Proposition 9.39 We have the following.
(i) We have TL¢. € MoCat.

(ii) We have Si(TL¢ge) = {Im(JWq) = 1,L; = Im(JW1), Ly = Im(JW2)}.

(iii) The fusion rules are

Vellnck,

(iv) We have '/
TLge ~cox fdMod)(sls).

Proof. Let us postpone the proof to a later section, but let us calculate the .S matrix of TLé@6 €
Mo, i.e. we need to compute colored Jones polynomial of the Hopf link. We do this
calculation generically, i.e. keeping ¢ a formal variable, and specialize ¢ in the end. We also use
the diagrammatic notation

1 Ly Lo
|

1 Ly Lo

We note that we have the crossing formulas

S A R R
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LJWQ
R A A

TWo w

including mirrors. Using these we compute (also with reference to Example 7.42)

trC(SM) = [1]q, tr C(S]U) = tI‘ S1]1 8 811 8
trC(S]lg) = tI‘C(SQ]l) = T = [3]q, trc(slg) = tr 821 g n

1 (522) = g a = [9q-

—2l;  [Blq 1 —v2 1
[4]q _[6]11 = _\/§ 0 \/5 )
—[6ly (9] V2o

which shows that

Example 9.40 The category TL?&BE from Definition 9.38 exists more general for any k € N>o,

and we one gets

TLE ¢ ~cex fdMod](sls) € Mo.

Moreover, the S matrix of is

S= (trTLé@@(Sij))ﬁ;:lo, trTeee (s,5) = (1) [(i + 1)(j + D],

— —

9I. Modular formulas. The purpose of this section is to indicate the i‘—WhV?” of modular
categories, which will be further justified in the upcoming sections.

Remark 9.41 As we will see in Section 9J, modular categories have “good reasons” to have
nice number theoretical properties. We are not giving proofs, as this is not our main purpose.
(There are more formulas than the ones given below, see e.g. [EGNO15, Chapter §].)

We have three important matrices for C € BFiat: I
e The S matrir which we have already seen in Section 9F; - a .
e The T matrix R .
oy 8 & ; .
” = (57{’](1/( l)a T = (tl])ZJZI € Matan(S),

which is a diagonal matrix having the scalars from (9-11) on the diagonal;
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e The C matm’m\ f: L—J ” * jL‘l'— LV\?

cij = 0ijr,  C = (cij)ij=1 € Mat,xn(S),

CsPG”W\.

which is the n x n identity matrix if every object is self-dual.

Proposition 9.42 Let C € MoCat be k linear. Then:
(i) We have A, A; € k*.

(i) We have Dim(C) = A, A, which is non-zero.
(i) We have C? = id,,, where id,, is the n x n identity matriz.

(iv) We have S? = Dim(C) - C.

(v) We have S* = Dim(C)? - id,,.

(vi) We have (ST)? = A, - S = Dim(C)A, - C.
(vii) We have TC = CT.

Proof. See [TV17, Section 4.5.2] and [EGNO15, Proposition 8.14.2 and Theorem 8.16.1]. O

l-}-Example 9.43 Let us come back to Proposition 9.39 and the calculations therein. We have
a(l) =1, a(l))=-¢*% a(ly)=q¢"*=-1,
dim®(1) = 1], =1, dim®(Ly) = -2 = —v2, dim®(Ls) = [3], =1,
Dim(C) = [1]2 + [2]; + [3]2 = 4,
A= (17— g P20 + ¢ '3]; = —2exp(wi5/8), A =[1]; — ¢*?[2]; + ¢"[3]; = 2exp(wi3/8),

4 = (—2exp(mi5/8)) (2 exp(mi3/8)).

Moreover, the matrix C' is the identity and we have

1 V2 1 I -2 1 4 0 0
SP=1-v2 0 V2|-[-v2 0 V2|=1]0 4 0
1 V2 o1 1 V2 o1 0 0 4
Finally, we also calculate that
—8exp(mi5/8) 0 0
(ST)? = 0 —8exp(7i5/8) 0
0 0 —8exp(mi5/8)

L

Recall that dim©(L) € k* if C is semisimple, see Proposition 9.6. The Verlinde formula, which
is up next, gives us the surprising result that the S matrix is in some sense encoded on the
Grothendieck classes:

Proposition 9.44 Let C € MoCat be k linear. Then we have

. Si7SikSil*
Dim(C)N!, = S SR
lm( ) J Zz:l dlmC(LZ) (E

Proof. Omitted, see [EGNO15, Corollary 8.14.4]. O

—
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Example 9.45 We continue Example 9.43: The S matrix and the fusion rules are stated in
(the proof of) Proposition 9.39, and we indeed get e.g.

—[214315 | [4la ][ lg . Zl6lal0lg 4 _ [R215Ble

1612(9]
O=—n, "+ @, T @, e :

4206, | [6]2
T

(2]q

+

9J. The modular group. Let us explain where the name “modular” comes from. To this end,
we first recall that there is the Mobius group given by Mobius transformations, i.e.

az +b
f:C—C, f(z)—m, where ad — be # 0. -1
Algebraically speaking the Moébius group is x -9
a b i
PGLy(C) =3 A= J A € Matayo(C),det(A) = ad —bc # 05 / (£1),
a— C L _J
AN

which is The projective linear group of the Riemann sphere PC!. (Recall that Mprojective” in this
sense should be read as “up to scalars”.) Geometrically, thinking of the Rieman

complex number plane wrapped around a sphere a Mobius transformations

This usually produces nice pictures:

TSP~ | -

https://commons.wikimedia.org/wiki/File:Riemann_sphere.png,

https://commons.wikimedia.org/wiki/File:MoebiusInversion.svg.

Anyway, the “algebraic version” of the Moébius group is the modular group which, depending
on the literature, is either PGL9(Z) or PSLy(Z), and is of crucial importance in e.g. number
theory. For_us the latter is the one we want, and in formulas:

PSLy(Z) = {A = <Z Z) ’A € Matyy2(Z), det(A) = ad — be = 1}/(:|:1).

It is well-known that PSLy(Z) has a_generator-relation presentation of the form

PSLy(Z) = (8,1 | §* = 1,(ST)* = 5?), I

where .S and [ correspond to the matrices (? _01) and (1), respectively. - )

Thus, the summary of the above, in particular Proposition 9.42, is:

TR

Theorem 9.46 Let C € MoCat be k linear such that \/Dim(C) € k. Then
PSLQ(Z) — Endfdvec]k (Endc(]l)"), S . S, T— T,

I S
Dim(C)
defines a projective action of the modular group. &

Let us stress again that “projective” hereby means “up to scalars”. l 5 2T

Heypf —7 ‘f ->J"
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9K. Summary of categories. Let us summarize the categorical constructions which in the end
gave as modular categories.

e “Categorifying sets” ~» categories ~» access to morphisms.

e “Categorifying monoids” ~» monoidal categories ~» access to a two dimensional calculus.

e “Categorifying dual vector spaces” ~- rigid, pivotal, spherical categories ~» access to

_ane

) height operations.

o “Categorifying braid groups” ~+ braided categories ~» access to the Reidemeister calculus.
\
e “Categorifying abelian groups” ~~» additive and abelian categories ~~ access to linear and

homological algebra.

)o “Categorifying algebras” ~~ fiat and tensor categories ~~ access to linear and homological
N

algebra, a tmdir&r&onw and height operations.

e “Categorifying semisimple algebras” ~~ fusion categories ~~ access to numerical data.

e “Action of the modular group” ~ modular categories ~ access to number theoretical

data.

9L. Exercises.

Exercise 9.47 Let l; € Endogpr(1) for i = 1,2,3,4 be the Hopf link with various orientations:

)t - R )

Find f; € qSym for i = 1,2,3,4 with A(f;) =1; (taking upwards-oriented right traces). Further,
prove algebraically that the Markov moves hold after closing in oqBr.

Exercise 9.48 Make Remark 9.18 precise. For example, what kind of “free as an XYZ” should
be satisfied by the category of colored braids?

Exercise 9.49 Let G be a finite group, and consider f{dMod (C[G]) with standard braiding and

duality. Show that the S matrix of f{dMod (C[G]) is of rank 1. For which G can fdMod (C[G])
be modular?

Exercise 9.50 Proof Proposition 9.33.

Exercise 9.51 Verify as many claims from Section 9G as possible.

10. QUANTUM INVARIANTS — A DIAGRAMMATIC APPROACH

Recall from Section 5K that a quantum invariant is structure preserving functor from a Brauer-type

category to a, say, fiat, fiat, fusion or modular category.

‘ How to construct quantum invariants? )

AR
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10A. A word about conventions. We need to be cargful with the scalars: \
> @ ()
Convention 10.1 Recall that_S, k and K denote a ring, a field and an algebraically closed
field, respectively. We further nee Z 1/2 4y=1/2] for v being a formal variable (v is the
generic quantum parameter, in contrast to ¢ which will always be some specialization).

Convention 10.2 Since ¢ = +1 € S will always behave differently from e.g. q = exp(2mi/l) € C
for I > 2, we will not count ¢ = %1 as roots of unity.

10B. An interlude about specializations. For any pair !Sig! of a ring and an element
/% es (we need a square root of the parameters because of the braiding, cf. (7-10)), let A act
pre———— ]

on S from the left via

ACS l.ix=zv.z=qx,

——

which makes S into a left A module. We thus get a specialization functor

(10-1) - ®, 7S: Vecy — Vecs, X—X®, !S.

In words, _ ®X:q S extends scalars to S and substitutes v = ¢. The pair (S, q) is also called a
spectalization.

Let C, € Caty. Similarly as before, we get a categoru_specialized at g, denoted by CZ, by

extending scalars to S and substituting v = ¢q. Formally:

e First we let Ob(C2) = Ob(Cy);

(Homcg (X,Y) = Homc, (X,Y) ®AE
where _ ®,~?S is as in (10-1). C4, - l GF&

The following is easy, but crucial:

e then we let

Vl——Dq,

Lemma 10.3 Let Cy be as above, and let (S, q) any specialization. If B is a basis of Homc, (X, Y),
then it is also a basis of Homgg (X,Y). O

We have a few different looking cases which however will behave grouped as follows.

) The integral case which is either of:

ﬂ\/ We stay with A. \S :g q‘= p= 4

We let S =7Z and ¢ = +1.
(IT) The generic case (or generically) which is either of: >
e S = k being a field of characteristic zero and ¢ = +1.

e We let S = k be any field and ¢ # £1 not a root of unity in k.

(III) The finite characteristic case (or char p case) where S k is a field of characteristic

>0and g = *1. .j.
o Iﬂ ~S =0 wn =%

Ly




-
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“ ) The complex lex root of unity case where S = k is a field of characteristic p = 0 and
q€ Ik is a root of unity such that ¢? is of order I. C

(V) The mized root of unity case (or mized case) where S = k is a field of characteristic
p >0 and ¢ € k is a root of unity such that ¢? is of order I.

Example 10.4 It is a bit confusing, so let us make clear that the generic case includes the
choice S = C(q), for a formal variable q, which is probably the most common ground field in

quantum topology and quantum algebra. S - é ( q-) \/ |—) q;

The philosophy is that we have a category C,, defined integrally, with an integral basis and

integral objects (“objects which are always defined”), whose decomposition however depend on

the specialization: Usually Cp has pseudo idempotents, i.e. morphisms with ( a C

= Q— e2=a-e, acA. Q_’a: ﬁe D) E‘/

As we have already seen in Section 7B, idempotents a very important to understartf categories
at hand, and they should decompose the integral objects into indecomposables. So we want to
divide by a to get an idempotent:

(e*=a-e) = ((2e)? = Le).

So the crucial fact we need is whether the scalar a is invertible, which depends on the choice of
specialization. Here is a prototypical example:

— —

Example 10.5 Let us come back to the symmetric group S3 and let us consider the integral
case Z[Ss] and its category C}, = fdMod (Z[S3]). In this case an integral object would be Z[S3]
itself, which we can always define. S~

ife

~
We already know that generically C is semisimple, e.g. for S = C we have >Z Cs ]

(10-2) C[Ss] 2142 Ly ®L_y,

see Example 8.15. However, for S = Fy or S = F3 this is not the case anymore, see Example 8.29,
and one can see this in fdMod (Z[S3]) as follows.

Let S3 = {1, s,t,ts, st, sts = tst}, where, in graphical notation,

R R IR Vet al| E}%}{j
Ll -

The category fdMod( [83]) has the following four pseudo idempotents:

P‘ﬂ_( eg =1+s+t+1ts+ st+ sts, eﬂ—j CV6
_';( es1=1+s—ts— sts, esl—ﬁ €s,1, .?

cv
P

€s2 =1—s— st+ sts, ei?_ “€s,2, L\/g
UV\ pseudo complete: ey + 2e,1 + 2e52 +e_1 = 6.

L €1 =1—s5—t+1ts+ st — sts, e? @eL 1
orthogonal: xy =0, where x,y € {e1,€51,€52,€-1},X #,
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cases we were already award of: In C we can scale them to be
ition (10-2). For S = [Fy we can scale the middle two pseudo

152

We recover the three diftere
idempotents and we get the decom

idempotents to get idempotents, while S = F3 no scaling works.

—
Note that integrally we can not decompose Z[S3]. In fact, we get a decomposition into indecom-
posables depending on the specialization: the generic case is (10-2), while W /
FQ[Sg] =Py P Py, Fg[Sg] =Py Py, n f\

are the decompositions in characteristic 2 and 3, respectively. T!

The plan of this section is to discuss this strategy for the Rumer-Teller—Wevl category, which will
ultimately lead to the construction of the Verlinde categories (for Sly) and Jones-type invariants.

10C. An integral basis for the Rumer—Teller-Weyl category. Let TL} denote the cate-
gory as defined in Definition 7.39, but over the ground ring A and without taking additive and
idempotent closures (for the time being). Recall that TLY is a A linear ribbon category.

We further let E =R, Et =R>9, X =ZCEand Xt =NCFE. Wealsolet ® = {1 =1,6_1 =
-1} C E. - -9
- -\/—\/

Definition 10.6 A(n integral) path 7 of length k in E is a word m = 71...m, € ®F of length k.
Such a path is called non-negative if Y J_ m € XT forall1 < j <k. 4—-—; 2
—_—

k

Definition 10.7 fl'he weight of a path w is A(m) =) ;. m e X. \

1 [ | A
! | )

)
. o aag
Example 10.8 [ We think of paths as “honest” paths in E, starting at 0, using the rules

€1 €1
e o o e . e o

[ ———
Definition 10.9 To 41 we associate operators via:

(10-3) af):(f )=t )|,6f):( B fm"\lﬂoﬂ(/)

In words, if we already have a morphism f € TLY, then we obtain to new morphism fe1; € TL}

by either adding a strand or a cap to the right.

|
“ — gl
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Definition 10.10 The downward integral ladder d(7w) € TL} associated to a non-negative

path 7 is the morphism w(idg) obtained by successively using (10-3). The upward_integral

ladder u(w) € TLY is the corresponding downward integral ladder horizontally mirrored.
—_—

By vertical mirroring it suffices to only calculate down integral ladder, of course, e.g.
d(m) :r\QK < u(m) :U//

Example 10.11 One can easily check that

A=4: T = €1€1€1¢€1,
REE——
A=2: Ty =¢€1€ 16161, T3 =E1€1E_1€1, T4 = E1€1€1E6-1,
N B B 44\_1_4
A=0: Ty = E€1E—-1€1€—-1, e = E1€1€—-1E—1,

are the only non-negative paths of length four. We get:
=t =] | ]G
A=2 dlm) = AN\ dm) = AN dm) = S
A=0: d(m) =~ ~ d(m) _m( -

Moreover, we denote by (A, 7', m;!) a triple of a weight A, and two non-negative paths 7" and

m,, of this weight, of length as indicated by the superscripts.

Definition 10.12 The integral ladder associated to the triple (A, 7}]',m;) is the morphism

A n m m o n
Crn om = u(my,)d(7y") € Homry (o™, 0").  § \
d A u T

>

——
We also write Cf},d = C;\rg,ng@ etc. for simplicity of notation. > / __p vl

Example 10.13
from the diagrams therein are 14 in total:

L]

With respect to Example 10.11: the integral ladders which can be obtained

R 7
I AN AN
A=2 AN O<< %< r;\és‘ (( l/l
NS -«
A ://C >:% 5 N 5
s&j_E{_ A=0: M r\H::‘% \VJ %*
i s e N EON S

Note that the weight \ can be read off in the middle, as indicated.
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r Example 10.14 In Example 10.13 we have calculated integral ladder morphisms in EndTLX(o‘l).
For, say HomTLK(oz, o) we first observe that we have only two non-negative paths of length 2,
and thus, also only two downwards integral ladders:

T = €&1€1 <*W~>| |, 7T2:€1€_1€W~>m.

Thus, we get the following integral ladders in Homryy (:2, ot):
aT——

TSNP
| Theorem 10.15  The sets of the form N ,-“\ —

10-4 weight, 7w, T non-negative paths
T T

IL = {Cﬂ.nﬁ ’ Aa
are bases of Homrry (o™ @ —v> W A ‘@hﬁ'\, &v

Proof. In this formulation the crucial observation is [El15, Theorem 2.57], showing linear indepen-
dence. That integral ladders span follows by observing that HomTLX( , 1) is clearly spanned

by integral ladders (“crossingless matchings”), which implies the claim since mating preserves
this property, see Theorem 4.16. O

We call IL as in (10-4) the integral ladder basis of TL}. Note that this basis is built using a
bottleneck principle, and we will also illustrate the basis elements by

Denote by I.; the set of morphisms in TL} which contain at most ¢ — 1 through strands, e.g.

e et

Clearly, I.; C I; if j <. Moreover:

Lemma 10.16 The set I; is an ideal in TLY, i.e.
(f el g he TLK) = (gf,ﬂ1 € I<i).

Proof. This is Exercise 10.51. 0

The point is that these “get thinner if we multiply”:

— — <\

Lemma 10.17 We have

A
:a'>®b"ut_li‘_’ _<N

Aum,

where the scalars a = a(u,d’),b = b(u,d’) € A only depend on u and d'.

Proof. The integral basis is constructed to get “thinner”. Details are supposed to be done in

' Exercise 10.53. O
——
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Example 10.18 With the notation as in Example 10.11 we have e.g.

10D. Jones—Wenzl idempotents and their generalizations. Recall the quantum numbers

as in (9-13). (We will use different subscripts to make it clear whether we work in a specialization
or not.) We also need the quantum binomials for a € Z and b € N. First, by convention,

o fa-1,.. - b+11v V=] a (
ORI €A ) /1 b

(Note that these are elements of A, as one can check.) Of course, for ¢ = 1 the quantum binomial

[g] = 1 and otherwise we let
v

is the usual binomial and for ¢ = —1 it is a signed version of the usual binomial. Moreover,

[ZL:O@a<b,

which is however far from being true in specializations.

Example 10.19 Here are some explicit examples for specializations with p = char(S):

8 8 8 8 8 8 8 8 8
Ibl 6, | Bl [ 6, | @, | B, [ G, | &, [BG
q=1,p=0 1 8 28 56 70 56 28 8 1
q=-1,p=0 1 -8 28 —56 70 —56 28 -8 1
=92 =0 1 21845 23859109 1550842085 | 6221613541 1550842085 23859109 21845 1
9=4P= 128 4096 32768 65536 32768 4096 128
g=1,p=3 1 2 1 2 1 2 1 2 1 f
¢g=1,p=>5 1 3 3 1 - 1 3 3 1
g=1,p=7 1 1 0 . - ~? 1 1.
g=-exp(2mi/3),p=01| 1 -1 1 2 -2 2 1 -1 1
q=exp(2mi/5),p=0| 1 |3(1—V5)|3(1—V5) 1 - 1 1(1-vb) | 1(1—V5)
q=exp(2mi/7),p=0] 1 1 = — 1 I
q=2,p=13 1 4 1 = = = 1 4 1
¢=3,p=13 1 12 1 2 11 2 1 12 1
q=4,p=13 1 1 1 11 11 11 1 1 1
PE—

(Note that the appearing of fractions in the ¢ = 2 and p = 0 case above is not a contradiction to
the claim that [Z]v € A since 2% € A®Y=2S.) Let us do two more examples. First a = 11:

6], | 0, L 50, | 60, | 0, | 050, ] G6), | 090, | 60, ] 651, | Gal, | G,
hr=3 [ 12 [\ [ e [ 1 [ 2 [
g=exp(2mi/3),p=0] 1 | -1 | 1 | 3 | \ \ \ \

And finally, a = 14:

| | 30 | 057, | (61, | (71 [ 050, | (6], | Dol | Gal, | 03], | G5, |
q = 1 p_ 7 H ‘ “J‘ Lr il 1 = } U ; ‘\ ‘ 2 ‘ havas ; A ; \v) i U i U i U ‘ 1
q=exp(2ri/3),p=0] 1 | -1 \ 1 Ja]a]afe[-6]6]a]-a]a]1]-1]1
g=2p=7 |1 [ e [ 1 [ a3 [a]e6[1]6[a[3]a]1]s6]1
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For i € N let us use the ground ring

0§j§z']

obtained from A by formally inverting the quantum binomials. Now we come back to Defini-
tion 10.20:

Definition 10.20 For i € N an ith Jones—Wenzl idempotent (JW idempotent for short)
e; € EndTLM.@(oi), denoted by,

o o
o o

is a morphism satisfying:

e it is an idempotent, i.e.

(10-6)

) /\\
e it annihilates caps and cups, i.e.
AR
\_/

e it contains the identity with coefficient 1, i.e.

—— e

(10—7) I<iei =0= eiI<i

(10-8) (idgi — €;) € Ioj o = || + diagrams with caps and cups.
W

The following is just some algebraic yoga and the crucial point will be the existence of JW
idempotents.

Lemma 10.21 If an ith JW idempotent exists, then it is,unique.i

Proof. If e; and €] are two such idempotents, then (10-8) implies that e; — e} € I.;. Thus, using
the other two defining properties we calculate

, (10-6)

(10-7) _ (10-7) (10-6)
e —eie, = ei(e;—e) =0 =" (e;—¢el)e, = e — e,
which shows the claim. O
e N
Thus, we will say the ith JW idempotent. IA |
Proposition 10.22 The ith JW idempotentExists Fn TLXZ-(

Proof. We do not know a self-contained proof (i.e. using the combinatorics of TLY; only) of this
fact and refer to [EL17, Theorem A.2]. O

Remark 10.23 As we have seen e.g. in Example 10.5, idempotents tend to have longish
expressions. Then same is true for the JW idempotents, see Definition 9.35 for es and ez, and the
philosophy here would be not to expand them using the recursion from (10-12) below, but rather

. e
the abstract properties.
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Lemma 10.24 JW idempotents satisfy the following. l‘

i) We have hom vanishing, i.e. for 0 < j <14 we have J""\-/
(%) g J

P \Y
(10-9) ejHomTLm(.i,.j)ei:{Az{ei} if 1=, J , l/\\

0 else.

Similarly if 7 > 1. ,

(ii) We have absorption, i.e.

-, [
— = here 0 < 7 < 1. A
reisIs 7

(iii) We have partial trace properties, i.e.

111 @ |

(10-10)

(iv) The ith JW idempotent satisfies a recursion: First, we have
e =9, e = |

Then, for i > 2, we have

01 G- |+ e

erof. (i). Immediate from the definitions.

(ii). To prove absorption we simply observe that e; = id,; + I<;, and recall that e; annihilates
caps and cups (10-7).

(iii)+(iv). We prove these two claims inductively in tandem. For ¢ = 0 or ¢ = 1 both claims
are clear, so let us suppose that ¢ > 2 and that (iii) and (iv) hold for all j < ¢. Then define a
morphism e} by (10-12). Having this expression it is easy to see inductively that the defining
properties of an ith JW idempotent hold: (10-8) is clear, while for (10-7) the crucial calculation is

_ b+, =
=~ Bt
This shows the lemma. U
—

Lemma 10.25 For the canonical pivotal structure we have tr™ i (e;) = (—1)¢ [i +1],.

Proof. This is Exercise 10.53. O

EE—Y

—
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We can also construct a basis using the JW idempotents, which should be compared to the
construction of the integral basis from Section 10C (e.g. compare (10-3) and (10-13)). To this
end, let us consider the generic ground ring, inverting all quantum binomials,

A[@T\Ogy‘gi,ieN},

or variations such as ASZ, having the evident meaning. 'Tr

—

Definition 10.26 To €41 we associate operators via:

(10-13) f: () ' .m) 51<f>:H

—1

In words, if we already have a morphism f € TL}.; ending in o'~ then we obtain to new
morphism fexy € TL) <; by either adding a strand or a cap and a JW idempotent.

Copying Section 10C, we obtain downward d(r) € TL} .; and upward Weyl ladders u(rn) €
TLj <;, respectively, and also Weyl ladders

a(r™)d(x7) € Homrpy_, (o™, 0"), i =max{m,n},

all of which have an associated length etc. Not surprisingly, and directly from Proposition 10.22:

Proposition 10.27 The morphz’s:mst in TLY <; for i = max{m,n}. O

Example 10.28 Consider the case of the all non-negative paths m = €1...1. Then absorption
(10-10) gives inductively

ﬂ- - =7

Thus, we getc ipi = = ) = e;.

Example 10.29 Let us consider the analog of Example 10.11, using the same notation. After
using absorption we get

A=4: d(m)= (e ),

) e
A=2: d(m)= = 22y
e

(Of course, the JW 1dempotents eg and ey are rather trivial and the are only il]ustzled to clarify
the construction.)

\

Theorem 10.30 The sets of the form
(10-14) WL = {cﬂn am | A a weight, 7, my" non-negative paths}

are bases of Homrry, (o @™).
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Proof. This is (almost) immediate from Theorem 10.15: Substituting the identity in the coupons
of the JW idempotents recovers the integral basis IL. By (10-8) we thus get an upper triangular
change-of-basis matrix between IL and WL. O

-
ad
constructed using the bottleneck principle as in (10-5) and we will illustrate these by

Again, we also write e.g. ¢ éf‘rn -m for simplicity. Moreover, note that these morphisms are
urd

Lemma 10.31 We have ‘
~F

where the scalars a = a(ii,d’),b = b(i,d’) € A only depend on @ and d'.
Proof. This follows using the abstract properties of the JW idempotents. O

Definition 10.32 For (\, 7, ) consisting of a weight and a non-negative path, we define the
(generalized) JW idempotent e, by ) \ \ ) \ ]

“rrar \v—

er = = , the scalar is defined by % = Kr 'a LWX
v

where d and 1 are the downwards and upwards Weyl ladders associated to .

Example 10.33 Let us calculate /ﬁ}:rsl for 3 = e1e16_1€1, which uses the partial traces (10-11):

3], -1_ _[2,
o (o2 = oy = gt

—
Theorem 10.34 The generalized JW idempotents are well-defined and the set

{ ’ T non-negative path of length z} C Endrry,, (o%) \Z
is a complete set of orthogonal idempotents, i.e. r_\/ e _h_

S.(e) =) — b (o)

Proof. Note first that the scalar k. exists by hom vanishing (10-9). Moreover, it is easy to see
that the scalar k, is an iterative product of partial trace scalars, thus, can be inverted in A®°.
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That the generalized JW idempotents are orthogonal idempotents follows from the observation
that

\ i/
(10-15) =kt - =Ky -,
/[ d\

where A is the weight of 7, and the properties of the JW idempotents. Finally, we have

(10-16) ( S ) | = (eﬂsl )—i— (e7l'€_1)

as a consequence of the JW recursion (10-12), which inductively implies that > e =idsi. O

10E. The Rumer—Teller-Weyl category — algebra. Let us further analyze the category

TLY or specializations of it.

'
Lemma 10.35 We have the following. Ve WPV a ’ n leTr\

(i) We have the decomposition

(o=@, men) (n Thjese) )
(ii) The object Im(er) € TLjoqe is simple. [ ’ ;,2
(iii) We have

(Im(eﬂ) = Im(eﬁz)) & (7r and 7' are of the same wez’ght). _'_"b

(iv) We have ) —)
Si(TLYwoge) = In(TL{coge) = {Im(ey) | A € N}.

Proof. (i)+(ii). These a direct consequenceq of Theorem 10.34.

(iii). If 7 and 7’ are not of the same weighk, then Homrry_ (Im(er), Im(er)) = 0 by hom
vanishing (10-9) and (10-15). Thus, we get fm(e;) 2 Im(e, ) in this case. For the converse it is

enough to consider the case e, = e). Then
@: Im(ey) — Im(eg),

: Im(e;) — Im(ey

are inverses up to a scalar as (10-15) shows

(iv). By (iii) we get that every Im(e,) is isomorphic to precisely one Im(e;), while (i) and (ii) show
. that there are no other simple objects.

Note that TLY

kae is always 1 fiat. Moreover\it is | fusion in exactly the following situation:

Theorem 10.36 Let (k,q) be a specialization. Then TL]}Z@@ is semisimple if and only ZL

A® Cy—q k (ie. all quantum binomials are invertible). Moreover, in the semisimple case we have

e
) = {Im(eA) | A E N}

Si(TL!

koe) = In(TL{

koe
Proof. If all quantum binomials are invertible, then the specialization (k, ¢) factors through A*>
and the claim follows from Lemma 10.35. On the other hand, if some quantum binomial is not
invertible, then there exists some JW idempotent e; which is still well-defined, but e;;1 is not.
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Let e; be the minimal such JW idempotent. We claim that Im(e; ® ide) is indecomposable, but
not simple. Indeed,

| @i

shows that e; ® ide is an idempotent. Moreover, using the standard basis (10-4) and (10-9) we

have

:()unlesse{l"'l | |’|| X} > 7‘ . .

Furthermore, since k is a field the quantum binomir 0 < j <i+1is only non-invertible

if its zero, which, by minimality of 4, gives [i + 1] . = &—tience, the calculation

- (10—_11) ['H—l]q - -
A CEIEL

shows that the endomorphism ring of Im(e; ® id,) is k[X]/(X?), which implies that Im(ide ® €;)
is indeed indecomposable, not not simple.

h
10F. Some quantum computations. Let us further study the behavior of quantum numbers.

Our main aim is to give “good” conditions for whether the JW idempotents and their generaliza-
tions exist, which implies that TL]lq@@ is semisimple Theorem 10.36. For a field k this happens if
and only if all quantum binomials are non-zero.

Definition 10.37 Define the q characteristic of a specialization (S, q) as

char(S, ¢) = min {a € N5 | [a], = 0},

Z P:EH——---I- /1]=0
Example 10.38 For q = +1 the g characteristic Y6 the usual characteristic. Here are a few

examples of the behavior of the quantum numbers, where p = char(S). 6 «
(8],

or char(S,q) = 0 if [a], # 0 for all a € N>o.

|4, | 00 [ 121 ] 8l | (4, | (50, | 16T ] 17, |
g=1,p=0 1 [ 2[3[4]5]6 7 8
g=-lp=0] § |1 |-2[3|-4]5]-6] 7 | -8
a=2p=0 | p [ ] [ ¥ 55
¢=1,p=3 121 ]2]=]1 2
¢g=1,p=5 1] 23] a]=]1] 2 3
g=1,p="7 1213456 =1
—ag=2,p=13 ALlol2alolal]s]12] 4
g=3p=13[ O\| 1 [12] &= 1 [12] & 12
g=4p=13 ol 1 | 1 | =] 12] 12| & 1

(The complex root of unity case was already discussed in Example 9.34, so it is omitted from the
above table.) Thus, we have for example char(F3,2) = 6.

¢

(i) If char(S, q) = 0, then [a], € S is non-zero.

Lemma 10.39 Let a € Z4g. Then:
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(ii) If char(S,q) =p > 0 and g = £1, then [a]q € S is non-zero if and only if pfa.
(iii) If char(S,q) > 0 and q # £1, then [a]q € S is non-zero if and only if ¢°* # 1.

q9—q

( Proof. If ¢ = £1, then we have [a], = £a and the claims are clear. Note further that [a], = q“l;qm;
in case g # +1. Thus, the roots of [a] g are exactly the roots of the cyclotomic polynomial 1 — ¢,

which proves the root of unity case. O

’ For any ¢ € N and any d € N we use the digits ¢ of its d-adic expansion:

c=l.,c2,¢1,000d =D e cpd® where ¢, € {0,...,d — 1}.

I We also write * for an arbitrary digit.

Lemma 10.40 Leta € N. Then:
(i) If char(S, q) < a, then [‘;]q € S is non-zero for all 0 < b < a.
(it) If char(S, q) = char(S) = p > a, then [Z]q € S is non-zero for all 0 < b < a if and only if
a=1[.,0,0,%,p—1,...,p—1],.
(#ii) If char(S,q) = k > a and char(S) = 0, then [Z]q € S is non-zero for all 0 < b < a if and

only if
a=1[.,0,0,%,....%k—1].

(iv) If char(S,q) = k > a, char(S) = p > 0 and k # p, then [Z]q € S is non-zero for all
0 <b<aif and only if

a=1[.,0,0,%..%k—1), m=[.,0,0,%p—1,....p—1]p,

where a = mk + ag for 0 < ag < k.

Proof. In case char(S,q) < a the claim is clear, so let us assume that char(S,¢) = k > a and
write a = mk + ag and b = nk + by with 0 < dg, by < k. Recall that then the quantum Lucas’

theorem states that

o A GINE

see e.g. [Lul0, Lemma 24.1.2]. Note the appearance of the usual binomial: If char(S) = 0, then
this factor is always non-zero and we get the case (iii) in the statement. If however char(S) = p > 0,
then we can apply the clagsical Lucas theorem to (10-17) and get

(oD ], = 1 ),

where we distinguish exbansion in basgd

g

all 0 < b < a, as in Exam-
ple 10.19 for a = 8, a = 11 or a = 14, then: A ‘ (4]

/
ML Aty
a= [a, -,4,

b~ [-layl---idoj

Example 10.41 If we want to know whether [‘g]q is non-zero for

e Generically this is always the case.

A, € fol"n"'l}
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e In char p we would write e.g. 8 = [2,2]3 = [1,3]s = [1,1]y which implies that in
characteristic 3 the quantum binomials will be non-zero, but it will eventually be zero in
characteristic 5 or 7. For 11 = [1,0, 2]3 the quantum binomial might be zero.

e In the complex root of unity case only the zeroth digit plays a role. For example for
11 =[1,0,2]3 and g = exp(2mi/3) the quantum binomial will always be non-zero.

e The mixed case is a mixture of the above two cases. For example, for ¢> =1 andp =17
one would need to expand a in base 3, where only the zeroth digit is important, and
then m in base 7, cf. 14 = [1,1,2]3 and 4 = [4]7 in Example 10.19. Another example
where all quantum binomials for ¢> = 1 and p = 7 are invertible is 146 = 3 - 48 + 2 since
146 = [1,2,1,0,2]3 and 48 = [6, 6]7.

For Lemma 10.40 and Theorem 10.36 we immediately get:

———,
Theorem 10.42 Let (k,q) be a specialization. Then TL]lq@@ is semisimple if and only if we

are in the generic case. Moreover, in this case we have

Si(TL,.) = In(TLY ) = {In(es) | A € N},

as the set of simple objects. O

10G. Constructing Verlinde categories. Let us now finish by constructing quantum invariants
from (specializations of) TL .

Definition 10.43 Let C € MCat. We call a collection of subspaces
I = {In(X,Y) C Hom¢(X,Y) | X,Y € C}

a (two-sided) ® ideal if /\

e it is closed under vertical composition, i.e.

Proposition 10.44 Let C € MCats and let I be a ® ideal. Then:
(i) The exists a category C/lg with
Ob(C/Ig) = Ob(C), Homc 1, (X,Y) = Homc(X,Y)/In(X,Y),

and the evident composition.

(ii) We have C/Ig € MCat and the identity map on objects and morphisms induces a
monoidal and full functor C — C/Ig.

) Q
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(iii) If C was braided (or rigid, pivotal, spherical, ribbon), then so is C/lg.

roof. This is Exercise 10.54. O

Example 10.45 Clearly, any C € MCats has a trivial ® ideal, namely Ig = C. We stress
this because of the confusing fact that C/C is trivial although Ob(C/C) = Ob(C). The point is
that Homg,c(X,Y) = {0}, and thus all objects are isomorphic.

Definition 10.46 Let C € PCats. A morphism f € C_is called right negligible if
trC(gf) =0 forall g € C,
and left negligible if @ - O
Ctr(gf) =0 for all g € C. Ej
A right and left negligible is called negligible. V %
S

For C € PCatg let N¢ denote the collection of negligible morphisms.

F
Proposition 10.47 For any C € PCatg collection N¢ is a ® ideal.

Proof. By definition, the vertical composition of a negligible morphism with any other morphism
is negligible. Moreover, up to symmetry,

shows the same for the horizontal composition. '\,‘_# (V] .(‘ bw—r\/% O

Definition 10.48 Fix the canonical pivotal strucﬂ% on TLage. For any specialization (S, q)

we call
v
Ver (S, q) = TL%@E/NTLg@@

=0

the Verlinde category for (S, q).

Example 10.49 In the generic case Ver(k,q) = TL;{()@ since Nppa = 0. This follows
because we know that the (images of the) JW idempofents are the simple objects in this

semisimple category, see Theorem 10.42, and their traces a\e non-zero by Lemma 10.25.

By Proposition 10.44.(iii) and additivity of categorical traces we\ummediately see that Ver(S,q) €
IRifiat. We get a bit more:

Proposition 10.50 For any specialization (k.q) the category Ver(k,q) i?semisimgle, ie.
Ver(k, q) € IRiMo. Furthermore, the simple objects of Ver(k,q) are the indecomposable objects
of TL]lq@e of non-zero categorical dimension.
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Proof. This follows from the following characterization of negligible morphisms. A morphism
f=(fij): @le Zi — @;:1 Z; between indecomposable objects of Ver(k, ¢) is negligible if and
only if for each i, j either f; ; is not an isomorphism or dimVer(&9)(z;) = 0. (This is well-known,
see e.g. [EO18, Lemma 2.2].) O

The Verlinde categories are sometimes even modular, e.g. in the complex root of unity case. In
1:

The quantum invariants arising from Ver(k, q) are generalized Jones polynomials.

This gives a completely diagrammatic construction of the Jones-type quantum invariants, i.e.
by coloring strands with (versions of) JW idempotents. Similarly one can construct type BCD
versions of these invariants using quantum Brauer categories, or higher rank versions using

so-called webs.

10H. Exercises.
Exercise 10.51 Prove Lemma 10.16.

Exercise 10.52 Prove Lemma 10.17. Also try to think what changes in the proof compared to
Lemma 10.31.

Exercise 10.53 Prove Lemma 10.25.
Exercise 10.54 Prove Proposition 10.44.

Exercise 10.55 Compute the following quantum invariant.

L; L;
A

/BEZ-,Li _ ? ’ trVer(]k,exp(wi/?)))(IBEi,Li) — 8 o eC,
X | Le

L Ly

for i =0,1,2. (This is the colored Jones polynomial of the trefoil knot.)
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