Geometry and topology

Tutorial 10

Weekly summary and definitions and results for this tutorial

a) Up to homeomorphism, every connected surface can be written uniquely in standard form

$$S = S^2 \# \#^d \mathbb{D}^2 \# \#^p \mathbb{P}^2 \# \#^t \mathbb{T},$$

where $d, p, t \ge 0$ and tp = 0.

- b) If *S* and *T* are surfaces then $\chi(S \# T) = \chi(S) + \chi(T) 2$.
- c) We saw that $\mathbb{K} \cong \mathbb{P}^2 \# \mathbb{P}^2$ and that $\mathbb{T} \# \mathbb{P}^2 \cong \mathbb{K} \# \mathbb{P}^2 \cong \#^3 \mathbb{P}^2$.
- d) The surface $S^2 \# \#^t \mathbb{T} \# S^2$ is a sphere with *t*-handles. The surface $S^2 \# \#^p \mathbb{P}^2$ is a sphere with *c*-cross caps. The surface $S^2 \# \#^d \mathbb{D}^2$ is a sphere with *n*-punctures is $\#^n \mathbb{D}^2 \# S^2$.
- e) The **word** of a surface *S* that has a polygonal decomposition with one polygon is the sequence of *directed* edges read in anti-clockwise order around the perimeter of the polygon. Edges pointing anti-clockwise are written as a, b, c, ... and clockwise edges as $\overline{a}, \overline{b}, \overline{c}, ...$
- f) A paired edge a a surface is **oriented** if a and \overline{a} both appear in the word; otherwise it is **unoriented**.
- g) The standard word for the surface $\#^t$ is $a_1 b_1 \overline{a_1} \overline{b_1} \dots a_t b_t \overline{a_t} \overline{b_t}$ and the standard ford for $\#^c \mathbb{P}^2$ is $a_1 a_1 a_t a_t$. Standard words for punctured surfaces are more complicated!
- h) The boundary of a surface is a disjoint union of boundary circles. In particular, every free edge is contained in a boundary circle.
- i) In the standard form, if $p \neq 0$ then the surface is non-orientable with p > 0 cross caps and, otherwise, it is orientable with $t \ge 0$ handles. In all cases, *d* is the number of punctures.
- j) The Euler characteristic of the standard surface $S = S^2 \# \#^d \mathbb{D}^2 \# \#^p \mathbb{P}^2 \# \#^t \mathbb{T}$ is $\chi(S) = 2 d p 2t$.
- k) Up to homeomorphism, a surface is uniquely determined by the number of boundary circles (d), its orientability (orientable if $t \neq 0$ and non-orientable if $p \neq 0$), and its Euler characteristic (determines t and p).

Questions to complete *before* the tutorial

- 1. Express the following surfaces in standard form, compute its Euler characteristic and determine whether the surface is orientable or non-orientable.
 - $\mathrm{a)} \ \ S_1 = S^2 \, \# \, \#^2 \, \mathbb{T} \, \# \, \mathbb{P}^2 \, \# \, \mathbb{K} \, \# \, \mathbb{T} \, \# \, \mathbb{K}.$
 - b) $S_2 = \mathbb{A} \# \#^2 \mathbb{M} \# \mathbb{K} \# \#^2 \mathbb{D}^2 \# \#^2 \mathbb{T}.$
 - c) $S_3 = \#^3(\mathbb{T} \# \mathbb{A}) = (\mathbb{T} \# \mathbb{A}) \# (\mathbb{T} \# \mathbb{A}) \# (\mathbb{T} \# \mathbb{A}).$

Questions to complete *during* the tutorial

2. The following words each represent a polygonal decomposition with one face of a surface.

(i) $abc\overline{b}d$ (ii) abcba (iii) $abc\overline{a}\overline{b}$ (iv) $abcd\overline{a}\overline{b}\overline{c}\overline{d}$ (v) $abcd\overline{a}bc\overline{d}$.

Let *S* be the corresponding surface in each case.

- a) Draw a polygon with directed edges labelled by the edge labels a, b, c, \ldots .
- b) Hence determine the number of vertices in the decomposition.
- c) Work out the Euler characteristic $\chi(S)$ of *S*.
- d) Calculate how many boundary circles the surface has.
- e) Determine if the surface is orientable or non-orientable.
- f) Write down the standard form for *S*.

3. Determine the standard forms of the connected surfaces corresponding to the following words:

- a) $abc\overline{a}\overline{b}\overline{c}$
- b) *abcabc*
- c) $abc\overline{b}\overline{a}c$.

In each case apply the surgery operations from lectures to rewrite the words as the corresponding *standard word* for the surface.

4. a) Determine the standard form and the Euler characteristic of an "ideal" *T*-shirt (an ideal *T*-shirt is a *T*-shirt that has no thickness).

- b) Determine the standard form and the Euler characteristic of the surface of a fully padded T-shirt. That is, a T-shirt that is made by taking two T-shirts with one inside the other and sewing (or gluing), along the boundary circles corresponding to the neck, sleeves and hem.
- **5.** Determine the possible standard forms of the following connected surfaces:
 - a) A surface with 7 punctures and Euler characteristic -10
 - b) A surface with 10 punctures and Euler characteristic -7
 - c) A surface with 10 punctures and Euler characteristic -11
 - d) A surface with 10 punctures and Euler characteristic -8
 - e) A surface with 10 punctures and Euler characteristic -10
- 6. Let S be the surface given by the word $a d b \overline{c} \overline{a} c b d$.
 - a) Draw a polygonal decomposition of S.
 - b) How many vertices are there in your polygonal decomposition of S?
 - c) How many boundary circles does *S* have?
 - d) Is S orientable? Explain.
 - e) Compute the Euler characteristic $\chi(S)$ of the surface *S*.
 - f) Describe *S* as a *standard surface* that is, as a sphere with punctures, handles and cross caps.