EXERCISES 9: LECTURE ALGEBRAIC TOPOLOGY

Exercise 1. Find $X=\coprod_{i \in I} X_{i}$ such

$$
H^{*}\left(\coprod_{i \in I} X_{i}\right) \not \not \bigoplus_{i \in I} H^{*}\left(X_{i}\right) .
$$

Hint: Almost everything infinite will do, e.g. https://math.stackexchange.com/questions/3943835 Exercise 2. Given the torus $T \cong S^{1} \times S^{1}$ and the space $T^{\prime}=S^{1} \vee S^{1} \vee S^{2}$.

Compute both, H_{*} and H^{*}, for these two spaces.
Exercise 3. Show that $\mathbb{R} P^{5}$ and $\mathbb{R} P^{4} \vee S^{5}$ have the same (co)homology groups. What about the respective fundamental groups?

Addendum:

- Hint: For (co)homology it is convenient to use the cell structure given by the antipodal maps:

The antipodal $S^{n} \rightarrow \mathbb{R} P^{n}$ also helps to compute the fundamental group. Seifert-van Kampen and Mayer-Vietoris (or direct computation) will do the rest.

- Hint: See also https://math.stackexchange.com/questions/3426826

Exercise 4. Compute H_{*} (or H^{*}, whatever you prefer) of

where M is a Möbius strip. (Note that the boundary of M is one copy of S^{1}.)

Addendum: Formally, X is obtained from $S^{1} \times S^{1}$ by gluing a Möbius strip to $S^{1} \times\left\{x_{0}\right\}$ via identifying boundaries.

- The exercises are optimal and not mandatory. Still, they are highly recommend.
- There will be 12 exercise sheets, all of which have four exercises.
- The sheets can be found on the homepage www.dtubbenhauer.com/lecture-algtop-2021.html.
- If not specified otherwise, spaces are topological space, maps are continuous etc.
- There might be typos on the exercise sheets, my bad, so be prepared.

