Topology - week 11 Math3061

Daniel Tubbenhauer, University of Sydney

(C) Semester 2, 2022

Map coloring assumptions

A map on a surface S is a polygonal subdivision such that:

- All vertices have degree at least 3
- No region (i.e. face or polygon) has a border with itself

- No region contains a hole

- No region is completely surrounded by another

- No internal region has only two borders (i.e. edges)

The last three assumptions are purely for convenience because, in each case, we can color these maps using the same number of colors

Recall: Notation for map colorings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colorings

Recall: Notation for map colorings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colorings
Let $M=(V, E, F)$ be a map on a surface S.

Recall: Notation for map colorings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colorings
Let $M=(V, E, F)$ be a map on a surface S.
Set

- $\partial_{V}=\frac{2|E|}{|V|}$, the average vertex-degree

Recall: Notation for map colorings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colorings
Let $M=(V, E, F)$ be a map on a surface S.
Set

- $\partial_{V}=\frac{2|E|}{|V|}$, the average vertex-degree
- $\partial_{F}=\frac{2|E|}{|F|}$, the average face-degree

Recall: Notation for map colorings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colorings
Let $M=(V, E, F)$ be a map on a surface S.
Set

- $\partial_{V}=\frac{2|E|}{|V|}$, the average vertex-degree
- $\partial_{F}=\frac{2|E|}{|F|}$, the average face-degree

By definition, $\partial_{V}|V|=2|E|=\partial_{F}|F|$

Recall: Notation for map colorings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colorings
Let $M=(V, E, F)$ be a map on a surface S.
Set

- $\partial_{V}=\frac{2|E|}{|V|}$, the average vertex-degree
- $\partial_{F}=\frac{2|E|}{|F|}$, the average face-degree

By definition, $\partial_{V}|V|=2|E|=\partial_{F}|F|$
Moreover,
$-\partial_{V} \geq 3$ since vertices have degree at least 3

Recall: Notation for map colorings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colorings
Let $M=(V, E, F)$ be a map on a surface S.
Set

- $\partial_{V}=\frac{2|E|}{|V|}$, the average vertex-degree
- $\partial_{F}=\frac{2|E|}{|F|}$, the average face-degree

By definition, $\partial_{V}|V|=2|E|=\partial_{F}|F|$
Moreover,
$-\partial_{V} \geq 3$ since vertices have degree at least 3
$\Rightarrow \partial_{F} \leq|F|-1$ because no region borders itself

Recall: Notation for map colorings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colorings
Let $M=(V, E, F)$ be a map on a surface S.
Set

- $\partial_{V}=\frac{2|E|}{|V|}$, the average vertex-degree
- $\partial_{F}=\frac{2|E|}{|F|}$, the average face-degree

By definition, $\partial_{V}|V|=2|E|=\partial_{F}|F|$
Moreover,

- $\partial_{V} \geq 3$ since vertices have degree at least 3
$\Rightarrow \partial_{F} \leq|F|-1$ because no region borders itself
- If M is a map on a closed surface S, then we proved that $\partial_{F} \leq 6\left(1-\frac{\chi(S)}{|F|}\right)$

Maps on surfaces with $\chi(S) \leq 0$

Lemma
Let M be a map on a closed surface S with $\chi(S) \leq 0$. Then

$$
\partial_{F} \leq \frac{1}{2}(5+\sqrt{49-24 \chi(S)})
$$

Maps on surfaces with $\chi(S) \leq 0$

Lemma

Let M be a map on a closed surface S with $\chi(S) \leq 0$. Then

$$
\partial_{F} \leq \frac{1}{2}(5+\sqrt{49-24 \chi(S)})
$$

Proof Recall that $\partial_{F}<|F|$ since no region bounds itself

$$
\partial_{F}<|F| \quad \Longrightarrow \quad|F| \geq \partial_{F}+1
$$

Maps on surfaces with

Lemma

Let M be a map on a closed surface S with $\chi(S) \leq 0$. Then

$$
\partial_{F} \leq \frac{1}{2}(5+\sqrt{49-24 \chi(S)})
$$

Proof Recall that $\partial_{F}<|F|$ since no region bounds itself

$$
\partial_{F}<|F| \quad \Longrightarrow \quad|F| \geq \partial_{F}+1
$$

Using the corollary from last lecture, and the fact that $\chi(S) \leq 0$,

$$
\partial_{F} \leq 6\left(1-\frac{\chi(S)}{|F|}\right) \leq 6\left(1-\frac{\chi(S)}{1+\partial_{F}}\right)
$$

Maps on surfaces with

Lemma

Let M be a map on a closed surface S with $\chi(S) \leq 0$. Then

$$
\partial_{F} \leq \frac{1}{2}(5+\sqrt{49-24 \chi(S)})
$$

Proof Recall that $\partial_{F}<|F|$ since no region bounds itself

$$
\partial_{F}<|F| \quad \Longrightarrow \quad|F| \geq \partial_{F}+1
$$

Using the corollary from last lecture, and the fact that $\chi(S) \leq 0$,

$$
\begin{aligned}
\partial_{F} & \leq 6\left(1-\frac{\chi(S)}{|F|}\right) \leq 6\left(1-\frac{\chi(S)}{1+\partial_{F}}\right) \\
& \Longleftrightarrow \partial_{F}^{2}-5 \partial_{F}+6(\chi(S)-1) \leq 0
\end{aligned}
$$

Maps on surfaces with

Lemma

Let M be a map on a closed surface S with $\chi(S) \leq 0$. Then

$$
\partial_{F} \leq \frac{1}{2}(5+\sqrt{49-24 \chi(S)})
$$

Proof Recall that $\partial_{F}<|F|$ since no region bounds itself

$$
\partial_{F}<|F| \quad \Longrightarrow \quad|F| \geq \partial_{F}+1
$$

Using the corollary from last lecture, and the fact that $\chi(S) \leq 0$,

$$
\begin{aligned}
\partial_{F} & \leq 6\left(1-\frac{\chi(S)}{|F|}\right) \leq 6\left(1-\frac{\chi(S)}{1+\partial_{F}}\right) \\
& \Longleftrightarrow \partial_{F}^{2}-5 \partial_{F}+6(\chi(S)-1) \leq 0
\end{aligned}
$$

$$
\begin{aligned}
& y=x^{2}-5 x+6(\chi-1) \\
& \|^{x}
\end{aligned}
$$

Maps on surfaces with

Lemma

Let M be a map on a closed surface S with $\chi(S) \leq 0$. Then

$$
\partial_{F} \leq \frac{1}{2}(5+\sqrt{49-24 \chi(S)})
$$

Proof Recall that $\partial_{F}<|F|$ since no region bounds itself

$$
\partial_{F}<|F| \quad \Longrightarrow \quad|F| \geq \partial_{F}+1
$$

Using the corollary from last lecture, and the fact that $\chi(S) \leq 0$,

$$
\begin{aligned}
\partial_{F} & \leq 6\left(1-\frac{\chi(S)}{|F|}\right) \leq 6\left(1-\frac{\chi(S)}{1+\partial_{F}}\right) \\
& \Longleftrightarrow \partial_{F}^{2}-5 \partial_{F}+6(\chi(S)-1) \leq 0
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{1}{2}(5-\sqrt{49-24 \chi(S)}) \\
& x=\frac{1}{2}(5+\sqrt{49-24 \chi(S)})
\end{aligned}
$$

Maps on surfaces with

Lemma

Let M be a map on a closed surface S with $\chi(S) \leq 0$. Then

$$
\partial_{F} \leq \frac{1}{2}(5+\sqrt{49-24 \chi(S)})
$$

Proof Recall that $\partial_{F}<|F|$ since no region bounds itself

$$
\partial_{F}<|F| \quad \Longrightarrow \quad|F| \geq \partial_{F}+1
$$

Using the corollary from last lecture, and the fact that $\chi(S) \leq 0$,

$$
\left.\begin{array}{rl}
\partial_{F} \leq 6\left(1-\frac{\chi(S)}{|F|}\right) \leq 6\left(1-\frac{\chi(S)}{1+\partial_{F}}\right) & \\
& \Longleftrightarrow \partial_{F}^{2}-5 \partial_{F}+6(\chi(S)-1) \leq 0
\end{array}\right)
$$

Average face degree for the double torus

Example Let $S=\#^{2} \mathbb{T}$.

Average face degree for the double torus

Example Let $S=\#^{2} \mathbb{T}$.

$$
\Longrightarrow \quad \partial_{F} \leq \frac{1}{2}(5+\sqrt{49-\chi(S)})=\frac{1}{2}(5+\sqrt{49-24(-2)}) \approx 7.4
$$

Average face degree for the double torus

Example Let $S=\#^{2} \mathbb{T}$.

$$
\Longrightarrow \quad \partial_{F} \leq \frac{1}{2}(5+\sqrt{49-\chi(S)})=\frac{1}{2}(5+\sqrt{49-24(-2)}) \approx 7.4
$$

The standard polygonal decomposition for $S=\#^{2} \mathbb{T}$ is

Average face degree for the double torus

Example Let $S=\#^{2} \mathbb{T}$.

$$
\Longrightarrow \quad \partial_{F} \leq \frac{1}{2}(5+\sqrt{49-\chi(S)})=\frac{1}{2}(5+\sqrt{49-24(-2)}) \approx 7.4
$$

The standard polygonal decomposition for $S=\#^{2} \mathbb{T}$ is

This has $\partial_{F}=8!?$

Average face degree for the double torus

Example Let $S=\#^{2} \mathbb{T}$.

$$
\Longrightarrow \quad \partial_{F} \leq \frac{1}{2}(5+\sqrt{49-\chi(S)})=\frac{1}{2}(5+\sqrt{49-24(-2)}) \approx 7.4
$$

The standard polygonal decomposition for $S=\#^{2} \mathbb{T}$ is

This has $\partial_{F}=8!?$
This is not a contradiction because we are assuming that no region has a border with itself, which is never true for a polygonal decomposition that has only one face

Heawood's theorem

Theorem
Suppose that S is a closed surface. Then

$$
C(S) \leq \begin{cases}6, & \text { if } S=S^{2} \text { or } S=\mathbb{P}^{2} \\ \frac{7+\sqrt{49-24 \chi(S)}}{2}, & \text { otherwise }\end{cases}
$$

Heawood's theorem

Theorem

Suppose that S is a closed surface. Then

$$
C(S) \leq \begin{cases}6, & \text { if } S=S^{2} \text { or } S=\mathbb{P}^{2} \\ \frac{7+\sqrt{49-24 \chi(S)}}{2}, & \text { otherwise }\end{cases}
$$

Proof Let c be the integer part of the right-hand side. Then:

Heawood's theorem

Theorem

Suppose that S is a closed surface. Then

$$
C(S) \leq \begin{cases}6, & \text { if } S=S^{2} \text { or } S=\mathbb{P}^{2} \\ \frac{7+\sqrt{49-24 \chi(S)}}{2}, & \text { otherwise }\end{cases}
$$

Proof Let c be the integer part of the right-hand side. Then:

- If $S=S^{2}$ or $S=\mathbb{P}^{2}$ then $\partial_{F}<6=c$ by last week's discussion

Heawood's theorem

Theorem

Suppose that S is a closed surface. Then

$$
C(S) \leq \begin{cases}6, & \text { if } S=S^{2} \text { or } S=\mathbb{P}^{2} \\ \frac{7+\sqrt{49-24 \chi(S)}}{2}, & \text { otherwise }\end{cases}
$$

Proof Let c be the integer part of the right-hand side. Then:

- If $S=S^{2}$ or $S=\mathbb{P}^{2}$ then $\partial_{F}<6=c$ by last week's discussion
- Otherwise, $\partial_{F} \leq \frac{1}{2}(5+\sqrt{49-24 \chi(S)})=c-1<c$ by the last lemma

Heawood's theorem

Theorem

Suppose that S is a closed surface. Then

$$
C(S) \leq \begin{cases}6, & \text { if } S=S^{2} \text { or } S=\mathbb{P}^{2} \\ \frac{7+\sqrt{49-24 \chi(S)}}{2}, & \text { otherwise }\end{cases}
$$

Proof Let c be the integer part of the right-hand side. Then:

- If $S=S^{2}$ or $S=\mathbb{P}^{2}$ then $\partial_{F}<6=c$ by last week's discussion
- Otherwise, $\partial_{F} \leq \frac{1}{2}(5+\sqrt{49-24 \chi(S)})=c-1<c$ by the last lemma $\Longrightarrow \quad \partial_{F}<c$ for all S

Heawood's theorem

Theorem

Suppose that S is a closed surface. Then

$$
C(S) \leq \begin{cases}6, & \text { if } S=S^{2} \text { or } S=\mathbb{P}^{2} \\ \frac{7+\sqrt{49-24 \chi(S)}}{2}, & \text { otherwise }\end{cases}
$$

Proof Let c be the integer part of the right-hand side. Then:

- If $S=S^{2}$ or $S=\mathbb{P}^{2}$ then $\partial_{F}<6=c$ by last week's discussion
- Otherwise, $\partial_{F} \leq \frac{1}{2}(5+\sqrt{49-24 \chi(S)})=c-1<c$ by the last lemma $\Longrightarrow \quad \partial_{F}<c$ for all S
Claim If M is a map on S then $C_{M}(S) \leq c$

Heawood's theorem

Theorem

Suppose that S is a closed surface. Then

$$
C(S) \leq \begin{cases}6, & \text { if } S=S^{2} \text { or } S=\mathbb{P}^{2} \\ \frac{7+\sqrt{49-24 \chi(S)}}{2}, & \text { otherwise }\end{cases}
$$

Proof Let c be the integer part of the right-hand side. Then:

- If $S=S^{2}$ or $S=\mathbb{P}^{2}$ then $\partial_{F}<6=c$ by last week's discussion
- Otherwise, $\partial_{F} \leq \frac{1}{2}(5+\sqrt{49-24 \chi(S)})=c-1<c$ by the last lemma $\Longrightarrow \quad \partial_{F}<c$ for all S
Claim If M is a map on S then $C_{M}(S) \leq c$
We argue by induction on $|F|$

Heawood's theorem

Theorem

Suppose that S is a closed surface. Then

$$
C(S) \leq \begin{cases}6, & \text { if } S=S^{2} \text { or } S=\mathbb{P}^{2} \\ \frac{7+\sqrt{49-24 \chi(S)}}{2}, & \text { otherwise }\end{cases}
$$

Proof Let c be the integer part of the right-hand side. Then:

- If $S=S^{2}$ or $S=\mathbb{P}^{2}$ then $\partial_{F}<6=c$ by last week's discussion
- Otherwise, $\partial_{F} \leq \frac{1}{2}(5+\sqrt{49-24 \chi(S)})=c-1<c$ by the last lemma $\Longrightarrow \quad \partial_{F}<c$ for all S
Claim If M is a map on S then $C_{M}(S) \leq c$
We argue by induction on $|F|$
- If $|F| \leq 6$ then M has at most 6 faces, so $C_{M}(S) \leq 6 \leq c$

Heawood's theorem

Theorem

Suppose that S is a closed surface. Then

$$
C(S) \leq \begin{cases}6, & \text { if } S=S^{2} \text { or } S=\mathbb{P}^{2} \\ \frac{7+\sqrt{49-24 \chi(S)}}{2}, & \text { otherwise }\end{cases}
$$

Proof Let c be the integer part of the right-hand side. Then:

- If $S=S^{2}$ or $S=\mathbb{P}^{2}$ then $\partial_{F}<6=c$ by last week's discussion
- Otherwise, $\partial_{F} \leq \frac{1}{2}(5+\sqrt{49-24 \chi(S)})=c-1<c$ by the last lemma $\Longrightarrow \quad \partial_{F}<c$ for all S
Claim If M is a map on S then $C_{M}(S) \leq c$
We argue by induction on $|F|$
- If $|F| \leq 6$ then M has at most 6 faces, so $C_{M}(S) \leq 6 \leq c$
- Assume now that $|F|>6$ and that the claim holds for smaller $|F|$

Heawood's theorem

Theorem

Suppose that S is a closed surface. Then

$$
C(S) \leq \begin{cases}6, & \text { if } S=S^{2} \text { or } S=\mathbb{P}^{2} \\ \frac{7+\sqrt{49-24 \chi(S)}}{2}, & \text { otherwise }\end{cases}
$$

Proof Let c be the integer part of the right-hand side. Then:

- If $S=S^{2}$ or $S=\mathbb{P}^{2}$ then $\partial_{F}<6=c$ by last week's discussion
- Otherwise, $\partial_{F} \leq \frac{1}{2}(5+\sqrt{49-24 \chi(S)})=c-1<c$ by the last lemma $\Longrightarrow \partial_{F}<c$ for all S
Claim If M is a map on S then $C_{M}(S) \leq c$
We argue by induction on $|F|$
- If $|F| \leq 6$ then M has at most 6 faces, so $C_{M}(S) \leq 6 \leq c$
- Assume now that $|F|>6$ and that the claim holds for smaller $|F|$

Since $\partial_{F}<c$ there is at least one face f with $\operatorname{deg}(f)<c$

We are now assuming that $|F|>6$ and f is a face with $\operatorname{deg}(f)<c$

We are now assuming that $|F|>6$ and f is a face with $\operatorname{deg}(f)<c$ We construct a new map N by shrinking f to a point x :

We are now assuming that $|F|>6$ and f is a face with $\operatorname{deg}(f)<c$ We construct a new map N by shrinking f to a point x :

We are now assuming that $|F|>6$ and f is a face with $\operatorname{deg}(f)<c$ We construct a new map N by shrinking f to a point x :

We are now assuming that $|F|>6$ and f is a face with $\operatorname{deg}(f)<c$ We construct a new map N by shrinking f to a point x :

This gives a new map N on S with $|F|-1$ faces

Proof of Heawood's theorem.

We are now assuming that $|F|>6$ and f is a face with $\operatorname{deg}(f)<c$
We construct a new map N by shrinking f to a point x :

This gives a new map N on S with $|F|-1$ faces
$\Longrightarrow \quad C_{N}(S) \leq c$ by induction

We are now assuming that $|F|>6$ and f is a face with $\operatorname{deg}(f)<c$
We construct a new map N by shrinking f to a point x :

This gives a new map N on S with $|F|-1$ faces
$\Longrightarrow \quad C_{N}(S) \leq c$ by induction
Since $\operatorname{deg}(f)<c$ we need at most $c-1$ colors around x :

We are now assuming that $|F|>6$ and f is a face with $\operatorname{deg}(f)<c$
We construct a new map N by shrinking f to a point x :

This gives a new map N on S with $|F|-1$ faces
$\Longrightarrow \quad C_{N}(S) \leq c$ by induction
Since $\operatorname{deg}(f)<c$ we need at most $c-1$ colors around x :

We are now assuming that $|F|>6$ and f is a face with $\operatorname{deg}(f)<c$ We construct a new map N by shrinking f to a point x :

This gives a new map N on S with $|F|-1$ faces
$\Longrightarrow \quad C_{N}(S) \leq c$ by induction
Since $\operatorname{deg}(f)<c$ we need at most $c-1$ colors around x :

As we used at most $c-1$ colors around x, we can color the map M with c colors

We are now assuming that $|F|>6$ and f is a face with $\operatorname{deg}(f)<c$ We construct a new map N by shrinking f to a point x :

This gives a new map N on S with $|F|-1$ faces
$\Longrightarrow \quad C_{N}(S) \leq c$ by induction
Since $\operatorname{deg}(f)<c$ we need at most $c-1$ colors around x :

As we used at most $c-1$ colors around x, we can color the map M with c colors

$$
\Longrightarrow \quad C_{M}(S) \leq c
$$

We are now assuming that $|F|>6$ and f is a face with $\operatorname{deg}(f)<c$ We construct a new map N by shrinking f to a point x :

This gives a new map N on S with $|F|-1$ faces
$\Longrightarrow \quad C_{N}(S) \leq c$ by induction
Since $\operatorname{deg}(f)<c$ we need at most $c-1$ colors around x :

As we used at most $c-1$ colors around x, we can color the map M with c colors
\Longrightarrow
$C_{M}(S) \leq c$

$C(S) \leq c$

[^0]
Chromatic numbers

Heawood's theorem gives an upper bound for the chromatic number $C(S)$

Chromatic numbers

Heawood's theorem gives an upper bound for the chromatic number $C(S)$
This estimate is exactly right except when $S=S^{2}$ or $S=\mathbb{K}$

Surface	Heawood's bound	real $C(S)$
S^{2}	6	4
\mathbb{K}	7	6
$S \neq S^{2}, \mathbb{K}$	$c=\left\lfloor\frac{7+\sqrt{49-24 \chi(S)}}{2}\right\rfloor$	c

Chromatic numbers

Heawood's theorem gives an upper bound for the chromatic number $C(S)$
This estimate is exactly right except when $S=S^{2}$ or $S=\mathbb{K}$

Surface	Heawood's bound	real $C(S)$
S^{2}	6	4
\mathbb{K}	7	6
$S \neq S^{2}, \mathbb{K}$	$c=\left\lfloor\frac{7+\sqrt{49-24 \chi(S)}}{2}\right\rfloor$	c

Remarks

(1) To prove this for $S \neq S^{2}, \mathbb{K}$ it is necessary to construct maps that require this many colors and show no more colors are ever needed

Chromatic numbers

Heawood's theorem gives an upper bound for the chromatic number $C(S)$
This estimate is exactly right except when $S=S^{2}$ or $S=\mathbb{K}$

Surface	Heawood's bound	real $C(S)$
S^{2}	6	4
\mathbb{K}	7	6
$S \neq S^{2}, \mathbb{K}$	$c=\left\lfloor\frac{7+\sqrt{49-24 \chi(S)}}{2}\right\rfloor$	c

Remarks

(1) To prove this for $S \neq S^{2}, \mathbb{K}$ it is necessary to construct maps that require this many colors and show no more colors are ever needed
(2) It is easy to see that $C\left(S^{2}\right) \geq 4$ but it is really hard to show that $C\left(S^{2}\right)=4$: the first proofs of the Four color theorem used complicated reductions and then exceedingly long brute force computer calculations

Chromatic numbers

Heawood's theorem gives an upper bound for the chromatic number $C(S)$
This estimate is exactly right except when $S=S^{2}$ or $S=\mathbb{K}$

Surface	Heawood's bound	real $C(S)$
S^{2}	6	4
\mathbb{K}	7	6
$S \neq S^{2}, \mathbb{K}$	$c=\left\lfloor\frac{7+\sqrt{49-24 \chi(S)}}{2}\right\rfloor$	c

Remarks

(1) To prove this for $S \neq S^{2}, \mathbb{K}$ it is necessary to construct maps that require this many colors and show no more colors are ever needed
(2) It is easy to see that $C\left(S^{2}\right) \geq 4$ but it is really hard to show that $C\left(S^{2}\right)=4$: the first proofs of the Four color theorem used complicated reductions and then exceedingly long brute force computer calculations
(3) If $S=S^{2}$ then $\chi\left(S^{2}\right)=2$ so $\frac{7+\sqrt{49-24 \chi(S)}}{2}=4$!?

Why is $C\left(S^{2}\right) \geq 4$ easy to see? Well:

Coloring the torus

Heawood's estimate for the torus is $C(\mathbb{T}) \leq \frac{7+\sqrt{49-24 \chi(\mathbb{T})}}{2} \leq 7$

Coloring the torus

Heawood's estimate for the torus is $C(\mathbb{T}) \leq \frac{7+\sqrt{49-24 \chi(\mathbb{T})}}{2} \leq 7$ Here is a map on the torus that requires 7 colors

Coloring the torus

Heawood's estimate for the torus is $C(\mathbb{T}) \leq \frac{7+\sqrt{49-24 \chi(\mathbb{T})}}{2} \leq 7$ Here is a map on the torus that requires 7 colors

Coloring the torus

Heawood's estimate for the torus is $C(\mathbb{T}) \leq \frac{7+\sqrt{49-24 \chi(\mathbb{T})}}{2} \leq 7$ Here is a map on the torus that requires 7 colors

Hence, $C(\mathbb{T})=7$ (see the tutorials)

Coloring the projective plane

Heawood's estimate for the projective plane \mathbb{P}^{2} is

$$
C\left(\mathbb{P}^{2}\right) \leq \frac{7+\sqrt{49-24 \chi\left(\mathbb{P}^{2}\right)}}{2} \leq 6
$$

Here is a map on \mathbb{P}^{2} that requires 6 colors:

Coloring the projective plane

Heawood's estimate for the projective plane \mathbb{P}^{2} is

$$
C\left(\mathbb{P}^{2}\right) \leq \frac{7+\sqrt{49-24 \chi\left(\mathbb{P}^{2}\right)}}{2} \leq 6
$$

Here is a map on \mathbb{P}^{2} that requires 6 colors:

Hence, $C\left(\mathbb{P}^{2}\right)=6$

Coloring the Klein bottle

Heawood's estimate for the Klein bottle is

$$
C(\mathbb{K}) \leq \frac{7+\sqrt{49-24 \chi(\mathbb{K})}}{2} \leq 7
$$

Coloring the Klein bottle

Heawood's estimate for the Klein bottle is

$$
C(\mathbb{K}) \leq \frac{7+\sqrt{49-24 \chi(\mathbb{K})}}{2} \leq 7
$$

In fact, Franklin (1930) proved that $C(\mathbb{K})=6$

Using these maps you can show that $C(\mathbb{K}) \geq 6$

The four color theorem

Theorem

Every map on \mathbb{D}^{2} can be colored using four colors.
That is, $C\left(\mathbb{D}^{2}\right)=C\left(\mathbb{R}^{2}\right)=C\left(S^{2}\right)=4$

The four color theorem

Theorem

Every map on \mathbb{D}^{2} can be colored using four colors.
That is, $C\left(\mathbb{D}^{2}\right)=C\left(\mathbb{R}^{2}\right)=C\left(S^{2}\right)=4$
Remark All known proofs have a computational component

The four color theorem

Theorem

Every map on \mathbb{D}^{2} can be colored using four colors.
That is, $C\left(\mathbb{D}^{2}\right)=C\left(\mathbb{R}^{2}\right)=C\left(S^{2}\right)=4$
Remark All known proofs have a computational component
There were several incorrect proofs published before Appel and Haken proved this result. One of the incorrect proofs was due to Kempe and 11 years later Heawood found a counterexample to their proof. In doing this, Heawood gave their upper bound for the chromatic number $C(S)$ of any closed surface and he gave a conjecture for coloring surfaces and graphs, which was finally proved in 1968 by Ringel and Young.

Theorem

Every map on \mathbb{D}^{2} can be colored using four colors.
That is, $C\left(\mathbb{D}^{2}\right)=C\left(\mathbb{R}^{2}\right)=C\left(S^{2}\right)=4$
Remark All known proofs have a computational component
There were several incorrect proofs published before Appel and Haken proved this result. One of the incorrect proofs was due to Kempe and 11 years later Heawood found a counterexample to their proof. In doing this, Heawood gave their upper bound for the chromatic number $C(S)$ of any closed surface and he gave a conjecture for coloring surfaces and graphs, which was finally proved in 1968 by Ringel and Young.
At the same time, Heawood proved the Five color theorem

Theorem

Every map on \mathbb{D}^{2} can be colored with five colors

Theorem

Every map on \mathbb{D}^{2} can be colored using four colors.
That is, $C\left(\mathbb{D}^{2}\right)=C\left(\mathbb{R}^{2}\right)=C\left(S^{2}\right)=4$
Remark All known proofs have a computational component
There were several incorrect proofs published before Appel and Haken proved this result. One of the incorrect proofs was due to Kempe and 11 years later Heawood found a counterexample to their proof. In doing this, Heawood gave their upper bound for the chromatic number $C(S)$ of any closed surface and he gave a conjecture for coloring surfaces and graphs, which was finally proved in 1968 by Ringel and Young.
At the same time, Heawood proved the Five color theorem

Theorem

Every map on \mathbb{D}^{2} can be colored with five colors
By stereographic projection, it is enough to show that $C\left(S^{2}\right) \leq 5$

[^1]Let $M=(V, E, F)$ be a map on S^{2}. We argue by induction on $|F|$

Let $M=(V, E, F)$ be a map on S^{2}. We argue by induction on $|F|$
If $|F| \leq 5$ then we can color M with $|F|$ colors, starting the induction

Proof of Heawood's Five color Theorem

Let $M=(V, E, F)$ be a map on S^{2}. We argue by induction on $|F|$
If $|F| \leq 5$ then we can color M with $|F|$ colors, starting the induction
Suppose then that $|F|>5$. Recall that we have proved $\partial_{F}<6$

Proof of Heawood's Five color Theorem

Let $M=(V, E, F)$ be a map on S^{2}. We argue by induction on $|F|$
If $|F| \leq 5$ then we can color M with $|F|$ colors, starting the induction
Suppose then that $|F|>5$. Recall that we have proved $\partial_{F}<6$
$\Longrightarrow \quad M$ has a face f with $\operatorname{deg}(f) \leq 5$

Proof of Heawood's Five color Theorem

Let $M=(V, E, F)$ be a map on S^{2}. We argue by induction on $|F|$
If $|F| \leq 5$ then we can color M with $|F|$ colors, starting the induction
Suppose then that $|F|>5$. Recall that we have proved $\partial_{F}<6$
$\Longrightarrow \quad M$ has a face f with $\operatorname{deg}(f) \leq 5$
As we did in the proof of Heawood's theorem, construct a new map N by shrinking f to a point:

Proof of Heawood's Five color Theorem

Let $M=(V, E, F)$ be a map on S^{2}. We argue by induction on $|F|$
If $|F| \leq 5$ then we can color M with $|F|$ colors, starting the induction
Suppose then that $|F|>5$. Recall that we have proved $\partial_{F}<6$
$\Longrightarrow \quad M$ has a face f with $\operatorname{deg}(f) \leq 5$
As we did in the proof of Heawood's theorem, construct a new map N by shrinking f to a point:

Proof of Heawood's Five color Theorem

Let $M=(V, E, F)$ be a map on S^{2}. We argue by induction on $|F|$
If $|F| \leq 5$ then we can color M with $|F|$ colors, starting the induction
Suppose then that $|F|>5$. Recall that we have proved $\partial_{F}<6$
$\Longrightarrow \quad M$ has a face f with $\operatorname{deg}(f) \leq 5$
As we did in the proof of Heawood's theorem, construct a new map N by shrinking f to a point:

Proof of Heawood's Five color Theorem

Let $M=(V, E, F)$ be a map on S^{2}. We argue by induction on $|F|$
If $|F| \leq 5$ then we can color M with $|F|$ colors, starting the induction
Suppose then that $|F|>5$. Recall that we have proved $\partial_{F}<6$
$\Longrightarrow \quad M$ has a face f with $\operatorname{deg}(f) \leq 5$
As we did in the proof of Heawood's theorem, construct a new map N by shrinking f to a point:

By induction the new map N is 5-colorable

Proof of Heawood's Five color Theorem

Let $M=(V, E, F)$ be a map on S^{2}. We argue by induction on $|F|$
If $|F| \leq 5$ then we can color M with $|F|$ colors, starting the induction Suppose then that $|F|>5$. Recall that we have proved $\partial_{F}<6$
$\Longrightarrow \quad M$ has a face f with $\operatorname{deg}(f) \leq 5$
As we did in the proof of Heawood's theorem, construct a new map N by shrinking f to a point:

By induction the new map N is 5 -colorable
As in the proof of Heawood's theorem, the idea is now to modify the 5 -coloring on N to give a 5 -coloring on M.

Proof of Heawood's Five color Theorem

Let $M=(V, E, F)$ be a map on S^{2}. We argue by induction on $|F|$
If $|F| \leq 5$ then we can color M with $|F|$ colors, starting the induction
Suppose then that $|F|>5$. Recall that we have proved $\partial_{F}<6$
$\Longrightarrow \quad M$ has a face f with $\operatorname{deg}(f) \leq 5$
As we did in the proof of Heawood's theorem, construct a new map N by shrinking f to a point:

By induction the new map N is 5-colorable
As in the proof of Heawood's theorem, the idea is now to modify the 5 -coloring on N to give a 5-coloring on M. This time the proof is more complicated and there are several cases to consider

Case 1: $\operatorname{deg}(f)<5$
If $\operatorname{deg}(f)<5$ then the 5 -coloring of N has at most 4 colors for the faces in N around x

Case 1: $\operatorname{deg}(f)<5$
If $\operatorname{deg}(f)<5$ then the 5 -coloring of N has at most 4 colors for the faces in N around x

M

M

Case 1: $\operatorname{deg}(f)<5$
If $\operatorname{deg}(f)<5$ then the 5 -coloring of N has at most 4 colors for the faces in N around $x \quad M$ is 5-colorable:

M

M

Case 1: $\operatorname{deg}(f)<5$
If $\operatorname{deg}(f)<5$ then the 5 -coloring of N has at most 4 colors for the faces in N around $x \quad M$ is 5-colorable:

M

N

M

Case 2: $\operatorname{deg}(f)=5$ and the colors around x are not distinct

Case 1: $\operatorname{deg}(f)<5$
If $\operatorname{deg}(f)<5$ then the 5 -coloring of N has at most 4 colors for the faces in N around $x \quad M$ is 5-colorable:

M

N

M

Case 2: $\operatorname{deg}(f)=5$ and the colors around x are not distinct

Case 1: $\operatorname{deg}(f)<5$
If $\operatorname{deg}(f)<5$ then the 5 -coloring of N has at most 4 colors for the faces in N around $x \quad M$ is 5-colorable:

M

N

M

Case 2: $\operatorname{deg}(f)=5$ and the colors around x are not distinct

N

As we have used at most 4 colors in N around x, it follows that M is 5-colorable

Case 3: $\operatorname{deg}(f)=5$ and all of the colors in N around x are different

Case 3: $\operatorname{deg}(f)=5$ and all of the colors in N around x are different

Label the regions $A-E$ as shown.

Proof of the Five color Theorem

Case 3: $\operatorname{deg}(f)=5$ and all of the colors in N around x are different

Label the regions $A-E$ as shown.
Consider the polygonal decomposition P contained in N that has these five faces together with all of the regions in N that have the same colors as the faces A and C

Case 3: $\operatorname{deg}(f)=5$ and all of the colors in N around x are different

Label the regions $A-E$ as shown.
Consider the polygonal decomposition P contained in N that has these five faces together with all of the regions in N that have the same colors as the faces A and C

Case 3a: The regions A and C are not connected in P

\square

Case 3a: The regions A and C are not connected in P

\Longrightarrow Swapping the colors A and C in the connected component of P that contains A gives a new map N^{\prime} with a valid coloring

Case 3a: The regions A and C are not connected in P

\Longrightarrow Swapping the colors A and C in the connected component of P that contains A gives a new map N^{\prime} with a valid coloring

$\Longrightarrow A$ and C now have the same color and we are back in Case 2

Case 3a: The regions A and C are not connected in P

\Longrightarrow Swapping the colors A and C in the connected component of P that contains A gives a new map N^{\prime} with a valid coloring

$\Longrightarrow A$ and C now have the same color and we are back in Case 2
$\Longrightarrow \quad$ The map M is 5 -colorable

Proof of the Five color Theorem

Case 3b: The regions A and C are connected in P

Proof of the Five color Theorem

Case 3b: The regions A and C are connected in P

\Longrightarrow As A and C are connected, B and E cannot be connected!

Case 3b: The regions A and C are connected in P

\Longrightarrow As A and C are connected, B and E cannot be connected! Swap colors B and E in the "color connected component" containing D

Case 3b: The regions A and C are connected in P

\Longrightarrow As A and C are connected, B and E cannot be connected! Swap colors B and E in the "color connected component" containing D

\Longrightarrow We are back in Case 2 , so M is 5 -colorable

Case 3b: The regions A and C are connected in P

\Longrightarrow As A and C are connected, B and E cannot be connected! Swap colors B and E in the "color connected component" containing D

\Longrightarrow We are back in Case 2, so M is 5-colorable
This completes the proof of the Five color Theorem

Knots

Intuitive definition A knot is a piece of string with the ends tied together

Knots

Intuitive definition A knot is a piece of string with the ends tied together

Definition

A knot is the image of an injective continuous map from S^{1} into \mathbb{R}^{3}, where $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ is the unit circle in \mathbb{R}^{2}

Knots

Intuitive definition A knot is a piece of string with the ends tied together

Definition

A knot is the image of an injective continuous map from S^{1} into \mathbb{R}^{3}, where $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ is the unit circle in \mathbb{R}^{2}

Equivalently, a knot is a closed path in \mathbb{R}^{3} that has no self-intersections

Examples

Unknot

Knots

Intuitive definition A knot is a piece of string with the ends tied together

Definition

A knot is the image of an injective continuous map from S^{1} into \mathbb{R}^{3}, where $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ is the unit circle in \mathbb{R}^{2}

Equivalently, a knot is a closed path in \mathbb{R}^{3} that has no self-intersections Examples

Unknot

Trefoil

Knots

Intuitive definition A knot is a piece of string with the ends tied together

Definition

A knot is the image of an injective continuous map from S^{1} into \mathbb{R}^{3}, where $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ is the unit circle in \mathbb{R}^{2}

Equivalently, a knot is a closed path in \mathbb{R}^{3} that has no self-intersections Examples

Unknot

Trefoil

Reverse trefoil

Knots

Intuitive definition A knot is a piece of string with the ends tied together

Definition

A knot is the image of an injective continuous map from S^{1} into \mathbb{R}^{3}, where $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ is the unit circle in \mathbb{R}^{2}

Equivalently, a knot is a closed path in \mathbb{R}^{3} that has no self-intersections Examples

Unknot

Trefoil

Reverse trefoil

Knots

Intuitive definition A knot is a piece of string with the ends tied together

Definition

A knot is the image of an injective continuous map from S^{1} into \mathbb{R}^{3}, where $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ is the unit circle in \mathbb{R}^{2}

Equivalently, a knot is a closed path in \mathbb{R}^{3} that has no self-intersections Examples

Knot theory is a beautiful mathematical subject with applications in mathematics, computer science, computer chip design, biology, ...

A picture of life

(+) 3
(+) 3
(+) 3

(+) 5 torus

(+) 6 granny

Another picture of life

- Topology - week 12

More knots

Basic question in knot theory

Question

When is a knot the unknot?

Basic question in knot theory

Question

When is a knot the unknot?

Unknot

Basic question in knot theory

Question

When is a knot the unknot?

Unknot

Basic question in knot theory

Question

When is a knot the unknot?

Unknot

Basic question in knot theory

Question

When is a knot the unknot?

Unknot

Another unknot

Basic question in knot theory

Question

When is a knot the unknot?

Unknot

Another unknot

Basic question in knot theory

Question

When is a knot the unknot?

Another unknot
It is difficult to tell if
a knot is the unknot

When are two knots the same?

- Can we tell when two knots are equal?

When are two knots the same?

- Can we tell when two knots are equal?
- What does it even mean for two knots to be equal?

When are two knots the same?

- Can we tell when two knots are equal?
- What does it even mean for two knots to be equal?

Question Is being homeomorphic enough?

When are two knots the same?

- Can we tell when two knots are equal?
- What does it even mean for two knots to be equal?

Question Is being homeomorphic enough?
No! Every knot is homeomorphic to S^{1}

When are two knots the same?

- Can we tell when two knots are equal?
- What does it even mean for two knots to be equal?

Question Is being homeomorphic enough?
No! Every knot is homeomorphic to S^{1}
\Longrightarrow Homeomorphism is not the right equivalence relation for knots!

When are two knots the same?

- Can we tell when two knots are equal?
- What does it even mean for two knots to be equal?

Question Is being homeomorphic enough?
No! Every knot is homeomorphic to S^{1}
\Longrightarrow Homeomorphism is not the right equivalence relation for knots!

Definition

Two knots K and L are equivalent, and we write $K \cong L$, if there exists a continuous map, or ambient isotopy, $f: \mathbb{R}^{3} \times[0,1] \longrightarrow \mathbb{R}^{3}$ such that
(1) for each $t \in[0,1]$ the map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; x \mapsto f(x, t)$ is a homeomorphism

When are two knots the same?

- Can we tell when two knots are equal?
- What does it even mean for two knots to be equal?

Question Is being homeomorphic enough?
No! Every knot is homeomorphic to S^{1}
\Longrightarrow Homeomorphism is not the right equivalence relation for knots!

Definition

Two knots K and L are equivalent, and we write $K \cong L$, if there exists a continuous map, or ambient isotopy, $f: \mathbb{R}^{3} \times[0,1] \longrightarrow \mathbb{R}^{3}$ such that
(1) for each $t \in[0,1]$ the map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; x \mapsto f(x, t)$ is a homeomorphism
(2) if $x \in K$ then $f(x, 0)=x$, and

When are two knots the same?

- Can we tell when two knots are equal?
- What does it even mean for two knots to be equal?

Question Is being homeomorphic enough?
No! Every knot is homeomorphic to S^{1}
\Longrightarrow Homeomorphism is not the right equivalence relation for knots!

Definition

Two knots K and L are equivalent, and we write $K \cong L$, if there exists a continuous map, or ambient isotopy, $f: \mathbb{R}^{3} \times[0,1] \longrightarrow \mathbb{R}^{3}$ such that
(1) for each $t \in[0,1]$ the map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; x \mapsto f(x, t)$ is a homeomorphism
(2) if $x \in K$ then $f(x, 0)=x$, and
(3) there is a homeomorphism $K \rightarrow L$ given by $x \mapsto f(x, 1)$

When are two knots the same?

- Can we tell when two knots are equal?
- What does it even mean for two knots to be equal?

Question Is being homeomorphic enough?
No! Every knot is homeomorphic to S^{1}
\Longrightarrow Homeomorphism is not the right equivalence relation for knots!

Definition

Two knots K and L are equivalent, and we write $K \cong L$, if there exists a continuous map, or ambient isotopy, $f: \mathbb{R}^{3} \times[0,1] \longrightarrow \mathbb{R}^{3}$ such that
(1) for each $t \in[0,1]$ the map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; x \mapsto f(x, t)$ is a homeomorphism
(2) if $x \in K$ then $f(x, 0)=x$, and
(3) there is a homeomorphism $K \rightarrow L$ given by $x \mapsto f(x, 1)$

When are two knots the same?

- Can we tell when two knots are equal?
- What does it even mean for two knots to be equal?

Question Is being homeomorphic enough?
No! Every knot is homeomorphic to S^{1}
\Longrightarrow Homeomorphism is not the right equivalence relation for knots!

Definition

Two knots K and L are equivalent, and we write $K \cong L$, if there exists a continuous map, or ambient isotopy, $f: \mathbb{R}^{3} \times[0,1] \longrightarrow \mathbb{R}^{3}$ such that
(1) for each $t \in[0,1]$ the map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; x \mapsto f(x, t)$ is a homeomorphism
(2) if $x \in K$ then $f(x, 0)=x$, and
(3) there is a homeomorphism $K \rightarrow L$ given by $x \mapsto f(x, 1)$ Intuitively, f continuously deforms $K=f(K, 0)$ into the knot $L=f(K, 1)$

When are two knots the same?

- Can we tell when two knots are equal?
- What does it even mean for two knots to be equal?

Question Is being homeomorphic enough?
No! Every knot is homeomorphic to S^{1}
\Longrightarrow Homeomorphism is not the right equivalence relation for knots!

Definition

Two knots K and L are equivalent, and we write $K \cong L$, if there exists a continuous map, or ambient isotopy, $f: \mathbb{R}^{3} \times[0,1] \longrightarrow \mathbb{R}^{3}$ such that
(1) for each $t \in[0,1]$ the map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; x \mapsto f(x, t)$ is a homeomorphism
(2) if $x \in K$ then $f(x, 0)=x$, and
(3) there is a homeomorphism $K \rightarrow L$ given by $x \mapsto f(x, 1)$ Intuitively, f continuously deforms $K=f(K, 0)$ into the knot $L=f(K, 1)$ In practice, we will never use this definition but you should see it

When are two knots the same?

- Can we tell when two knots are equal?
- What does it even mean for two knots to be equal?

Question Is being homeomorphic enough?
No! Every knot is homeomorphic to S^{1}
\Longrightarrow Homeomorphism is not the right equivalence relation for knots!

Definition

Two knots K and L are equivalent, and we write $K \cong L$, if there exists a continuous map, or ambient isotopy, $f: \mathbb{R}^{3} \times[0,1] \longrightarrow \mathbb{R}^{3}$ such that
(1) for each $t \in[0,1]$ the map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; x \mapsto f(x, t)$ is a homeomorphism
(2) if $x \in K$ then $f(x, 0)=x$, and
(3) there is a homeomorphism $K \rightarrow L$ given by $x \mapsto f(x, 1)$ Intuitively, f continuously deforms $K=f(K, 0)$ into the knot $L=f(K, 1)$ In practice, we will never use this definition but you should see it A knot K is trivial if it is equivalent to the unknot otherwise it is non-trivial

Different notions of "equal"

Objects	Graphs	Surfaces	Knots
Equivalence	Isomorphism of graphs	Homeomorphism	Equivalence of knots

Polygonal knots

A polygonal knot is a finite union of (straight) line segments in \mathbb{R}^{3} that is homeomorphic to S^{1}

Polygonal knots

A polygonal knot is a finite union of (straight) line segments in \mathbb{R}^{3} that is homeomorphic to S^{1}
just like the polygonal decompositions of surfaces, polygonal knots reduce the study of knots to combinatorics

Polygonal knots

A polygonal knot is a finite union of (straight) line segments in \mathbb{R}^{3} that is homeomorphic to S^{1}
just like the polygonal decompositions of surfaces, polygonal knots reduce the study of knots to combinatorics

Examples

Polygonal knots

A polygonal knot is a finite union of (straight) line segments in \mathbb{R}^{3} that is homeomorphic to S^{1}
just like the polygonal decompositions of surfaces, polygonal knots reduce the study of knots to combinatorics

Examples

Polygonal knots

A polygonal knot is a finite union of (straight) line segments in \mathbb{R}^{3} that is homeomorphic to S^{1}
just like the polygonal decompositions of surfaces, polygonal knots reduce the study of knots to combinatorics

Examples

Polygonal knots

A polygonal knot is a finite union of (straight) line segments in \mathbb{R}^{3} that is homeomorphic to S^{1}
just like the polygonal decompositions of surfaces, polygonal knots reduce the study of knots to combinatorics

Examples

Figure eight

Polygonal knots

A polygonal knot is a finite union of (straight) line segments in \mathbb{R}^{3} that is homeomorphic to S^{1}
just like the polygonal decompositions of surfaces, polygonal knots reduce the study of knots to combinatorics

Examples

Figure eight

Remark Two polygonal knots K and L are equivalent if they have a common subdivision

Only polygonal knots

From now on all knots are polygonal knots and we drop the adjective polygonal

Only polygonal knots

From now on all knots are polygonal knots and we drop the adjective polygonal

This is not a huge restriction: anything you can draw is polygonal. Any "finite thing" is a polygonal knot, but "limits" are not so we ignore them

Only polygonal knots

From now on all knots are polygonal knots and we drop the adjective polygonal

This is not a huge restriction: anything you can draw is polygonal. Any "finite thing" is a polygonal knot, but "limits" are not so we ignore them

Good (but the limit is not):

Polygonal knots avoid pathologies

These are not polygonal knots:

Knot projections

Question What do our drawings of knots actually mean?

Knot projections

Question What do our drawings of knots actually mean?
A knot projection is a drawing of a knot in \mathbb{R}^{2} such that:

Knot projections

Question What do our drawings of knots actually mean?
A knot projection is a drawing of a knot in \mathbb{R}^{2} such that:

- crossings only involve two string segments, or connected components

Knot projections

Question What do our drawings of knots actually mean?
A knot projection is a drawing of a knot in \mathbb{R}^{2} such that:

- crossings only involve two string segments, or connected components
- over and under crossings indicate relative string placement

Knot projections

Question What do our drawings of knots actually mean?
A knot projection is a drawing of a knot in \mathbb{R}^{2} such that:

- crossings only involve two string segments, or connected components
- over and under crossings indicate relative string placement

Warning!

Knot projections are a convenient way of drawing knots but they involve a choice of projection

Knot projections

Question What do our drawings of knots actually mean?
A knot projection is a drawing of a knot in \mathbb{R}^{2} such that:

- crossings only involve two string segments, or connected components
- over and under crossings indicate relative string placement

Warning!

Knot projections are a convenient way of drawing knots but they involve a choice of projection
\Longrightarrow Knot projections can be misleading so we have to check that our constructions are independent of the choice of knot projection

Projections = shadows

The trefoil knot times nine

Reidemeister's theorem

Theorem

Two knot diagrams represent the same knot if and only if they are related by a (finite) sequence of moves of the following three types

Here the Oth move is usually used silently

Reidemeister's theorem

Theorem

Two knot diagrams represent the same knot if and only if they are related by a (finite) sequence of moves of the following three types

Here the Oth move is usually used silently
We won't prove Reidemeister's theorem in this lecture - the proof is a bit technical and uses the definition of equivalence of knots

Reidemeister's theorem

Theorem

Two knot diagrams represent the same knot if and only if they are related by a (finite) sequence of moves of the following three types

Here the Oth move is usually used silently
We won't prove Reidemeister's theorem in this lecture - the proof is a bit technical and uses the definition of equivalence of knots
The point: Reidemeister's theorem reduces topology to combinatorics of diagrams

The knotty trefoil

Question

Is the trefoil knot equivalent to the unknot?

The knotty trefoil

Question

Is the trefoil knot equivalent to the unknot?

It seems clear that these two knots are different but, so far, we have not seen an easy way to distinguish between them

Knot colorings

Definition

A coloring of a knot (projection) is the assignment of colors to the different segments,or connected components, so that at each crossing all segments have either the same color or they all have different colors and at least two colors are used

Knot colorings

Definition

A coloring of a knot (projection) is the assignment of colors to the different segments,or connected components, so that at each crossing all segments have either the same color or they all have different colors and at least two colors are used
or

Knot colorings

Definition

A coloring of a knot (projection) is the assignment of colors to the different segments,or connected components, so that at each crossing all segments have either the same color or they all have different colors and at least two colors are used

\Longrightarrow If a knot (projection) is 3-colorable then it has a coloring that uses exactly 3 colors

Knot colorings

Definition

A coloring of a knot (projection) is the assignment of colors to the different segments,or connected components, so that at each crossing all segments have either the same color or they all have different colors and at least two colors are used

\Longrightarrow If a knot (projection) is 3-colorable then it has a coloring that uses exactly 3 colors

Let $C_{3}(K)$ be the number of different colorings of K using 3 colors

Knot colorings

Definition

A coloring of a knot (projection) is the assignment of colors to the different segments,or connected components, so that at each crossing all segments have either the same color or they all have different colors and at least two colors are used

\Longrightarrow If a knot (projection) is 3-colorable then it has a coloring that uses exactly 3 colors

Let $C_{3}(K)$ be the number of different colorings of K using 3 colors

Remark

- A knot can always be colored using a single color, so $C_{3}(K) \geq 3$ for all knots K

Knot colorings

Definition

A coloring of a knot (projection) is the assignment of colors to the different segments,or connected components, so that at each crossing all segments have either the same color or they all have different colors and at least two colors are used

\Longrightarrow If a knot (projection) is 3-colorable then it has a coloring that uses exactly 3 colors

Let $C_{3}(K)$ be the number of different colorings of K using 3 colors

Remark

- A knot can always be colored using a single color, so $C_{3}(K) \geq 3$ for all knots K
- As soon as more than one color is used we must use all three colors, so K is 3 colorable if and only if $C_{3}(K)>3$

Three colorings

As the unknot has no crossings, it has only one segment that must always be colored using the same color

Three colorings

As the unknot has no crossings, it has only one segment that must always be colored using the same color
$\Longrightarrow \quad C_{3}$ (Unknot) $=3$ and the Unknot is not 3-colorable

Three colorings

As the unknot has no crossings, it has only one segment that must always be colored using the same color
$\Longrightarrow \quad C_{3}$ (Unknot) $=3$ and the Unknot is not 3-colorable

Which of the following are knots are 3-colorable?

coloring the trefoil knot

Question What is $C_{3}(T)$ if T is the trefoil knot?

coloring the trefoil knot

Question What is $C_{3}(T)$ if T is the trefoil knot?

Claim $C_{3}(T)=9$ since the components of T can be colored independently
coloring the trefoil knot
Question What is $C_{3}(T)$ if T is the trefoil knot?
Claim $C_{3}(T)=9$ since the components of T can be colored independently

Three colorability

Theorem

The integer $C_{3}(K)$ is a knot invariant
That is, $C_{3}(K)$ depends only on K, up to ambient isotopy, and it is independent of the choice of knot projection

Three colorability

Theorem

The integer $C_{3}(K)$ is a knot invariant
That is, $C_{3}(K)$ depends only on K, up to ambient isotopy, and it is independent of the choice of knot projection

Corollary

Being 3-colorable is a knot invariant

Three colorability

Theorem

The integer $C_{3}(K)$ is a knot invariant
That is, $C_{3}(K)$ depends only on K, up to ambient isotopy, and it is independent of the choice of knot projection

Corollary

Being 3-colorable is a knot invariant
The corollary follows because K is 3-colorable if and only if $C_{3}(K)>3$

Three colorability

Theorem

The integer $C_{3}(K)$ is a knot invariant
That is, $C_{3}(K)$ depends only on K, up to ambient isotopy, and it is independent of the choice of knot projection

Corollary

Being 3-colorable is a knot invariant
The corollary follows because K is 3-colorable if and only if $C_{3}(K)>3$
To prove the theorem it suffices to check that $C_{3}(K)$ is invariant under the three Reidemeister moves

Three colorability

Theorem

The integer $C_{3}(K)$ is a knot invariant
That is, $C_{3}(K)$ depends only on K, up to ambient isotopy, and it is independent of the choice of knot projection

Corollary

Being 3-colorable is a knot invariant
The corollary follows because K is 3-colorable if and only if $C_{3}(K)>3$
To prove the theorem it suffices to check that $C_{3}(K)$ is invariant under the three Reidemeister moves

- Twisting

and

Three colorability

Theorem

The integer $C_{3}(K)$ is a knot invariant
That is, $C_{3}(K)$ depends only on K, up to ambient isotopy, and it is independent of the choice of knot projection

Corollary

Being 3-colorable is a knot invariant
The corollary follows because K is 3-colorable if and only if $C_{3}(K)>3$
To prove the theorem it suffices to check that $C_{3}(K)$ is invariant under the three Reidemeister moves

- Twisting $\| \leftrightarrow$ and $\| \leftrightarrow$ o
- Looping
$\| \leftrightarrow$ and $\| \leftrightarrow$
- Braiding

Three colorability

- Braiding

and

\leftrightarrow

and
 \leftrightarrow

and

\leftrightarrow

Three colorability

- Braiding

and

\leftrightarrow

and
 \leftrightarrow

\leftrightarrow

and

\leftrightarrow

Key point For each Reidemeister move there is a unique way to complete any coloring given the existing colors of the segments going in and out

[^0]: Topology - week 11

[^1]: Topology - week 11

