Topology - week 12 Math3061

Daniel Tubbenhauer, University of Sydney

(C) Semester 2, 2022

Reidemeister moves are powerful but might be tricky

This is the unknot: $K=$

These two knots are equivalent:

$$
K=
$$

How to show that? Use Reidemeister moves (this is a strongly recommended exercise). But that might be tricky in general, so invariants is what we want.

Connected sums of knots

We used connected sums to construct and classify surfaces
We want an analog of connected sums for knots

Connected sums of knots

We used connected sums to construct and classify surfaces
We want an analog of connected sums for knots

Definition

Given two knots K and L their connected sum is the knot $K \# L$ that is obtained by cutting both knots and splicing them together

Connected sums of knots

We used connected sums to construct and classify surfaces
We want an analog of connected sums for knots

Definition

Given two knots K and L their connected sum is the knot $K \# L$ that is obtained by cutting both knots and splicing them together

$$
K \# L
$$

Connected sums of knots

We used connected sums to construct and classify surfaces
We want an analog of connected sums for knots

Definition

Given two knots K and L their connected sum is the knot $K \# L$ that is obtained by cutting both knots and splicing them together

Remarks

- \# does not depend on the choice of knot projections or where you cut either knot, and it is an "addition" or "multiplication":

Connected sums of knots

We used connected sums to construct and classify surfaces
We want an analog of connected sums for knots

Definition

Given two knots K and L their connected sum is the knot $K \# L$ that is obtained by cutting both knots and splicing them together

Remarks

- \# does not depend on the choice of knot projections or where you cut either knot, and it is an "addition" or "multiplication":

$$
\neg K \# O \cong K
$$

Connected sums of knots

We used connected sums to construct and classify surfaces
We want an analog of connected sums for knots

Definition

Given two knots K and L their connected sum is the knot $K \# L$ that is obtained by cutting both knots and splicing them together

Remarks

- \# does not depend on the choice of knot projections or where you cut either knot, and it is an "addition" or "multiplication":
$\rightarrow K \# O \cong K$
- $K \# L \cong L \# K$

Connected sums of knots

We used connected sums to construct and classify surfaces
We want an analog of connected sums for knots

Definition

Given two knots K and L their connected sum is the knot $K \# L$ that is obtained by cutting both knots and splicing them together

Remarks

- \# does not depend on the choice of knot projections or where you cut either knot, and it is an "addition" or "multiplication":

$$
\begin{aligned}
& >K \# O \cong K \\
& >K \# L \cong L \# K \\
& >(K \# L) \# M \cong K \#(L \# M)
\end{aligned}
$$

Examples of \#

Three colorability and connected sums

Proposition

Let K and L be knots. Then $C_{3}(K \# L)=\frac{1}{3} C_{3}(K) \cdot C_{3}(L)$

Proposition

Let K and L be knots. Then $C_{3}(K \# L)=\frac{1}{3} C_{3}(K) \cdot C_{3}(L)$
Proof We need to count the possible colorings of $K \# L$

Three colorability and connected sums
Proposition
Let K and L be knots. Then $C_{3}(K \# L)=\frac{1}{3} C_{3}(K) \cdot C_{3}(L)$
Proof We need to count the possible colorings of $K \# L$
$C_{3}(K)$ colorings
$C_{3}(L)$ colorings

Proposition

Let K and L be knots. Then $C_{3}(K \# L)=\frac{1}{3} C_{3}(K) \cdot C_{3}(L)$
Proof We need to count the possible colorings of $K \# L$

Three colorability and connected sums

Proposition

Let K and L be knots. Then $C_{3}(K \# L)=\frac{1}{3} C_{3}(K) \cdot C_{3}(L)$
Proof We need to count the possible colorings of $K \# L$

The color of these two strings is fixed by K

$K \# L$

Three colorability and connected sums

Proposition

Let K and L be knots. Then $C_{3}(K \# L)=\frac{1}{3} C_{3}(K) \cdot C_{3}(L)$
Proof We need to count the possible colorings of $K \# L$

Three colorability and connected sums

Proposition

Let K and L be knots. Then $C_{3}(K \# L)=\frac{1}{3} C_{3}(K) \cdot C_{3}(L)$
Proof We need to count the possible colorings of $K \# L$

The color of these two strings is fixed by K

$$
K \# L
$$

Since the colors of the connecting strands are fixed, there are only $\frac{1}{3} C_{3}(L)$ ways to 3 -color the strands of L inside $K \# L$

How many knots are there?

Corollary

There are infinitely many inequivalent knots

How many knots are there?

Corollary

There are infinitely many inequivalent knots
Proof Since $C_{3}(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings

How many knots are there?

Corollary

There are infinitely many inequivalent knots
Proof Since $C_{3}(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings
Let T be the trefoil knot

$$
\Longrightarrow \quad C_{3}(T)=9=3^{2}>3
$$

How many knots are there?

Corollary

There are infinitely many inequivalent knots
Proof Since $C_{3}(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings

Let T be the trefoil knot

$$
\Longrightarrow \quad C_{3}(T)=9=3^{2}>3
$$

$\Longrightarrow \quad$ if $n \geq 1$ then

$$
C_{3}\left(\#^{k} T\right)=\frac{1}{3} C_{3}(T) \cdot C_{3}\left(\#^{k-1} T\right)
$$

How many knots are there?

Corollary

There are infinitely many inequivalent knots
Proof Since $C_{3}(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings

Let T be the trefoil knot

$$
\Longrightarrow \quad C_{3}(T)=9=3^{2}>3
$$

$\Longrightarrow \quad$ if $n \geq 1$ then

$$
\begin{aligned}
& C_{3}\left(\#^{k} T\right)=\frac{1}{3} C_{3}(T) \cdot C_{3}\left(\#^{k-1} T\right)=\frac{1}{3} \cdot 9 \cdot C_{3}\left(\#^{k-1} T\right) \\
& \quad=3 C_{3}\left(\#^{k-1} T\right)
\end{aligned}
$$

How many knots are there?

Corollary

There are infinitely many inequivalent knots
Proof Since $C_{3}(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings

Let T be the trefoil knot

$$
\Longrightarrow \quad C_{3}(T)=9=3^{2}>3
$$

$\Longrightarrow \quad$ if $n \geq 1$ then

$$
\begin{aligned}
& C_{3}\left(\#^{k} T\right)=\frac{1}{3} C_{3}(T) \cdot C_{3}\left(\#^{k-1} T\right)=\frac{1}{3} \cdot 9 \cdot C_{3}\left(\#^{k-1} T\right) \\
& =3 C_{3}\left(\#^{k-1} T\right) \\
& =3^{2} C_{3}\left(\#^{k-2} T\right)
\end{aligned}
$$

How many knots are there?

Corollary

There are infinitely many inequivalent knots
Proof Since $C_{3}(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings
Let T be the trefoil knot

$$
\Longrightarrow \quad C_{3}(T)=9=3^{2}>3
$$

$\Longrightarrow \quad$ if $n \geq 1$ then

$$
\begin{aligned}
& C_{3}\left(\#^{k} T\right)=\frac{1}{3} C_{3}(T) \cdot C_{3}\left(\#^{k-1} T\right)=\frac{1}{3} \cdot 9 \cdot C_{3}\left(\#^{k-1} T\right) \\
& =3 C_{3}\left(\#^{k-1} T\right) \\
& =3^{2} C_{3}\left(\#^{k-2} T\right) \cdots=3^{k-1} C_{3}(T)=3^{k+1}
\end{aligned}
$$

How many knots are there?

Corollary

There are infinitely many inequivalent knots
Proof Since $C_{3}(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings

Let T be the trefoil knot

$$
\Longrightarrow \quad C_{3}(T)=9=3^{2}>3
$$

$\Longrightarrow \quad$ if $n \geq 1$ then

$$
\begin{aligned}
& C_{3}\left(\#^{k} T\right)=\frac{1}{3} C_{3}(T) \cdot C_{3}\left(\#^{k-1} T\right)=\frac{1}{3} \cdot 9 \cdot C_{3}\left(\#^{k-1} T\right) \\
& =3 C_{3}\left(\#^{k-1} T\right) \\
& =3^{2} C_{3}\left(\#^{k-2} T\right) \cdots=3^{k-1} C_{3}(T)=3^{k+1}
\end{aligned}
$$

Therefore, the knots $T, \#^{2} T, \#^{3} T, \ldots$ are all inequivalent because they all have a different number of 3-colorings

How many knots are there?

Corollary

There are infinitely many inequivalent knots
Proof Since $C_{3}(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings
Let T be the trefoil knot

$$
\Longrightarrow \quad C_{3}(T)=9=3^{2}>3
$$

$\Longrightarrow \quad$ if $n \geq 1$ then

$$
\begin{aligned}
& C_{3}\left(\#^{k} T\right)=\frac{1}{3} C_{3}(T) \cdot C_{3}\left(\#^{k-1} T\right)=\frac{1}{3} \cdot 9 \cdot C_{3}\left(\#^{k-1} T\right) \\
& =3 C_{3}\left(\#^{k-1} T\right) \\
& =3^{2} C_{3}\left(\#^{k-2} T\right) \cdots=3^{k-1} C_{3}(T)=3^{k+1}
\end{aligned}
$$

Therefore, the knots $T, \#^{2} T, \#^{3} T, \ldots$ are all inequivalent because they all have a different number of 3-colorings

More generally, the same argument shows that if K is 3-colorable then the knots $K, \#^{2} K, \#^{3} K, \ldots$ are all inequivalent

Prime knots

Definition

The knot K is a composite knot if it has a factorisation $K=L \# M$, where L and M are not the unknot
A knot K is prime if it is not composite

Prime knots

Definition

The knot K is a composite knot if it has a factorisation $K=L \# M$, where L and M are not the unknot
A knot K is prime if it is not composite

Example

Prime knots

Definition

The knot K is a composite knot if it has a factorisation $K=L \# M$, where L and M are not the unknot
A knot K is prime if it is not composite

Example

Prime knots

Definition

The knot K is a composite knot if it has a factorisation $K=L \# M$, where L and M are not the unknot
A knot K is prime if it is not composite

Example

Remark The definition of prime knots is hard to apply because it is difficult to tell when a knot is not the unknot!

Prime knots

Definition

The knot K is a composite knot if it has a factorisation $K=L \# M$, where L and M are not the unknot
A knot K is prime if it is not composite

Example

Remark The definition of prime knots is hard to apply because it is difficult to tell when a knot is not the unknot!

In fact, we don't yet know that the figure eight knot is not the unknot!!

The crossing number of a knot

The crossing number of a knot

Definition

The crossing number of a projection is the number of crossings you see. The crossing number $\operatorname{cross}(K)$ of a knot K is the smallest number of crossings in any knot projection

Definition

The crossing number of a projection is the number of crossings you see. The crossing number $\operatorname{cross}(K)$ of a knot K is the smallest number of crossings in any knot projection

This is obviously a knot invariant but not obvious how to compute it !!!

Definition

The crossing number of a projection is the number of crossings you see. The crossing number $\operatorname{cross}(K)$ of a knot K is the smallest number of crossings in any knot projection

This is obviously a knot invariant but not obvious how to compute it !!! Examples

Definition

The crossing number of a projection is the number of crossings you see. The crossing number $\operatorname{cross}(K)$ of a knot K is the smallest number of crossings in any knot projection

This is obviously a knot invariant but not obvious how to compute it !!! Examples

- $\operatorname{cross}(O)=0$. In fact, $\operatorname{cross}(K)=0$ if and only if K is the unknot

Definition

The crossing number of a projection is the number of crossings you see. The crossing number $\operatorname{cross}(K)$ of a knot K is the smallest number of crossings in any knot projection

This is obviously a knot invariant but not obvious how to compute it !!! Examples

- $\operatorname{cross}(O)=0$. In fact, $\operatorname{cross}(K)=0$ if and only if K is the unknot
- $\operatorname{cross}(C)=3$

Definition

The crossing number of a projection is the number of crossings you see. The crossing number $\operatorname{cross}(K)$ of a knot K is the smallest number of crossings in any knot projection
This is obviously a knot invariant but not obvious how to compute it !!! Examples

- $\operatorname{cross}(O)=0$. In fact, $\operatorname{cross}(K)=0$ if and only if K is the unknot
- $\operatorname{cross}(C)=3$

Lemma

Let K and L be knots. Then $\operatorname{cross}(K \# L) \leq \operatorname{cross}(K)+\operatorname{cross}(L)$

The crossing number of a knot

Definition

The crossing number of a projection is the number of crossings you see. The crossing number $\operatorname{cross}(K)$ of a knot K is the smallest number of crossings in any knot projection

This is obviously a knot invariant but not obvious how to compute it !!!

Examples

- $\operatorname{cross}(O)=0$. In fact, $\operatorname{cross}(K)=0$ if and only if K is the unknot
- $\operatorname{cross}(C)=3$

Lemma

Let K and L be knots. Then $\operatorname{cross}(K \# L) \leq \operatorname{cross}(K)+\operatorname{cross}(L)$
Remark It is a big open question if $\operatorname{cross}(K \# L)=\operatorname{cross}(K)+\operatorname{cross}(L)$
This is only known to be true for certain types of knots such as alternating knots, which we will meet soon

The crossing number and prime knots

Lemma
Let K and L be knots. Then $\operatorname{cross}(K \# L) \leq \operatorname{cross}(K)+\operatorname{cross}(L)$

The crossing number and prime knots

Lemma

Let K and L be knots. Then $\operatorname{cross}(K \# L) \leq \operatorname{cross}(K)+\operatorname{cross}(L)$
Proof Note that $K \# L$ has a projection with $\operatorname{cross}(K)+\operatorname{cross}(L)$ crossings

The crossing number and prime knots

Lemma

Let K and L be knots. Then $\operatorname{cross}(K \# L) \leq \operatorname{cross}(K)+\operatorname{cross}(L)$
Proof Note that $K \# L$ has a projection with $\operatorname{cross}(K)+\operatorname{cross}(L)$ crossings

Corollary

Let K be a knot. Then $K=P_{1} \# \ldots \# P_{n}$, for prime knots P_{1}, \ldots, P_{n}

The crossing number and prime knots

Lemma

Let K and L be knots. Then $\operatorname{cross}(K \# L) \leq \operatorname{cross}(K)+\operatorname{cross}(L)$
Proof Note that $K \# L$ has a projection with $\operatorname{cross}(K)+\operatorname{cross}(L)$ crossings

Corollary

Let K be a knot. Then $K=P_{1} \# \ldots \# P_{n}$, for prime knots P_{1}, \ldots, P_{n}
Proof Immediate by induction on $\operatorname{cross}(K)$, the minimal number of crossings in K

The crossing number and prime knots

Lemma

Let K and L be knots. Then $\operatorname{cross}(K \# L) \leq \operatorname{cross}(K)+\operatorname{cross}(L)$
Proof Note that $K \# L$ has a projection with $\operatorname{cross}(K)+\operatorname{cross}(L)$ crossings

Corollary

Let K be a knot. Then $K=P_{1} \# \ldots \# P_{n}$, for prime knots P_{1}, \ldots, P_{n}
Proof Immediate by induction on $\operatorname{cross}(K)$, the minimal number of crossings in K

Conversely, we can ask how many prime knots there are

Torus knots

For $a, b \in \mathbb{R}$ write $a \equiv b$ if $a-b \in \mathbb{Z} \quad \Longleftrightarrow \quad$ same fractional part

Torus knots

For $a, b \in \mathbb{R}$ write $a \equiv b$ if $a-b \in \mathbb{Z} \quad \Longleftrightarrow \quad$ same fractional part

Definition

Then the (p, q)-torus knot $\mathcal{T}_{p, q}$ is the closed path $\{(x, y) \in T \mid p y \equiv q x\}$ on the standard polygonal decomposition of the torus on the unit square, where $p, q \in \mathbb{N}$ and $\operatorname{gcd}(p, q)=1$

Torus knots

For $a, b \in \mathbb{R}$ write $a \equiv b$ if $a-b \in \mathbb{Z} \quad \Longleftrightarrow \quad$ same fractional part

Definition

Then the (p, q)-torus knot $\mathcal{T}_{p, q}$ is the closed path $\{(x, y) \in T \mid p y \equiv q x\}$ on the standard polygonal decomposition of the torus on the unit square, where $p, q \in \mathbb{N}$ and $\operatorname{gcd}(p, q)=1$

Torus knots

For $a, b \in \mathbb{R}$ write $a \equiv b$ if $a-b \in \mathbb{Z} \quad \Longleftrightarrow \quad$ same fractional part

Definition

Then the (p, q)-torus knot $\mathcal{T}_{p, q}$ is the closed path $\{(x, y) \in T \mid p y \equiv q x\}$ on the standard polygonal decomposition of the torus on the unit square, where $p, q \in \mathbb{N}$ and $\operatorname{gcd}(p, q)=1$

Torus knots

For $a, b \in \mathbb{R}$ write $a \equiv b$ if $a-b \in \mathbb{Z} \quad \Longleftrightarrow \quad$ same fractional part

Definition

Then the (p, q)-torus knot $\mathcal{T}_{p, q}$ is the closed path $\{(x, y) \in T \mid p y \equiv q x\}$ on the standard polygonal decomposition of the torus on the unit square, where $p, q \in \mathbb{N}$ and $\operatorname{gcd}(p, q)=1$

Torus knots are prime knots

Theorem
Suppose that $\operatorname{gcd}(p, q)=1$. Then the (p, q)-torus knot is prime

Torus knots are prime knots

Theorem

Suppose that $\operatorname{gcd}(p, q)=1$. Then the (p, q)-torus knot is prime
This is intuitively clear because whenever we try to write a torus knot as the connected sum of two smaller knots, each of the smaller knots is the unknot; we sketch the proof momentarily

Torus knots are prime knots

Theorem

Suppose that $\operatorname{gcd}(p, q)=1$. Then the (p, q)-torus knot is prime
This is intuitively clear because whenever we try to write a torus knot as the connected sum of two smaller knots, each of the smaller knots is the unknot; we sketch the proof momentarily

Corollary

There are an infinite number of prime knots
Proof If $p<q$ then $\operatorname{cross}\left(\mathcal{T}_{p, q}\right)=(p-1) q \quad-\quad$ true but won't prove

Torus knots are prime knots

Theorem

Suppose that $\operatorname{gcd}(p, q)=1$. Then the (p, q)-torus knot is prime
This is intuitively clear because whenever we try to write a torus knot as the connected sum of two smaller knots, each of the smaller knots is the unknot; we sketch the proof momentarily

Corollary

There are an infinite number of prime knots
Proof If $p<q$ then $\operatorname{cross}\left(\mathcal{T}_{p, q}\right)=(p-1) q \quad-\quad$ true but won't prove
\Longrightarrow the torus knots $\mathcal{T}_{2, q}$ with $q>2$ odd are all inequivalent

Torus knots are prime knots

Theorem

Suppose that $\operatorname{gcd}(p, q)=1$. Then the (p, q)-torus knot is prime
This is intuitively clear because whenever we try to write a torus knot as the connected sum of two smaller knots, each of the smaller knots is the unknot; we sketch the proof momentarily

Corollary

There are an infinite number of prime knots
Proof If $p<q$ then $\operatorname{cross}\left(\mathcal{T}_{p, q}\right)=(p-1) q \quad-\quad$ true but won't prove
\Longrightarrow the torus knots $\mathcal{T}_{2, q}$ with $q>2$ odd are all inequivalent
The number of prime knots with n-crossings

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	0	1	1	2	3	7	21	49	165	552	2176	9988	46972

As is common, knots and their mirror images are only counted once

Torus knots are prime

Proof

For $p, g \geq 2$ let the (p, q)-torus knot K lie on an unknotted torus $T \subset S^{3}$ and let the 2 -sphere S define a decomposition of K. We assume that S and T are in general position, that is, $S \cap T$ consists of finitely many disjoint simple closed curves.

Such a curve either meets K, is parallel to it or it bounds a disk D on T with $D \cap K=\emptyset$. Choose γ with $D \cap S=\partial D=\gamma$. Then γ divides S into two disks $D^{\prime}, D^{\prime \prime}$ such that $D \cup D^{\prime}$ and $D \cup D^{\prime \prime}$ are spheres, $\left(\cup D^{\prime}\right) \cap\left(\cup D^{\prime \prime}\right)=D$; hence, D^{\prime} or $D^{\prime \prime}$ can be deformed into D by an isotopy of S^{3} which leaves K fixed. By a further small deformation we get rid of one intersection of S with T.

Torus knots are prime - proof sketch

Proof Continued

Consider the curves of $S \cap T$ which intersect K. There are one or two curves of this kind since K intersects S in two points only. If there is one curve it has intersection numbers +1 and -1 with K and this implies that it is either isotopic to K or nullhomotopic on T. In the first case K would be the trivial knot. In the second case it bounds a disk D_{0} on T and $D_{0} \cap T$, plus an arc on S, represents one of the factor knots of K; this factor would be trivial, contradicting the hypothesis.

Torus knots are prime - proof sketch

Proof Continued

The case remains where $S \cap T$ consists of two simple closed curves intersecting K exactly once. These curves are parallel and bound disks in one of the solid tori bounded by T. But this contradicts $p, q \geq 2$

Prime factorisation of knots

Theorem

Suppose that K is not the unknot. Then $K=P_{1} \# P_{2} \# \ldots \# P_{n}$, for prime knots P_{1}, \ldots, P_{n}. Moreover, the multiset of prime knots is a knot invariant

Prime factorisation of knots

Theorem

Suppose that K is not the unknot. Then $K=P_{1} \# P_{2} \# \ldots \# P_{n}$, for prime knots P_{1}, \ldots, P_{n}. Moreover, the multiset of prime knots is a knot invariant

This can be proved using Seifert surfaces (that we meet later)

Prime factorisation of knots

Theorem

Suppose that K is not the unknot. Then $K=P_{1} \# P_{2} \# \ldots \# P_{n}$, for prime knots P_{1}, \ldots, P_{n}. Moreover, the multiset of prime knots is a knot invariant

This can be proved using Seifert surfaces (that we meet later) Here is a table of the unknot and the first 36 prime knots:

Colorable knots

Question

Is the figure eight knot the unknot?
\Longrightarrow We need another knot invariant to show that the figure eight knot is not the unknot

Question

Is the figure eight knot the unknot?
\Longrightarrow We need another knot invariant to show that the figure eight knot is not the unknot

To do this we first need to better understanding 3-colorings

Colorable knots

Question

Is the figure eight knot the unknot?
\Longrightarrow We need another knot invariant to show that the figure eight knot is not the unknot

To do this we first need to better understanding 3-colorings
Rather than colors, lets color the segments with 0,1 and 2

Colorable knots

Question

Is the figure eight knot the unknot?
\Longrightarrow We need another knot invariant to show that the figure eight knot is not the unknot

To do this we first need to better understanding 3-colorings
Rather than colors, lets color the segments with 0,1 and 2

Question

What can we say about $c_{1}+c_{2}+c_{3}$ for a 3-coloring?

Possible colorings and the values of $c_{1}+c_{2}+c_{3}$

Allowed colorings
 Disallowed colorings

or
or

or

Knot colorings with p-colors

Definition

Let $p \in \mathbb{N}$. A p-coloring of a knot K is a coloring of the segments of K that using colors from $\{0,1, \ldots, p-1\}$ such that

$$
\Longrightarrow \quad 2 c_{i} \equiv c_{j}+c_{k}(\bmod p)
$$

Knot colorings with p-colors

Definition

Let $p \in \mathbb{N}$. A p-coloring of a knot K is a coloring of the segments of K that using colors from $\{0,1, \ldots, p-1\}$ such that

$$
\Longrightarrow \quad 2 c_{i} \equiv c_{j}+c_{k}(\bmod p)
$$

Let $C_{p}(K)$ be the number of p-colorings of K.

Knot colorings with p-colors

Definition

Let $p \in \mathbb{N}$. A p-coloring of a knot K is a coloring of the segments of K that using colors from $\{0,1, \ldots, p-1\}$ such that

$$
\Longrightarrow \quad 2 c_{i} \equiv c_{j}+c_{k}(\bmod p)
$$

Let $C_{p}(K)$ be the number of p-colorings of K.
A knot is p-colorable if it has a p-coloring that uses at least two colors

Knot colorings with p-colors

Definition

Let $p \in \mathbb{N}$. A p-coloring of a knot K is a coloring of the segments of K that using colors from $\{0,1, \ldots, p-1\}$ such that

$$
\Longrightarrow \quad 2 c_{i} \equiv c_{j}+c_{k}(\bmod p)
$$

Let $C_{p}(K)$ be the number of p-colorings of K.
A knot is p-colorable if it has a p-coloring that uses at least two colors

- $a \equiv b(\bmod p)=a-b$ is divisible by p. When $p=3$ this agrees with the previous definition of 3-coloring

Knot colorings with p-colors

Definition

Let $p \in \mathbb{N}$. A p-coloring of a knot K is a coloring of the segments of K that using colors from $\{0,1, \ldots, p-1\}$ such that

$$
\Longrightarrow \quad 2 c_{i} \equiv c_{j}+c_{k}(\bmod p)
$$

Let $C_{p}(K)$ be the number of p-colorings of K.
A knot is p-colorable if it has a p-coloring that uses at least two colors

- $a \equiv b(\bmod p)=a-b$ is divisible by p. When $p=3$ this agrees with the previous definition of 3-coloring
- As with 3-coloring this depends on the choice of knot projection

Knot colorings with p-colors

Definition

Let $p \in \mathbb{N}$. A p-coloring of a knot K is a coloring of the segments of K that using colors from $\{0,1, \ldots, p-1\}$ such that

$$
\Longrightarrow \quad 2 c_{i} \equiv c_{j}+c_{k}(\bmod p)
$$

Let $C_{p}(K)$ be the number of p-colorings of K.
A knot is p-colorable if it has a p-coloring that uses at least two colors

- $a \equiv b(\bmod p)=a-b$ is divisible by p. When $p=3$ this agrees with the previous definition of 3-coloring
- As with 3-coloring this depends on the choice of knot projection
- For any p the constant coloring is a p-coloring

$$
\Longrightarrow \quad C_{p}(K) \geq p
$$

Knot colorings with p-colors

Definition

Let $p \in \mathbb{N}$. A p-coloring of a knot K is a coloring of the segments of K that using colors from $\{0,1, \ldots, p-1\}$ such that

$$
\Longrightarrow \quad 2 c_{i} \equiv c_{j}+c_{k}(\bmod p)
$$

Let $C_{p}(K)$ be the number of p-colorings of K.
A knot is p-colorable if it has a p-coloring that uses at least two colors

- $a \equiv b(\bmod p)=a-b$ is divisible by p. When $p=3$ this agrees with the previous definition of 3-coloring
- As with 3-coloring this depends on the choice of knot projection
- For any p the constant coloring is a p-coloring

$$
\Longrightarrow \quad C_{p}(K) \geq p
$$

$\Longrightarrow K$ is p-colorable if and only if $C_{p}(K)>p$

Colorability is a knot invariant

Theorem
Suppose that $p \geq 3$. Then $C_{p}(K)$ and p-colorability are both knot invariants

Colorability is a knot invariant

Theorem

Suppose that $p \geq 3$. Then $C_{p}(K)$ and p-colorability are both knot invariants

Proof Repeat the argument used for 3-colorings to show that $C_{p}(K)$ is unchanged by the Reidemeister moves and hence is a knot invariant

Colorability is a knot invariant

Theorem

Suppose that $p \geq 3$. Then $C_{p}(K)$ and p-colorability are both knot invariants

Proof Repeat the argument used for 3-colorings to show that $C_{p}(K)$ is unchanged by the Reidemeister moves and hence is a knot invariant
$\Longrightarrow p$-colorability is a knot invariant since K is p-colorable if and only if $C_{p}(K)>p$

Colorability is a knot invariant

Theorem

Suppose that $p \geq 3$. Then $C_{p}(K)$ and p-colorability are both knot invariants

Proof Repeat the argument used for 3-colorings to show that $C_{p}(K)$ is unchanged by the Reidemeister moves and hence is a knot invariant
$\Longrightarrow p$-colorability is a knot invariant since K is p-colorable if and only if $C_{p}(K)>p$

Similarly, $C_{p}(K \# L)=\frac{1}{p} C_{p}(K) C_{p}(L)$, for knots K and L

Colorability is a knot invariant

Theorem

Suppose that $p \geq 3$. Then $C_{p}(K)$ and p-colorability are both knot invariants

Proof Repeat the argument used for 3-colorings to show that $C_{p}(K)$ is unchanged by the Reidemeister moves and hence is a knot invariant
$\Longrightarrow p$-colorability is a knot invariant since K is p-colorable if and only if $C_{p}(K)>p$

Similarly, $C_{p}(K \# L)=\frac{1}{p} C_{p}(K) C_{p}(L)$, for knots K and L

Question

Is there an easy way to tell if a knot is p-colorable?

Examples of p-colorings

Are the following knots 4-colorable, 5-colorable, ... ?

Examples of p-colorings

Are the following knots 4-colorable, 5-colorable, ... ?

We need a better way to determine if a knot is p-colorable!
Use linear algebra!

Corollary

The trefoil knot is not the unknot

Corollary
The trefoil knot is not the unknot
Proof The trefoil is 3-colorable and the unknot is not

Corollary

The trefoil knot is not the unknot
Proof The trefoil is 3 -colorable and the unknot is not

Corollary

The trefoil knot is not equivalent to the figure eight knot

The trefoil knot is knotted!

Corollary

The trefoil knot is not the unknot
Proof The trefoil is 3-colorable and the unknot is not

Corollary

The trefoil knot is not equivalent to the figure eight knot
Proof The trefoil is 3 -colorable and the figure eight knot is not

The trefoil knot in comparison

\neq

or

Colorful linear algebra

Consider the figure eight knot.

Colorful linear algebra

Consider the figure eight knot.
Label the segments $c_{1}, c_{2}, c_{3}, c_{4}$ in traveling order around the knot

Colorful linear algebra

Consider the figure eight knot.
Label the segments $c_{1}, c_{2}, c_{3}, c_{4}$ in traveling order around the knot
\Longrightarrow We require:

$$
\begin{array}{rcccl}
2 c_{1} & & -c_{3} & -c_{4} & \equiv 0 \\
-c_{2} & 2 c_{2} & & -c_{4} & \equiv 0 \\
-c_{1} & -c_{2} & 2 c_{3} & & \equiv 0 \\
& -c_{2} & -c_{3} & 2 c_{4} & \equiv 0
\end{array}
$$

In matrix form this becomes $M_{K} \underline{C} \equiv \underline{0}(\bmod p)$, where

$$
M_{K}=\left[\begin{array}{rrrr}
2 & 0 & -1 & -1 \\
-1 & 2 & 0 & -1 \\
-1 & -1 & 2 & 0 \\
0 & -1 & -1 & 2
\end{array}\right] \quad \text { and } \underline{C}=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]
$$

Colorful linear algebra

Consider the figure eight knot.
Label the segments $c_{1}, c_{2}, c_{3}, c_{4}$ in traveling order around the knot
\Longrightarrow We require:

$$
\begin{array}{rcccl}
2 c_{1} & & -c_{3} & -c_{4} & \equiv 0 \\
-c_{2} & 2 c_{2} & & -c_{4} & \equiv 0 \\
-c_{1} & -c_{2} & 2 c_{3} & & \equiv 0 \\
& -c_{2} & -c_{3} & 2 c_{4} & \equiv 0
\end{array}
$$

In matrix form this becomes $M_{K} \underline{C} \equiv \underline{0}(\bmod p)$, where

$$
M_{K}=\left[\begin{array}{rrrr}
2 & 0 & -1 & -1 \\
-1 & 2 & 0 & -1 \\
-1 & -1 & 2 & 0 \\
0 & -1 & -1 & 2
\end{array}\right] \quad \text { and } \underline{C}=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]
$$

That is, \underline{C} is a p-coloring $\Longleftrightarrow M_{K} \underline{C} \equiv 0(\bmod p)$

Colorful linear algebra

Consider the figure eight knot.
Label the segments $c_{1}, c_{2}, c_{3}, c_{4}$ in traveling order around the knot
\Longrightarrow We require:

$$
\begin{array}{rcccl}
2 c_{1} & & -c_{3} & -c_{4} & \equiv 0 \\
-c_{2} & 2 c_{2} & & -c_{4} & \equiv 0 \\
-c_{1} & -c_{2} & 2 c_{3} & & \equiv 0 \\
& -c_{2} & -c_{3} & 2 c_{4} & \equiv 0
\end{array}
$$

In matrix form this becomes $M_{K} \underline{C} \equiv \underline{0}(\bmod p)$, where

$$
M_{K}=\left[\begin{array}{rrrr}
2 & 0 & -1 & -1 \\
-1 & 2 & 0 & -1 \\
-1 & -1 & 2 & 0 \\
0 & -1 & -1 & 2
\end{array}\right] \quad \text { and } \underline{C}=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]
$$

That is, \underline{C} is a p-coloring $\Longleftrightarrow M_{K} \underline{C} \equiv 0(\bmod p)$ We have reduced finding c_{1}, \ldots, c_{4} to linear algebra!

The knot matrix

Let K be knot projection with n crossings.

Let K be knot projection with n crossings.
\Longrightarrow Each segment starts and ends at a crossing, and each crossing has two under-crossings, so the knot projection has n segments.

The knot matrix

Let K be knot projection with n crossings.
\Longrightarrow Each segment starts and ends at a crossing, and each crossing has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors of the segments be c_{1}, \ldots, c_{n} and let the crossings be x_{1}, \ldots, x_{n}

The knot matrix

Let K be knot projection with n crossings.
\Longrightarrow Each segment starts and ends at a crossing, and each crossing has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors of the segments be c_{1}, \ldots, c_{n} and let the crossings be x_{1}, \ldots, x_{n}
The knot matrix of K is the matrix $M_{K}=\left(m_{i j}\right)$, where $m_{i j}$ is the sum of the contributions of the j th segment of color c_{j} to the i th crossing x_{i} with
$\begin{cases}+2, & \text { for over-crossings } \\ -1, & \text { for under-crossings }\end{cases}$

The knot matrix

Let K be knot projection with n crossings.
\Longrightarrow Each segment starts and ends at a crossing, and each crossing has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors of the segments be c_{1}, \ldots, c_{n} and let the crossings be x_{1}, \ldots, x_{n}
The knot matrix of K is the matrix $M_{K}=\left(m_{i j}\right)$, where $m_{i j}$ is the sum of the contributions of the j th segment of color c_{j} to the i th crossing x_{i} with
$\begin{cases}+2, & \text { for over-crossings } \\ -1, & \text { for under-crossings }\end{cases}$
\Longrightarrow crossings label rows and segments label columns

The knot matrix

Let K be knot projection with n crossings.
\Longrightarrow Each segment starts and ends at a crossing, and each crossing has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors of the segments be c_{1}, \ldots, c_{n} and let the crossings be x_{1}, \ldots, x_{n}
The knot matrix of K is the matrix $M_{K}=\left(m_{i j}\right)$, where $m_{i j}$ is the sum of the contributions of the j th segment of color c_{j} to the i th crossing x_{i} with

$$
\begin{cases}+2, & \text { for over-crossings } \\ -1, & \text { for under-crossings }\end{cases}
$$

\Longrightarrow crossings label rows and segments label columns
An atypical example

$$
M_{K}=\left[\begin{array}{ccc}
c_{1} & c_{2} & c_{3} \\
2-1 & -1 & 0 \\
2 & -1 & -1 \\
2-1 & 0 & -1
\end{array}\right]
$$

The knot matrix

Let K be knot projection with n crossings.
\Longrightarrow Each segment starts and ends at a crossing, and each crossing has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors of the segments be c_{1}, \ldots, c_{n} and let the crossings be x_{1}, \ldots, x_{n}
The knot matrix of K is the matrix $M_{K}=\left(m_{i j}\right)$, where $m_{i j}$ is the sum of the contributions of the j th segment of color c_{j} to the i th crossing x_{i} with

$$
\begin{cases}+2, & \text { for over-crossings } \\ -1, & \text { for under-crossings }\end{cases}
$$

\Longrightarrow crossings label rows and segments label columns
An atypical example

$$
M_{K}=\left[\begin{array}{ccc}
c_{1} & c_{2} & c_{3} \\
2-1 & -1 & 0 \\
2 & -1 & -1 \\
2-1 & 0 & -1
\end{array}\right]
$$

$$
\begin{aligned}
& O \& \\
& O \& B \\
& 0 \& B
\end{aligned}
$$

Alternating knots
We mainly consider colorings of alternating knots
A knot projection is alternating if the crossings alternate between over and under crossings as you travel around the knot in an anti-clockwise direction

Alternating knots
We mainly consider colorings of alternating knots
A knot projection is alternating if the crossings alternate between over and under crossings as you travel around the knot in an anti-clockwise direction

Alternating knots

We mainly consider colorings of alternating knots
A knot projection is alternating if the crossings alternate between over and under crossings as you travel around the knot in an anti-clockwise direction

\Longrightarrow Being alternating is not a knot invariant

Alternating knots - careful with projections
The unknot is alternating, but it can have non-alternating projections:

Similarly, for other knots

Knot matrices for alternating knots

If K is an alternating knot then:

Knot matrices for alternating knots

If K is an alternating knot then:
\Longrightarrow every segment starts as an under-string, becomes an over-string and finishes as an under-string

Knot matrices for alternating knots

If K is an alternating knot then:
\Longrightarrow every segment starts as an under-string, becomes an over-string and finishes as an under-string when read in traveling order the segments and crossings alternate as $c_{1}, x_{2}, c_{2}, x_{2}, \ldots, c_{n}, x_{n}$

Knot matrices for alternating knots

If K is an alternating knot then:
\Longrightarrow every segment starts as an under-string, becomes an over-string and finishes as an under-string
\Longrightarrow when read in traveling order the segments and crossings alternate as $c_{1}, x_{2}, c_{2}, x_{2}, \ldots, c_{n}, x_{n}$
$\Longrightarrow \quad$ if K is alternating and no segment meets itself then each row of M_{K} will contain one 2 and two -1 's

Knot matrices for alternating knots

If K is an alternating knot then:
\Longrightarrow every segment starts as an under-string, becomes an over-string and finishes as an under-string
\Longrightarrow when read in traveling order the segments and crossings alternate as $c_{1}, x_{2}, c_{2}, x_{2}, \ldots, c_{n}, x_{n}$
$\Longrightarrow \quad$ if K is alternating and no segment meets itself then each row of M_{K} will contain one 2 and two -1 's
$\Longrightarrow \quad$ if K is alternating the row and column sums of M_{K} are all 0

Knot matrices for alternating knots

If K is an alternating knot then:
\Longrightarrow every segment starts as an under-string, becomes an over-string and finishes as an under-string
\Longrightarrow when read in traveling order the segments and crossings alternate as $c_{1}, x_{2}, c_{2}, x_{2}, \ldots, c_{n}, x_{n}$
$\Longrightarrow \quad$ if K is alternating and no segment meets itself then each row of M_{K} will contain one 2 and two -1 's
\Longrightarrow if K is alternating the row and column sums of M_{K} are all 0
We will mainly consider colorings of alternating knots

Knot matrix examples

$$
M_{K}=\left(\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

$$
K=
$$

$$
M_{L}=\left(\begin{array}{rrrrr}
2 & 0 & 0 & -1 & -1 \\
-1 & 2 & 0 & 0 & -1 \\
-1 & -1 & 2 & 0 & 0 \\
0 & -1 & -1 & 2 & 0 \\
0 & 0 & -1 & -1 & 2
\end{array}\right)
$$

Properties of the knot matrix

Lemma

Let K be an alternating knot.
(1) The row and column sums of M_{K} are all 0

Properties of the knot matrix

Lemma

Let K be an alternating knot.
(1) The row and column sums of M_{K} are all 0
(2) $M_{K}\left[\begin{array}{l}1 \\ \vdots \\ i\end{array}\right]=\underline{0}$

Properties of the knot matrix

Lemma

Let K be an alternating knot.
(1) The row and column sums of M_{K} are all 0
(2) $M_{K}\left[\begin{array}{l}1 \\ \vdots \\ i\end{array}\right]=\underline{0}$
(3) $\operatorname{det} M_{K}=0$

Properties of the knot matrix

Lemma

Let K be an alternating knot.
(1) The row and column sums of M_{K} are all 0
(2) $M_{K}\left[\begin{array}{l}1 \\ \vdots \\ i\end{array}\right]=\underline{0}$
(3) $\operatorname{det} M_{K}=0$

Proof

(1) Since the knot is alternating every colored strand contributes 2 once and -1 twice (see below) and dually from crossings

$$
M_{L}=\left(\begin{array}{rrrrr}
2 & 0 & 0 & -1 & -1 \\
-1 & 2 & 0 & 0 & -1 \\
-1 & -1 & 2 & 0 & 0 \\
0 & -1 & -1 & 2 & 0 \\
0 & 0 & -1 & -1 & 2
\end{array}\right)
$$

Properties of the knot matrix

Proof Continued

(2) By (1), the respective vector is an eigenvector with eigenvalue zero
(3) By (2) there is an zero eigenvector, so the kernel is nontrivial

Minors of a matrix

The (r, c)-minor of an $n \times n$ matrix M is the $(n-1) \times(n-1)$-matrix $M_{r c}$ obtained by deleting row r and column c from M)

$$
M=\left[\begin{array}{cccccc}
a_{11} & \cdots & \cdots & a_{1 c} & \cdots & \cdots \\
\vdots & \ddots & a_{1 n} \\
a_{r 1} & \cdots & \ddots & \vdots & \ddots & \ddots \\
\vdots & \ddots & a_{r c} & \cdots & \cdots & a_{r n} \\
a_{n 1} & \cdots & \ddots & \vdots & \ddots & a_{n c} \\
\cdots & \cdots & \vdots & a_{n n}
\end{array}\right]
$$

Minors of a matrix

The (r, c)-minor of an $n \times n$ matrix M is the $(n-1) \times(n-1)$-matrix $M_{r c}$ obtained by deleting row r and column c from M)

$$
M=\left[\begin{array}{cccccc}
a_{11} & \cdots & \cdots & a_{1 c} & \cdots & \cdots \\
\vdots & \ddots & a_{1 n} \\
a_{r 1} & \cdots & \cdots & \ddots & \ddots & \ddots \\
\vdots & \ddots & & & a_{r c} & \cdots
\end{array}\right) \cdot a_{r n}
$$

The knot determinant

Definition

Let K be a knot. The knot determinant of K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

The knot determinant

Definition

Let K be a knot. The knot determinant of K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

Lemma

Let $M=\left(m_{r c}\right)$ be an $n \times n$ matrix with zero row and column sums.
Then $\operatorname{det} M_{r c}= \pm \operatorname{det} M_{11}$, for $1 \leq r, c \leq n$

The knot determinant

Definition

Let K be a knot. The knot determinant of K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

Lemma

Let $M=\left(m_{r c}\right)$ be an $n \times n$ matrix with zero row and column sums.
Then $\operatorname{det} M_{r c}= \pm \operatorname{det} M_{11}$, for $1 \leq r, c \leq n$
Proof Let \mathbb{I} be the $n \times n$-matrix with every entry equal to 1

The knot determinant

Definition

Let K be a knot. The knot determinant of K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

Lemma

Let $M=\left(m_{r c}\right)$ be an $n \times n$ matrix with zero row and column sums.
Then $\operatorname{det} M_{r c}= \pm \operatorname{det} M_{11}$, for $1 \leq r, c \leq n$
Proof Let \mathbb{I} be the $n \times n$-matrix with every entry equal to 1
Then $\operatorname{det}(M+\mathbb{I})=\operatorname{det}\left[\begin{array}{cccc}m_{11}+1 & m_{12}+1 & \cdots & m_{1 n}+1 \\ m_{21}+1 & m_{22}+1 & \cdots & m_{1 n}+1 \\ \vdots & \ddots & \ddots & \vdots \\ m_{n 1}+1 & m_{n 2}+1 & \cdots & m_{n n}+1\end{array}\right]$

The knot determinant

Definition

Let K be a knot. The knot determinant of K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

Lemma

Let $M=\left(m_{r c}\right)$ be an $n \times n$ matrix with zero row and column sums.
Then $\operatorname{det} M_{r c}= \pm \operatorname{det} M_{11}$, for $1 \leq r, c \leq n$
Proof Let \mathbb{I} be the $n \times n$-matrix with every entry equal to 1
Then $\operatorname{det}(M+\mathbb{I})=\operatorname{det}\left[\begin{array}{cccc}m_{11}+1 & m_{12}+1 & \cdots & m_{1 n}+1 \\ m_{21}+1 & m_{22}+1 & \cdots & m_{1 n}+1 \\ \vdots & \ddots & \ddots & \vdots \\ m_{n 1}+1 & m_{n 2}+1 & \cdots & m_{n n}+1\end{array}\right]$

$$
=\operatorname{det}\left[\begin{array}{cccc}
n+\sum_{i} m_{i 1} & n+\sum_{i} m_{i 2} & \cdots & n+\sum_{i} m_{i n} \\
m_{21}+1 & m_{22}+1 & \cdots & m_{1 n}+1 \\
\vdots & \ddots & \ddots & \vdots \\
m_{n 1}+1 & m_{n 2}+1 & & m_{n n}+1
\end{array}\right]
$$

The knot determinant

Definition

Let K be a knot. The knot determinant of K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

Lemma

Let $M=\left(m_{r c}\right)$ be an $n \times n$ matrix with zero row and column sums.
Then $\operatorname{det} M_{r c}= \pm \operatorname{det} M_{11}$, for $1 \leq r, c \leq n$
Proof Let \mathbb{I} be the $n \times n$-matrix with every entry equal to 1
Then $\operatorname{det}(M+\mathbb{I})=\operatorname{det}\left[\begin{array}{cccc}n+\sum_{i} m_{i 1} & n+\sum_{i} m_{i 2} & \cdots & n+\sum_{i} m_{i n} \\ m_{21}+1 & m_{22}+1 & \cdots & m_{1 n}+1 \\ \vdots & \ddots & \ddots & \vdots \\ m_{n 1}+1 & m_{n 2}+1 & & m_{n n}+1\end{array}\right]$

$$
=\operatorname{det}\left[\begin{array}{cccc}
n & n & \cdots & n \\
m_{21}+1 & m_{22}+1 & \cdots & m_{1 n}+1 \\
\vdots & \ddots & \ddots & \vdots \\
m_{n 1}+1 & m_{n 2}+1 & & m_{n n}+1
\end{array}\right]
$$

The knot determinant

Definition

Let K be a knot. The knot determinant of K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

Lemma

Let $M=\left(m_{r c}\right)$ be an $n \times n$ matrix with zero row and column sums.
Then $\operatorname{det} M_{r c}= \pm \operatorname{det} M_{11}$, for $1 \leq r, c \leq n$
Proof Let \mathbb{I} be the $n \times n$-matrix with every entry equal to 1
Then $\operatorname{det}(M+\mathbb{I})=\operatorname{det}\left[\begin{array}{cccc}n & n & \cdots & n \\ m_{21}+1 & m_{22}+1 & \cdots & m_{1 n}+1 \\ \vdots & \ddots & \ddots & \vdots \\ m_{n 1}+1 & m_{n 2}+1 & & m_{n n}+1\end{array}\right]$

$$
=\operatorname{det}\left[\begin{array}{cccc}
n^{2} & n & \cdots & n \\
n+\sum_{i} m_{21}+1 & m_{22}+1 & \cdots & m_{1 n}+1 \\
\vdots & \ddots & \ddots & \vdots \\
n+\sum_{i} m_{n 1}+1 & m_{n 2}+1 & & m_{n n}+1
\end{array}\right]
$$

The knot determinant

Definition

Let K be a knot. The knot determinant of K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

Lemma

Let $M=\left(m_{r c}\right)$ be an $n \times n$ matrix with zero row and column sums.
Then $\operatorname{det} M_{r c}= \pm \operatorname{det} M_{11}$, for $1 \leq r, c \leq n$
Proof Let \mathbb{I} be the $n \times n$-matrix with every entry equal to 1
Then $\operatorname{det}(M+\mathbb{I})=\operatorname{det}\left[\begin{array}{cccc}n^{2} & n & \cdots & n \\ n+\sum_{i} m_{21}+1 & m_{22}+1 & \cdots & m_{1 n}+1 \\ \vdots & \ddots & \ddots & \vdots \\ n+\sum_{i} m_{n 1}+1 & m_{n 2}+1 & & m_{n n}+1\end{array}\right]$

$$
=\operatorname{det}\left[\begin{array}{cccc}
n^{2} & n & \cdots & n \\
n & m_{22}+1 & \cdots & m_{1 n}+1 \\
\vdots & \ddots & \ddots & \vdots \\
n & m_{n 2}+1 & & m_{n n}+1
\end{array}\right]
$$

The knot determinant

Definition

Let K be a knot. The knot determinant of K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

Lemma

Let $M=\left(m_{r c}\right)$ be an $n \times n$ matrix with zero row and column sums.
Then $\operatorname{det} M_{r c}= \pm \operatorname{det} M_{11}$, for $1 \leq r, c \leq n$
Proof Let \mathbb{I} be the $n \times n$-matrix with every entry equal to 1
Then $\operatorname{det}(M+\mathbb{I}) \quad=\operatorname{det}\left[\begin{array}{cccc}n^{2} & n & \cdots & n \\ n & m_{22}+1 & \cdots & m_{1 n}+1 \\ \vdots & \ddots & \ddots & \vdots \\ n & m_{n 2}+1 & & m_{n n}+1\end{array}\right]$

$$
=n^{2} \operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & m_{22}+1 & \cdots & m_{1 n}+1 \\
\vdots & \ddots & \ddots & \vdots \\
1 & m_{n 2}+1 & & m_{n n}+1
\end{array}\right]
$$

The knot determinant

Definition

Let K be a knot. The knot determinant of K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

Lemma

Let $M=\left(m_{r c}\right)$ be an $n \times n$ matrix with zero row and column sums.
Then $\operatorname{det} M_{r c}= \pm \operatorname{det} M_{11}$, for $1 \leq r, c \leq n$
Proof Let \mathbb{I} be the $n \times n$-matrix with every entry equal to 1

Then $\operatorname{det}(M+\mathbb{I}) \quad=n^{2}$ det

$$
\begin{aligned}
& =n^{2} \operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & m_{22}+1 & \cdots & m_{1 n}+1 \\
\vdots & \ddots & \ddots & \vdots \\
1 & m_{n 2}+1 & & m_{n n}+1
\end{array}\right] \\
= & n^{2} \operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
0 & m_{22} & \cdots & m_{1 n} \\
\vdots & \ddots & \ddots & \vdots \\
0 & m_{n 2} & & m_{n n}
\end{array}\right]
\end{aligned}
$$

The knot determinant

Definition

Let K be a knot. The knot determinant of K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

Lemma

Let $M=\left(m_{r c}\right)$ be an $n \times n$ matrix with zero row and column sums.
Then $\operatorname{det} M_{r c}= \pm \operatorname{det} M_{11}$, for $1 \leq r, c \leq n$
Proof Let \mathbb{I} be the $n \times n$-matrix with every entry equal to 1
Then $\operatorname{det}(M+\mathbb{I}) \quad=n^{2} \operatorname{det}$

$$
=n^{2} \operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & m_{22}+1 & \cdots & m_{1 n}+1 \\
\vdots & \ddots & \ddots & \vdots \\
1 & m_{n 2}+1 & & m_{n n}+1
\end{array}\right]
$$

$$
=n^{2} \operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
0 & m_{22} & \cdots & m_{1 n} \\
\vdots & \ddots & \ddots & \vdots \\
0 & m_{n 2} & & m_{n n}
\end{array}\right]
$$

$=n^{2} \operatorname{det} M_{11}$

The knot determinant

Definition

Let K be a knot. The knot determinant of K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

Lemma

Let $M=\left(m_{r c}\right)$ be an $n \times n$ matrix with zero row and column sums.
Then $\operatorname{det} M_{r c}= \pm \operatorname{det} M_{11}$, for $1 \leq r, c \leq n$
Proof Let \mathbb{I} be the $n \times n$-matrix with every entry equal to 1

Then $\operatorname{det}(M+\mathbb{I})$

$$
\begin{aligned}
& =n^{2} \operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & m_{22}+1 & \cdots & m_{1 n}+1 \\
\vdots & \ddots & \ddots & \vdots \\
1 & m_{n 2}+1 & & m_{n n}+1
\end{array}\right] \\
& =n^{2} \operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
0 & m_{22} & \cdots & m_{1 n} \\
\vdots & \ddots & \ddots & \vdots \\
0 & m_{n 2} & & m_{n n}
\end{array}\right]
\end{aligned}
$$

By the same argument, if $1 \leq r, c \leq n$ then

$$
\operatorname{det}(M+\mathbb{I})=(-1)^{r+c} n^{2} \operatorname{det} M_{r c}
$$

The knot determinant

Definition

Let K be an alternating knot. The knot determinant of a knot K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right| \quad$ - can take any minor of M_{K}

The knot determinant

Definition

Let K be an alternating knot. The knot determinant of a knot K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right| \quad$ - can take any minor of M_{K}

Theorem

Let K be an alternating knot and $p \geq 3$ be a prime. Then K is p-colorable if and only if p divides the knot determinant $\operatorname{det}(K)$

Proof

The knot determinant

Definition

Let K be an alternating knot. The knot determinant of a knot K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

- can take any minor of M_{K}

Theorem

Let K be an alternating knot and $p \geq 3$ be a prime. Then K is p-colorable if and only if p divides the knot determinant $\operatorname{det}(K)$

Proof

By definition, K is p-colorable if and only if there exist c_{1}, \ldots, c_{n} such that $M_{K}\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right] \equiv\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right](\bmod p)$.
Now $\left[\begin{array}{c}1 \\ \vdots \\ i\end{array}\right]$ is a 0-eigenvector of M_{K}

The knot determinant

Definition

Let K be an alternating knot. The knot determinant of a knot K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

- can take any minor of M_{K}

Theorem

Let K be an alternating knot and $p \geq 3$ be a prime. Then K is p-colorable if and only if p divides the knot determinant $\operatorname{det}(K)$

Proof

By definition, K is p-colorable if and only if there exist c_{1}, \ldots, c_{n} such that $M_{K}\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right] \equiv\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right](\bmod p)$.
Now $\left[\begin{array}{c}1 \\ \vdots \\ i\end{array}\right]$ is a 0-eigenvector of M_{K}, so if $d \in \mathbb{Z}$ then

$$
M_{K}\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=M_{K}\left[\begin{array}{c}
c_{1}+1 \\
\vdots \\
c_{n}+1
\end{array}\right]
$$

The knot determinant

Definition

Let K be an alternating knot. The knot determinant of a knot K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

- can take any minor of M_{K}

Theorem

Let K be an alternating knot and $p \geq 3$ be a prime. Then K is p-colorable if and only if p divides the knot determinant $\operatorname{det}(K)$

Proof

By definition, K is p-colorable if and only if there exist c_{1}, \ldots, c_{n} such that $M_{K}\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right] \equiv\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right](\bmod p)$.
Now $\left[\begin{array}{c}1 \\ \vdots \\ i\end{array}\right]$ is a 0-eigenvector of M_{K}, so if $d \in \mathbb{Z}$ then

$$
M_{K}\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=M_{K}\left[\begin{array}{c}
c_{1}+1 \\
\vdots \\
c_{n}+1
\end{array}\right]=M_{K}\left[\begin{array}{c}
c_{1}+2 \\
\vdots \\
c_{n}+2
\end{array}\right]
$$

[^0]
The knot determinant

Definition

Let K be an alternating knot. The knot determinant of a knot K is $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

- can take any minor of M_{K}

Theorem

Let K be an alternating knot and $p \geq 3$ be a prime. Then K is p-colorable if and only if p divides the knot determinant $\operatorname{det}(K)$

Proof

By definition, K is p-colorable if and only if there exist c_{1}, \ldots, c_{n} such that $M_{K}\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right] \equiv\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right](\bmod p)$.
Now $\left[\begin{array}{c}1 \\ \vdots \\ i\end{array}\right]$ is a 0-eigenvector of M_{K}, so if $d \in \mathbb{Z}$ then

$$
M_{K}\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=M_{K}\left[\begin{array}{c}
c_{1}+1 \\
\vdots \\
c_{n}+1
\end{array}\right]=M_{K}\left[\begin{array}{c}
c_{1}+2 \\
\vdots \\
c_{n}+2
\end{array}\right]=\cdots=M_{K}\left[\begin{array}{c}
c_{1}+d \\
\vdots \\
c_{n}+d
\end{array}\right]
$$

[^1]
Proof Continued

\Longrightarrow We can assume that $c_{1}=0$ by taking $d=-c_{1}$
Hence, K is p-colorable if and only if and only if there exist c_{2}, \ldots, c_{n} such that

$$
M_{K}\left[\begin{array}{c}
0 \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] \equiv 0(\bmod p)
$$

Proof Continued

\Longrightarrow We can assume that $c_{1}=0$ by taking $d=-c_{1}$
Hence, K is p-colorable if and only if and only if there
exist c_{2}, \ldots, c_{n} such that

$$
M_{K}\left[\begin{array}{c}
0 \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] \equiv 0(\bmod p) \Longleftrightarrow\left(M_{K}\right)_{11}\left[\begin{array}{c}
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] \equiv 0(\bmod p)
$$

Proof Continued

\Longrightarrow We can assume that $c_{1}=0$ by taking $d=-c_{1}$
Hence, K is p-colorable if and only if and only if there
exist c_{2}, \ldots, c_{n} such that

$$
\begin{aligned}
M_{K}\left[\begin{array}{c}
0 \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] \equiv 0(\bmod p) & \Longleftrightarrow\left(M_{K}\right)_{11}\left[\begin{array}{c}
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] \equiv 0(\bmod p) \\
& \Longleftrightarrow \operatorname{det}(K) \neq 0(\bmod p)
\end{aligned}
$$

The knot determinant

Remarks

Remarks

(1) The Reidemeister moves show that the knot matrix M_{K} is not a knot invariant but $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$ is a knot invariant

Remarks

(1) The Reidemeister moves show that the knot matrix M_{K} is not a knot invariant but $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$ is a knot invariant
(2) If K and L are knots then $\operatorname{det}(K \# L)=\operatorname{det}(K) \operatorname{det}(L)$

Remarks

(1) The Reidemeister moves show that the knot matrix M_{K} is not a knot invariant but $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$ is a knot invariant
(2) If K and L are knots then $\operatorname{det}(K \# L)=\operatorname{det}(K) \operatorname{det}(L)$ $\Longrightarrow \quad$ if $\operatorname{det}(K \# L)=p$ is prime, then either $\operatorname{det}(K)=p$ or $\operatorname{det}(L)=p$

Remarks

(1) The Reidemeister moves show that the knot matrix M_{K} is not a knot invariant but $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$ is a knot invariant
(2) If K and L are knots then $\operatorname{det}(K \# L)=\operatorname{det}(K) \operatorname{det}(L)$ $\Longrightarrow \quad$ if $\operatorname{det}(K \# L)=p$ is prime, then either $\operatorname{det}(K)=p$ or $\operatorname{det}(L)=p$
(3) If K is not alternating then the row sums of M_{K} are still 0 .

Remarks

(1) The Reidemeister moves show that the knot matrix M_{K} is not a knot invariant but $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$ is a knot invariant
(2) If K and L are knots then $\operatorname{det}(K \# L)=\operatorname{det}(K) \operatorname{det}(L)$ $\Longrightarrow \quad$ if $\operatorname{det}(K \# L)=p$ is prime, then either $\operatorname{det}(K)=p$ or $\operatorname{det}(L)=p$
(3) If K is not alternating then the row sums of M_{K} are still 0 . Therefore, the argument used to prove the theorem shows that K is p-colorable if and only if p divides $\left(M_{K}\right)_{r c}$, for some r, c.

Colorability of the figure eight knot

Summary of how to determine p-colorability
(1) Label the segments in traveling order

Colorability of the figure eight knot

Summary of how to determine p-colorability
(1) Label the segments in traveling order
(2) Compute the entries of the knot matrix M_{K}

Colorability of the figure eight knot

Summary of how to determine \boldsymbol{p}-colorability

(1) Label the segments in traveling order
(2) Compute the entries of the knot matrix M_{K}
(3) Compute the knot determinant $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$

Colorability of the figure eight knot

Summary of how to determine p-colorability

(1) Label the segments in traveling order
(2) Compute the entries of the knot matrix M_{K}
(3) Compute the knot determinant $\operatorname{det}(K)=\left|\operatorname{det}\left(M_{K}\right)_{11}\right|$
(4) Check if p divides $\operatorname{det}(K)$

$$
M_{K}=\left(\begin{array}{rrrr}
2 & -1 & -1 & 0 \\
-1 & 0 & 2 & -1 \\
-1 & -1 & 0 & 2 \\
0 & 2 & -1 & -1
\end{array}\right)
$$

The determinant is five, so the figure eight knot is five-colorable (and only five colorable)

Colorability of the figure eight knot - part 2

Thus, the figure eight knot is not trivial (it has strictly more than five 5-colorings) and also not the trefoil knot

Seifert surfaces

Definition

A Seifert surface for a knot K is an orientable surface that has K as its boundary

Seifert surfaces

Definition

A Seifert surface for a knot K is an orientable surface that has K as its boundary

Theorem

Every knot has a Seifert surface

Seifert surfaces

Definition

A Seifert surface for a knot K is an orientable surface that has K as its boundary

Theorem

Every knot has a Seifert surface
Remark In general, a Seifert surface is not unique

Seifert surfaces

Definition

A Seifert surface for a knot K is an orientable surface that has K as its boundary

Theorem

Every knot has a Seifert surface
Remark In general, a Seifert surface is not unique
We will prove this result by giving an algorithm for constructing a Seifert surface for any knot

Constructing Seifert surfaces

Proof Real world version
Take a knot, build out of wire, and put it into soap

The minimal surface you get is a Seifert surface

Constructing Seifert surfaces

Proof Math version
Step 1 Pick an orientation of the knot
That is, fix a direction to travel around the knot

Constructing Seifert surfaces

Proof Math version

Step 1 Pick an orientation of the knot
That is, fix a direction to travel around the knot
Step 2 At each crossing cut the over-string and join the incoming and outgoing strings; the knot is then a disjoint union of Seifert circles

Constructing Seifert surfaces

Proof Math version

Step 1 Pick an orientation of the knot
That is, fix a direction to travel around the knot
Step 2 At each crossing cut the over-string and join the incoming and outgoing strings; the knot is then a disjoint union of Seifert circles

Constructing Seifert surfaces

Proof Math version

Step 1 Pick an orientation of the knot
That is, fix a direction to travel around the knot
Step 2 At each crossing cut the over-string and join the incoming and outgoing strings; the knot is then a disjoint union of Seifert circles

Constructing Seifert surfaces

Proof Math version

Step 1 Pick an orientation of the knot
That is, fix a direction to travel around the knot
Step 2 At each crossing cut the over-string and join the incoming and outgoing strings; the knot is then a disjoint union of Seifert circles

Step 3 Imagine the Seifert circles as being at different heights and glue a disk onto each one of the Seifert circles

Constructing Seifert surfaces

Proof Math version

Step 1 Pick an orientation of the knot
That is, fix a direction to travel around the knot
Step 2 At each crossing cut the over-string and join the incoming and outgoing strings; the knot is then a disjoint union of Seifert circles

Step 3 Imagine the Seifert circles as being at different heights and glue a disk onto each one of the Seifert circles
Step 4 Now each crossing in K, glue on a twisted strip that has the crossing as a boundary

Constructing Seifert surfaces

Proof Math version

Step 1 Pick an orientation of the knot
That is, fix a direction to travel around the knot
Step 2 At each crossing cut the over-string and join the incoming and outgoing strings; the knot is then a disjoint union of Seifert circles

Step 3 Imagine the Seifert circles as being at different heights and glue a disk onto each one of the Seifert circles
Step 4 Now each crossing in K, glue on a twisted strip that has the crossing as a boundary

Constructing Seifert surfaces

Proof Math version

Step 1 Pick an orientation of the knot
That is, fix a direction to travel around the knot
Step 2 At each crossing cut the over-string and join the incoming and outgoing strings; the knot is then a disjoint union of Seifert circles

Step 3 Imagine the Seifert circles as being at different heights and glue a disk onto each one of the Seifert circles
Step 4 Now each crossing in K, glue on a twisted strip that has the crossing as a boundary

Examples of Seifert surfaces

- Unknot:

Examples of Seifert surfaces

Examples of Seifert surfaces

- Unknot:

- Trefoil
- Figure eight

Examples of Seifert surfaces

- Unknot:

- Figure eight

More examples of Seifert surfaces

The genus of a knot

Let S be a Seifert surface of a knot K

The genus of a knot

Let S be a Seifert surface of a knot K
$\Longrightarrow S$ is orientable + has one boundary circle since it embeds in \mathbb{R}^{3}

The genus of a knot

Let S be a Seifert surface of a knot K
$\Longrightarrow S$ is orientable + has one boundary circle since it embeds in \mathbb{R}^{3}
$\Longrightarrow S \cong \mathbb{D}^{2} \# \#^{t} \mathbb{T}$, where $t=\frac{1-\chi(S)}{2} \geq 0$

The genus of a knot

Let S be a Seifert surface of a knot K
$\Longrightarrow S$ is orientable + has one boundary circle since it embeds in \mathbb{R}^{3}
$\Longrightarrow S \cong \mathbb{D}^{2} \# \#^{t} \mathbb{T}$, where $t=\frac{1-\chi(S)}{2} \geq 0$

Definition

The genus of K is $g(K)=\min \left\{\left.\frac{1-\chi(S)}{2} \right\rvert\, S\right.$ a Seifert surface of $\left.K\right\}$
Remark Used to prove uniqueness of factorization of prime knots

The genus of a knot

Let S be a Seifert surface of a knot K
$\Longrightarrow S$ is orientable + has one boundary circle since it embeds in \mathbb{R}^{3}
$\Longrightarrow S \cong \mathbb{D}^{2} \# \#^{t} \mathbb{T}$, where $t=\frac{1-\chi(S)}{2} \geq 0$

Definition

The genus of K is $g(K)=\min \left\{\left.\frac{1-\chi(S)}{2} \right\rvert\, S\right.$ a Seifert surface of $\left.K\right\}$
Remark Used to prove uniqueness of factorization of prime knots

The genus of a knot

Let S be a Seifert surface of a knot K
$\Longrightarrow S$ is orientable + has one boundary circle since it embeds in \mathbb{R}^{3}
$\Longrightarrow S \cong \mathbb{D}^{2} \# \#^{t} \mathbb{T}$, where $t=\frac{1-\chi(S)}{2} \geq 0$

Definition

The genus of K is $g(K)=\min \left\{\left.\frac{1-\chi(S)}{2} \right\rvert\, S\right.$ a Seifert surface of $\left.K\right\}$
Remark Used to prove uniqueness of factorization of prime knots Example (with proof!)

- $K=\bigcirc \quad g(K)=0$ as $S \cong \mathbb{D}^{2}$ and g cannot be smaller, so just checking this one diagram \bigcirc is sufficient

The genus of a knot

Let S be a Seifert surface of a knot K
$\Longrightarrow S$ is orientable + has one boundary circle since it embeds in \mathbb{R}^{3}
$\Longrightarrow S \cong \mathbb{D}^{2} \# \#^{t} \mathbb{T}$, where $t=\frac{1-\chi(S)}{2} \geq 0$

Definition

The genus of K is $g(K)=\min \left\{\left.\frac{1-\chi(S)}{2} \right\rvert\, S\right.$ a Seifert surface of $\left.K\right\}$
Remark Used to prove uniqueness of factorization of prime knots Example (with proof!)

- $K=\bigcirc \Longrightarrow g(K)=0$ as $S \cong \mathbb{D}^{2}$ and g cannot be smaller, so just checking this one diagram \bigcirc is sufficient
Fact $g(K)=0 \quad \Longleftrightarrow \quad K=O$

The genus of a knot

Let S be a Seifert surface of a knot K
$\Longrightarrow S$ is orientable + has one boundary circle since it embeds in \mathbb{R}^{3}
$\Longrightarrow S \cong \mathbb{D}^{2} \# \#^{t} \mathbb{T}$, where $t=\frac{1-\chi(S)}{2} \geq 0$

Definition

The genus of K is $g(K)=\min \left\{\left.\frac{1-\chi(S)}{2} \right\rvert\, S\right.$ a Seifert surface of $\left.K\right\}$
Remark Used to prove uniqueness of factorization of prime knots Example (with proof!)

- $K=\bigcirc \Longrightarrow g(K)=0$ as $S \cong \mathbb{D}^{2}$ and g cannot be smaller, so just checking this one diagram \bigcirc is sufficient
Fact $g(K)=0 \quad \Longleftrightarrow \quad K=\bigcirc$
Problem K is the trefoil:
 not very clear how to calculate $g(K)$!

Calculating the knot genus

Proposition

Let S be the Seifert surface with s Seifert circles that is constructed from a knot projection for a knot K with c crossings.
Then $\chi(S)=s-c$ and $g(K) \leq \frac{1+c-s}{2}$

Calculating the knot genus

Proposition

Let S be the Seifert surface with s Seifert circles that is constructed from a knot projection for a knot K with c crossings.
Then $\chi(S)=s-c$ and $g(K) \leq \frac{1+c-s}{2}$
Proof Recall from tutorials that $\chi(A \cup B)=\chi(A)+\chi(B)-\chi(A \cap B)$
Write $S=A \cup B$, where A the union of the Seifert circles and B the union of the twists in S
$\Longrightarrow \quad A \cap B$ is a union of c pairs

Calculating the knot genus

Proposition

Let S be the Seifert surface with s Seifert circles that is constructed from a knot projection for a knot K with c crossings.
Then $\chi(S)=s-c$ and $g(K) \leq \frac{1+c-s}{2}$
Proof Recall from tutorials that $\chi(A \cup B)=\chi(A)+\chi(B)-\chi(A \cap B)$
Write $S=A \cup B$, where A the union of the Seifert circles and B the union of the twists in S
$\Longrightarrow \quad A \cap B$ is a union of c pairs
$\Longrightarrow \quad \chi(S)=\chi(A)+\chi(B)-\chi(A \cap B)=s+c-2 c=s-c$

Calculating the knot genus

Proposition

Let S be the Seifert surface with s Seifert circles that is constructed from a knot projection for a knot K with c crossings.
Then $\chi(S)=s-c$ and $g(K) \leq \frac{1+c-s}{2}$
Proof Recall from tutorials that $\chi(A \cup B)=\chi(A)+\chi(B)-\chi(A \cap B)$
Write $S=A \cup B$, where A the union of the Seifert circles and B the union of the twists in S
$\Longrightarrow \quad A \cap B$ is a union of c pairs
$\Longrightarrow \quad \chi(S)=\chi(A)+\chi(B)-\chi(A \cap B)=s+c-2 c=s-c$
Hence, $g(K) \leq \frac{1-\chi(S)}{2}=\frac{1+c-s}{2}$

Genus of trefoil and figure eight knots

If K has c crossings and s Seifert circles then $g(K) \leq \frac{1+c-s}{2}$

genus=1

Genus of alternating knots

Bad news: It can happen that $g(K)<\frac{1-\chi(S)}{2}$!!

Genus of alternating knots

Bad news: It can happen that $g(K)<\frac{1-\chi(S)}{2}$!!
The good news is that there is no bad news for alternating knots

Theorem

Let S be the Seifert surface constructed from an alternating knot projection of K. Then $g(K)=\frac{1-\chi(S)}{2}$

Proof Nontrivial and omitted!

Knot genus is additive

Theorem

Let K and L be knots. Then $g(K \# L)=g(K)+g(L)$
Start of proof It is not hard to see that $S_{K \# L} \cong S_{K} \#$ strip S_{L} (connected sum along a strip connecting the surfaces and boundary cycles). This implies that $g(K \# L) \leq g(K)+g(L)$. The reverse implication is much harder!

Knot genus is additive

Theorem

Let K and L be knots. Then $g(K \# L)=g(K)+g(L)$
Start of proof It is not hard to see that $S_{K \# L} \cong S_{K} \#$ strip S_{L} (connected sum along a strip connecting the surfaces and boundary cycles). This implies that $g(K \# L) \leq g(K)+g(L)$. The reverse implication is much harder!

The theorem gives another proof that the trefoil and figure eight knots are non-trivial because both knots have genus 1

Knot genus is additive

Theorem

Let K and L be knots. Then $g(K \# L)=g(K)+g(L)$
Start of proof It is not hard to see that $S_{K \# L} \cong S_{K} \#_{\text {strip }} S_{L}$ (connected sum along a strip connecting the surfaces and boundary cycles). This implies that $g(K \# L) \leq g(K)+g(L)$. The reverse implication is much harder!

The theorem gives another proof that the trefoil and figure eight knots are non-trivial because both knots have genus 1

Corollary

Let K and L be knots, which are not the unknot. Then $K \neq(K \# L) \# M$ for any knot M

Proof If such a knot M existed then

$$
\begin{aligned}
& g(K)=g((K \# L) \# M)=g(K)+g(L)+g(M) \\
& \quad \Longrightarrow g(M)=-g(L)<0
\end{aligned}
$$

Left $=$ right-handed trefoil? No idea

No method we have seen distinguishes these two fellows:

But that has to wait for another time...

Topic 1: graphs!

Topic 2: surfaces!

Topic 3: knots!

This was my last slide!

$$
\begin{aligned}
& \text { ATTENTION } \\
& \text { THANK YOU FOR } \\
& \text { YOUR ATTENTION }
\end{aligned}
$$

[^0]: - Topology - week 12

[^1]: - Topology - week 12

