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Reidemeister moves are powerful but might be tricky

This is the unknot:

These two knots
are equivalent:

How to show that? Use Reidemeister moves (this is a strongly
recommended exercise). But that might be tricky in general, so invariants
is what we want.
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Connected sums of knots
We used connected sums to construct and classify surfaces

We want an analog of connected sums for knots

Definition
Given two knots K and L their connected sum is the knot K#L that is
obtained by cutting both knots and splicing them together

K L K L

K#L
Remarks

▶ # does not depend on the choice of knot projections or where you cut
either knot, and it is an “addition” or “multiplication”:

▶ K# ∼= K

▶ K#L ∼= L#K

▶ (K#L)#M ∼= K#(L#M)
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Examples of #
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Three colorability and connected sums
Proposition

Let K and L be knots. Then C3(K#L) = 1
3C3(K ) · C3(L)

Proof We need to count the possible colorings of K#L

K L

C3(K) colorings C3(L) colorings

K L

K#L

C3(K) colorings

Since the colors of the connecting strands are fixed, there are
only 1

3C3(L) ways to 3-color the strands of L inside K#L
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How many knots are there?
Corollary
There are infinitely many inequivalent knots

Proof Since C3(K ) is a knot invariant, it is enough to find an infinite
family of knots that have a different number of 3-colorings

Let T be the trefoil knot

=⇒ C3(T ) = 9 = 32 > 3

=⇒ if n ≥ 1 then
C3(#

kT ) = 1
3C3(T ) · C3(#

k−1T ) = 1
3 · 9 · C3(#

k−1T )
= 3C3(#

k−1T )
= 32C3(#

k−2T ) · · · = 3k−1C3(T ) = 3k+1

Therefore, the knots T , #2T , #3T , . . . are all inequivalent because they
all have a different number of 3-colorings

More generally, the same argument shows that if K is 3-colorable then the
knots K , #2K , #3K ,. . . are all inequivalent
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Prime knots
Definition
The knot K is a composite knot if it has a factorisation K = L#M,
where L and M are not the unknot
A knot K is prime if it is not composite

Example

#

Remark The definition of prime knots is hard to apply because it is difficult
to tell when a knot is not the unknot!

In fact, we don’t yet know that the figure eight knot is not the unknot!!
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The crossing number of a knot

Definition
The crossing number of a projection is the number of crossings you see.
The crossing number cross(K ) of a knot K is the smallest number of
crossings in any knot projection

This is obviously a knot invariant but not obvious how to compute it !!!

Examples

• cross( ) = 0. In fact, cross(K ) = 0 if and only if K is the unknot

• cross( ) = 3

Lemma
Let K and L be knots. Then cross(K#L) ≤ cross(K ) + cross(L)

Remark It is a big open question if cross(K#L) = cross(K ) + cross(L)

This is only known to be true for certain types of knots such as
alternating knots, which we will meet soon
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The crossing number and prime knots

Lemma
Let K and L be knots. Then cross(K#L) ≤ cross(K ) + cross(L)

Proof Note that K#L has a projection with cross(K ) + cross(L) crossings

Corollary
Let K be a knot. Then K = P1# . . .#Pn, for prime knots P1, . . . ,Pn

Proof Immediate by induction on cross(K ), the minimal number of
crossings in K

Conversely, we can ask how many prime knots there are
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Torus knots
For a, b ∈ R write a ≡ b if a− b ∈ Z ⇐⇒ same fractional part

Definition
Then the (p, q)-torus knot Tp,q is the closed path { (x , y) ∈ T | py ≡ qx }
on the standard polygonal decomposition of the torus on the unit square,
where p, q ∈ N and gcd(p, q) = 1

T ∼=

a

a

b b1

1

2

2

3

3

Torus knot (2, 3)

∼=

a

a

b b1

1

2

2

Torus knot (3, 2)

a

a

b b
1

1

2

2

3

3

4

4

5

5

6

6

7

7

Torus knot (5, 7)
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on the standard polygonal decomposition of the torus on the unit square,
where p, q ∈ N and gcd(p, q) = 1
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Torus knots are prime knots
Theorem
Suppose that gcd(p, q) = 1. Then the (p, q)-torus knot is prime

This is intuitively clear because whenever we try to write a torus knot as
the connected sum of two smaller knots, each of the smaller knots is the
unknot; we sketch the proof momentarily

Corollary
There are an infinite number of prime knots

Proof If p < q then cross(Tp,q) = (p − 1)q — true but won’t prove

=⇒ the torus knots T2,q with q > 2 odd are all inequivalent

The number of prime knots with n-crossings
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 0 1 1 2 3 7 21 49 165 552 2176 9988 46972

As is common, knots and their mirror images are only counted once
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Torus knots are prime - proof sketch

Proof

For p, g ≥ 2 let the (p, q)-torus knot K lie on an unknotted torus T ⊂ S3

and let the 2-sphere S define a decomposition of K . We assume that S
and T are in general position, that is, S ∩ T consists of finitely many
disjoint simple closed curves.

Such a curve either meets K , is parallel to it or it bounds a disk D on T
with D ∩ K = ∅. Choose γ with D ∩ S = ∂D = γ. Then γ divides S into
two disks D ′, D ′′ such that D ∪ D ′ and D ∪ D ′′ are spheres,
(∪D ′) ∩ (∪D ′′) = D; hence, D ′ or D ′′ can be deformed into D by an
isotopy of S3 which leaves K fixed. By a further small deformation we get
rid of one intersection of S with T .
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Torus knots are prime - proof sketch

Proof Continued

Consider the curves of S ∩ T which intersect K . There are one or two
curves of this kind since K intersects S in two points only. If there is one
curve it has intersection numbers +1 and −1 with K and this implies that
it is either isotopic to K or nullhomotopic on T . In the first case K would
be the trivial knot. In the second case it bounds a disk D0 on T and
D0 ∩ T , plus an arc on S , represents one of the factor knots of K ; this
factor would be trivial, contradicting the hypothesis.
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Torus knots are prime - proof sketch

Proof Continued

The case remains where S ∩ T consists of two simple closed curves
intersecting K exactly once. These curves are parallel and bound disks in
one of the solid tori bounded by T . But this contradicts p, q ≥ 2
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Prime factorisation of knots
Theorem
Suppose that K is not the unknot. Then K = P1#P2# . . .#Pn, for prime
knots P1, . . . ,Pn. Moreover, the multiset of prime knots is a knot invariant

This can be proved using Seifert surfaces (that we meet later)

Here is a table of the unknot and the first 36 prime knots:
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Colorable knots

Question
Is the figure eight knot the unknot?

=⇒ We need another knot invariant to show that the figure eight
knot is not the unknot

To do this we first need to better understanding 3-colorings

Rather than colors, lets color the segments with 0, 1 and 2

Question
What can we say about c1 + c2 + c3 for a 3-coloring?

c2

c3

c1

or

c2

c3

c1
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Possible colorings and the values of c1 + c2 + c3

Allowed colorings
c2

c3

c1

or

c2

c3

c1

Disallowed colorings
c2

c3

c1

or

c2

c3

c1

or

c2

c3

c1

— Topology – week 12



Knot colorings with p-colors
Definition
Let p ∈ N. A p-coloring of a knot K is a coloring of the segments of K
that using colors from {0, 1, . . . , p − 1} such that

cj

ck

ci

=⇒ 2ci ≡ cj + ck (mod p)

Let Cp(K ) be the number of p-colorings of K .
A knot is p-colorable if it has a p-coloring that uses at least two colors

• a ≡ b (mod p) = a− b is divisible by p. When p = 3 this agrees with
the previous definition of 3-coloring

• As with 3-coloring this depends on the choice of knot projection

• For any p the constant coloring is a p-coloring

=⇒ Cp(K ) ≥ p
=⇒ K is p-colorable if and only if Cp(K ) > p
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Colorability is a knot invariant
Theorem
Suppose that p ≥ 3. Then Cp(K ) and p-colorability are both knot
invariants

Proof Repeat the argument used for 3-colorings to show that Cp(K )
is unchanged by the Reidemeister moves and hence is a knot invariant

=⇒ p-colorability is a knot invariant since K is p-colorable
if and only if Cp(K ) > p

Similarly, Cp(K#L) = 1
pCp(K )Cp(L), for knots K and L

Question
Is there an easy way to tell if a knot is p-colorable?

— Topology – week 12



Colorability is a knot invariant
Theorem
Suppose that p ≥ 3. Then Cp(K ) and p-colorability are both knot
invariants

Proof Repeat the argument used for 3-colorings to show that Cp(K )
is unchanged by the Reidemeister moves and hence is a knot invariant

=⇒ p-colorability is a knot invariant since K is p-colorable
if and only if Cp(K ) > p

Similarly, Cp(K#L) = 1
pCp(K )Cp(L), for knots K and L

Question
Is there an easy way to tell if a knot is p-colorable?

— Topology – week 12



Colorability is a knot invariant
Theorem
Suppose that p ≥ 3. Then Cp(K ) and p-colorability are both knot
invariants

Proof Repeat the argument used for 3-colorings to show that Cp(K )
is unchanged by the Reidemeister moves and hence is a knot invariant

=⇒ p-colorability is a knot invariant since K is p-colorable
if and only if Cp(K ) > p

Similarly, Cp(K#L) = 1
pCp(K )Cp(L), for knots K and L

Question
Is there an easy way to tell if a knot is p-colorable?

— Topology – week 12



Colorability is a knot invariant
Theorem
Suppose that p ≥ 3. Then Cp(K ) and p-colorability are both knot
invariants

Proof Repeat the argument used for 3-colorings to show that Cp(K )
is unchanged by the Reidemeister moves and hence is a knot invariant

=⇒ p-colorability is a knot invariant since K is p-colorable
if and only if Cp(K ) > p

Similarly, Cp(K#L) = 1
pCp(K )Cp(L), for knots K and L

Question
Is there an easy way to tell if a knot is p-colorable?

— Topology – week 12



Colorability is a knot invariant
Theorem
Suppose that p ≥ 3. Then Cp(K ) and p-colorability are both knot
invariants

Proof Repeat the argument used for 3-colorings to show that Cp(K )
is unchanged by the Reidemeister moves and hence is a knot invariant

=⇒ p-colorability is a knot invariant since K is p-colorable
if and only if Cp(K ) > p

Similarly, Cp(K#L) = 1
pCp(K )Cp(L), for knots K and L

Question
Is there an easy way to tell if a knot is p-colorable?

— Topology – week 12



Examples of p-colorings
Are the following knots 4-colorable, 5-colorable, ... ?

We need a better way to determine if a knot is p-colorable!

Use linear algebra!
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The trefoil knot is knotted!
Corollary
The trefoil knot is not the unknot

Proof The trefoil is 3-colorable and the unknot is not

Corollary
The trefoil knot is not equivalent to the figure eight knot

Proof The trefoil is 3-colorable and the figure eight knot is not
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The trefoil knot in comparison

̸=

or
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Colorful linear algebra
Consider the figure eight knot.

Label the segments c1, c2, c3, c4 in
traveling order around the knot

=⇒ We require:
2c1 −c3 −c4 ≡ 0
−c2 2c2 −c4 ≡ 0
−c1 −c2 2c3 ≡ 0

−c2 −c3 2c4 ≡ 0

In matrix form this becomes MKC ≡ 0 (mod p), where

MK =


2 0 −1 −1

−1 2 0 −1
−1 −1 2 0

0 −1 −1 2

 and C =


c1
c2
c3
c4


That is, C is a p-coloring ⇐⇒ MKC ≡ 0 (mod p)

We have reduced finding c1, . . . , c4 to linear algebra!
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The knot matrix
Let K be knot projection with n crossings.

=⇒ Each segment starts and ends at a crossing, and each crossing
has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors
of the segments be c1, . . . , cn and let the crossings be x1, . . . , xn

The knot matrix of K is the matrix MK =
(
mij

)
, where mij is the sum of

the contributions of the jth segment of color cj to the ith crossing xi with{
+2, for over-crossings
−1, for under-crossings

=⇒ crossings label rows and segments label columns

An atypical example

c3

c2

c1

MK =


c1 c2 c3

2 − 1 −1 0
2 −1 −1

2 − 1 0 −1
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Alternating knots
We mainly consider colorings of alternating knots

A knot projection is alternating if the crossings alternate between over and
under crossings as you travel around the knot in an anti-clockwise direction

=⇒ Being alternating is not a knot invariant
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Alternating knots
We mainly consider colorings of alternating knots

A knot projection is alternating if the crossings alternate between over and
under crossings as you travel around the knot in an anti-clockwise direction

=⇒ Being alternating is not a knot invariant
— Topology – week 12



Alternating knots – careful with projections
The unknot is alternating, but it can have non-alternating projections:

Similarly, for other knots
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Knot matrices for alternating knots
If K is an alternating knot then:

=⇒ every segment starts as an under-string, becomes an over-string
and finishes as an under-string

=⇒ when read in traveling order the segments and crossings alternate
as c1, x2, c2, x2, . . . , cn, xn

=⇒ if K is alternating and no segment meets itself then each row
of MK will contain one 2 and two −1’s

=⇒ if K is alternating the row and column sums of MK are all 0

We will mainly consider colorings of alternating knots
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Knot matrix examples

MK =


2 −1 −1

−1 2 −1

−1 −1 2



ML =



2 0 0 −1 −1

−1 2 0 0 −1

−1 −1 2 0 0

0 −1 −1 2 0

0 0 −1 −1 2



K =

L =
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Properties of the knot matrix
Lemma
Let K be an alternating knot.

1 The row and column sums of MK are all 0

2 MK

[ 1
...
1

]
= 0

3 detMK = 0

Proof

(1) Since the knot is alternating every colored strand contributes 2 once
and −1 twice (see below) and dually from crossings
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Properties of the knot matrix
Lemma
Let K be an alternating knot.

1 The row and column sums of MK are all 0

2 MK

[ 1
...
1

]
= 0

3 detMK = 0

Proof

(1) Since the knot is alternating every colored strand contributes 2 once
and −1 twice (see below) and dually from crossings
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Properties of the knot matrix

Proof Continued

(2) By (1), the respective vector is an eigenvector with eigenvalue zero

(3) By (2) there is an zero eigenvector, so the kernel is nontrivial
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Minors of a matrix
The (r , c)-minor of an n × n matrix M is the (n − 1)× (n − 1)-matrix Mrc

obtained by deleting row r and column c from M)

M =


a11 a1c a1n
...

...
...

ar1 arc arn
...

...
...

an1 anc ann



Mrc =


a11 . . . a1c . . . a1n
... ¨

...
...

...
ar1 . . . arc . . . arn
... ¨

...
...

...
an1 . . . anc . . . ann
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The knot determinant
Definition
Let K be a knot. The knot determinant of K is det(K ) =

∣∣det(MK )11
∣∣

Lemma
Let M = (mrc) be an n × n matrix with zero row and column sums.
Then detMrc = ± detM11, for 1 ≤ r , c ≤ n

Proof Let I be the n × n-matrix with every entry equal to 1

Then det(M + I)
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...
. . . . . .
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By the same argument, if 1 ≤ r , c ≤ n then
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The knot determinant

Definition
Let K be an alternating knot. The knot determinant of a knot K is

det(K ) =
∣∣det(MK )11

∣∣ — can take any minor of MK

Theorem
Let K be an alternating knot and p ≥ 3 be a prime. Then K is p-colorable
if and only if p divides the knot determinant det(K )

Proof

By definition, K is p-colorable if and only if there exist c1, . . . , cn

such that MK

[ c1
...
cn

]
≡

[ 0
...
0

]
(mod p).

Now
[ 1

...
1

]
is a 0-eigenvector of MK , so if d ∈ Z then

MK

[ c1
...
cn

]
= MK

[
c1+1

...
cn+1

]
= MK

[
c1+2

...
cn+2

]
= · · · = MK

[
c1+d

...
cn+d

]
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The knot determinant . . . . . . . . . . . . . . . . /2

Proof Continued

=⇒ We can assume that c1 = 0 by taking d = −c1

Hence, K is p-colorable if and only if and only if there
exist c2, . . . , cn such that

MK

 0
c2
...
cn

 ≡ 0 (mod p)

⇐⇒ (MK )11

[ c2
...
cn

]
≡ 0 (mod p)

⇐⇒ det(K ) ̸= 0 (mod p)
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The knot determinant . . . . . . . . . . . . . . . . /3

Remarks

1 The Reidemeister moves show that the knot matrix MK is not a knot
invariant but det(K ) = | det(MK )11| is a knot invariant

2 If K and L are knots then det(K#L) = det(K ) det(L)
=⇒ if det(K#L) = p is prime, then either det(K ) = p or

det(L) = p

3 If K is not alternating then the row sums of MK are still 0.Therefore,
the argument used to prove the theorem shows that K is p-colorable if
and only if p divides (MK )rc , for some r , c .
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Colorability of the figure eight knot
Summary of how to determine p-colorability

1 Label the segments in traveling order

2 Compute the entries of the knot matrix MK

3 Compute the knot determinant det(K ) = | det(MK )11|

4 Check if p divides det(K )

MK =


2 −1 −1 0

−1 0 2 −1
−1 −1 0 2

0 2 −1 −1

 K =

The determinant is five, so the figure eight knot is five-colorable (and only
five colorable)
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Colorability of the figure eight knot – part 2

Thus, the figure eight knot is not trivial (it has strictly more than five
5-colorings) and also not the trefoil knot
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Seifert surfaces
Definition
A Seifert surface for a knot K is an orientable surface that has K as its
boundary

Theorem
Every knot has a Seifert surface

Remark In general, a Seifert surface is not unique

We will prove this result by giving an algorithm for constructing a Seifert
surface for any knot
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Constructing Seifert surfaces

Proof Real world version

Take a knot, build out of wire, and put it into soap

The minimal surface you get is a Seifert surface
— Topology – week 12



Constructing Seifert surfaces

Proof Math version

Step 1 Pick an orientation of the knot
That is, fix a direction to travel around the knot

Step 2 At each crossing cut the over-string and join the incoming and
outgoing strings; the knot is then a disjoint union of Seifert circles

Step 3 Imagine the Seifert circles as being at different heights and glue a
disk onto each one of the Seifert circles

Step 4 Now each crossing in K , glue on a twisted strip that has the
crossing as a boundary
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The platform construction
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Examples of Seifert surfaces

• Unknot:

• Trefoil

• Figure eight
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More examples of Seifert surfaces

Figure 8= 41 61 71 85
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The genus of a knot
Let S be a Seifert surface of a knot K

=⇒ S is orientable + has one boundary circle since it embeds in R3

=⇒ S ∼= D2 ##tT, where t = 1−χ(S)
2 ≥ 0

Definition

The genus of K is g(K ) = min
{

1−χ(S)
2

∣∣∣ S a Seifert surface of K
}

Remark Used to prove uniqueness of factorization of prime knots

Example (with proof!)

• K = =⇒ g(K ) = 0 as S ∼= D2 and g cannot be smaller, so just
checking this one diagram is sufficient

Fact g(K ) = 0 ⇐⇒ K =

Problem K is the trefoil: . . . not very clear how to calculate g(K ) !
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Calculating the knot genus
Proposition
Let S be the Seifert surface with s Seifert circles that is constructed
from a knot projection for a knot K with c crossings.
Then χ(S) = s − c and g(K ) ≤ 1+c−s

2

Proof Recall from tutorials that χ(A ∪ B) = χ(A) + χ(B)− χ(A ∩ B)

Write S = A ∪ B , where A the union of the Seifert circles and B the union
of the twists in S

=⇒ A ∩ B is a union of c pairs

=⇒ χ(S) = χ(A) + χ(B)− χ(A ∩ B) = s + c − 2c = s − c

Hence, g(K ) ≤ 1−χ(S)
2 = 1+c−s

2

— Topology – week 12



Calculating the knot genus
Proposition
Let S be the Seifert surface with s Seifert circles that is constructed
from a knot projection for a knot K with c crossings.
Then χ(S) = s − c and g(K ) ≤ 1+c−s

2

Proof Recall from tutorials that χ(A ∪ B) = χ(A) + χ(B)− χ(A ∩ B)

Write S = A ∪ B , where A the union of the Seifert circles and B the union
of the twists in S

=⇒ A ∩ B is a union of c pairs

=⇒ χ(S) = χ(A) + χ(B)− χ(A ∩ B) = s + c − 2c = s − c

Hence, g(K ) ≤ 1−χ(S)
2 = 1+c−s

2

— Topology – week 12



Calculating the knot genus
Proposition
Let S be the Seifert surface with s Seifert circles that is constructed
from a knot projection for a knot K with c crossings.
Then χ(S) = s − c and g(K ) ≤ 1+c−s

2

Proof Recall from tutorials that χ(A ∪ B) = χ(A) + χ(B)− χ(A ∩ B)

Write S = A ∪ B , where A the union of the Seifert circles and B the union
of the twists in S

=⇒ A ∩ B is a union of c pairs

=⇒ χ(S) = χ(A) + χ(B)− χ(A ∩ B) = s + c − 2c = s − c

Hence, g(K ) ≤ 1−χ(S)
2 = 1+c−s

2

— Topology – week 12



Calculating the knot genus
Proposition
Let S be the Seifert surface with s Seifert circles that is constructed
from a knot projection for a knot K with c crossings.
Then χ(S) = s − c and g(K ) ≤ 1+c−s

2

Proof Recall from tutorials that χ(A ∪ B) = χ(A) + χ(B)− χ(A ∩ B)

Write S = A ∪ B , where A the union of the Seifert circles and B the union
of the twists in S

=⇒ A ∩ B is a union of c pairs

=⇒ χ(S) = χ(A) + χ(B)− χ(A ∩ B) = s + c − 2c = s − c

Hence, g(K ) ≤ 1−χ(S)
2 = 1+c−s

2

— Topology – week 12



Genus of trefoil and figure eight knots

If K has c crossings and s Seifert circles then g(K ) ≤ 1+c−s
2

So g(K ) ≤ 1+4−3
2 = 1
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Genus of alternating knots

Bad news: It can happen that g(K ) < 1−χ(S)
2 !!

The good news is that there is no bad news for alternating knots

Theorem
Let S be the Seifert surface constructed from an alternating knot
projection of K . Then g(K ) = 1−χ(S)

2

Proof Nontrivial and omitted!
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Knot genus is additive
Theorem
Let K and L be knots. Then g(K#L) = g(K ) + g(L)

Start of proof It is not hard to see that SK#L
∼= SK#stripSL (connected sum

along a strip connecting the surfaces and boundary cycles). This implies
that g(K#L) ≤ g(K ) + g(L). The reverse implication is much harder!

The theorem gives another proof that the trefoil and figure eight knots are
non-trivial because both knots have genus 1

Corollary
Let K and L be knots, which are not the unknot. Then K ̸∼= (K#L)#M
for any knot M

Proof If such a knot M existed then
g(K ) = g

(
(K#L)#M

)
= g(K ) + g(L) + g(M)

=⇒ g(M) = −g(L) < 0    
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Left = right-handed trefoil? No idea...
No method we have seen distinguishes these two fellows:

But that has to wait for another time...
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A few take away pictures

Topic 1: graphs!

Topic 2: surfaces!

Topic 3: knots!
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This was my last slide!
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