hausdorff center for mathematics

Web calculi in representation theory

Or: Why playing with diagrams is fun

Daniel Tubbenhauer

Mathematisches Institut Universität Bonn

dtubben@math.uni-bonn.de

Abstract Fix a Lie algebra \mathfrak{g} . The goal of my research is to give a presentation, via diagrammatic generators and relations, of the category of finite-dimensional g-modules or of some well-behaved subcategories. These presentations, having a topological flavor, can then be applied in low-dimensional topology, combinatorics and combinatorial algebraic geometry. Moreover, these presentations are amenable to categorification and provide inside on higher levels as well.

Introduction

The symmetric group S_d can be for example described either as the set of all automorphisms of $\{1, \ldots, d\}$ or, alternatively, via generators and relations:

$$S_d = \left\langle \sigma_1, \dots, \sigma_{d-1} \middle| \begin{cases} \sigma_i^2 = 1, \quad \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, & \text{if } |i-j| = 1, \\ \sigma_i \sigma_j = \sigma_j \sigma_i, & \text{if } |i-j| > 1. \end{cases} \right\rangle$$
(1)

The former description shows why S_d is interesting to study, while the one from (1) is usually very handy for showing theorems about S_d .

Thus, it is a natural question to ask if we can give a generators and relations presentation of \mathfrak{g} -Mod_{fd}, i.e. the category of finite-dimensional \mathfrak{g} -modules. Since \mathfrak{g} -Mod_{fd} is ubiquitous in modern mathematics and physics, one could expect that an analogue of (1) for \mathfrak{g} -Mod_{fd} would be very useful. One could even aim for a *diagrammatic* presentation, since it is a known, but non-trivial, fact that \mathfrak{g} -intertwiners (linear maps preserving the \mathfrak{g} -action; our morphisms in \mathfrak{g} -Mod_{fd}) have a *topological behaviour*.

and a lot of question regarding finite-dimensional \mathfrak{sl}_2 -modules and their intertwiners can be reduced to "topologically playing with diagrams". And yes: all of these diagrams "are" \mathfrak{sl}_2 -intertwiners.

Results

We have generalized in [3] the approach followed in [1] and can describe the subcategories of \mathfrak{gl}_N -Mod_{fd} tensor generated by $\bigwedge^k \mathbb{C}^N$ and $\operatorname{Sym}^k \mathbb{C}^N$ via a rather neat diagrammatic calculus involving webs as

(5)

where the colors indicate $\bigwedge^k \mathbb{C}^N$ (green), $\operatorname{Sym}^k \mathbb{C}^N$ (red) or \mathbb{C}^N (black) - as before for \mathfrak{sl}_2 where we only needed red. It turns out that this description is very symmetric and powerful: as a direct (almost trivial)

Main Objectives

1. Find a (diagrammatic) generators and relations presentation of \mathfrak{g} -Mod_{fd} or appropriate subcategories. 2. Use this presentation to show hidden symmetries within link polynomials and Witten-Reshetikhin-Turaev invariants of 3-manifolds (yes, everything can be quantized).

3. Try to get a better understanding of related concepts like crystal bases and associated buildings. 4. Categorify everything in sight!

Materials and Methods

The methods we use are a mixture between representation theory, (low-dimensional) topology, combinatorics, Lie theory, category theory and, the most powerful one, *naively playing* with diagrams.

Mathematical Section

It turns out that *literally nothing is known* about a generators and relations presentation of \mathfrak{g} -Mod_{fd}. In fact, the description of \mathfrak{sl}_2 -Mod_{fd} was only accomplished in [1]: we show that \mathfrak{sl}_2 -Mod_{fd} is generated by

modulo some relations. In particular, some isotopy relation

application we were able to prove a (hidden) symmetry within associated link polynomials. Moreover, our approach easily generalizes to $\mathfrak{gl}_{N|M}$ -modules and their $\mathfrak{gl}_{N|M}$ -intertwiners as well.

Conclusions

Although relatively new at the moment, the diagrammatic presentations, left aside that they give a fairly neat calculus, of \mathfrak{gl}_N -Mod_{fd} and associated categories have already led to new insights and there is a good chance for exiting developments in the years to come.

Forthcoming Research

The next step is to extend everything from above to other types. This is ongoing work [2]. For instance, in type \boldsymbol{C}_n webs are generated by

Indeed, the calculi we have in mind will *generalize* a classical diagrammatic description due to Brauer. But let us see what the future brings.

References

[1] D.E.V. Rose and D. Tubbenhauer, Symmetric webs, Jones-Wenzl recursions and q-Howe duality, 2015, http://arxiv.org/abs/1501.00915.

which allows one to see the so-called *webs*, which are generated by the basic pieces from (2), as *topological* objects: embedded, trivalent graph with edge labels. Our description gives \mathfrak{sl}_2 -Mod_{fd} a topological flavor. For example, composition and tensoring are given via (reading from bottom to top and left to right)

[2] A. Sartori and D. Tubbenhauer, Webs and skew q-Howe dualities in types B_n, C_n, D_n , in preparation. [3] D. Tubbenhauer, P. Vaz and P. Wedrich, Super q-Howe duality and web categories, 2015, http://arxiv.org/abs/1504.05069.

Acknowledgements

I like to thank the Australian long black for pushing me forward and the Belgian Lambic for providing a refreshment during the hot summer.