EXERCISES 7: LECTURE ALGEBRAIC TOPOLOGY

Exercise 1. Compute the simplicial and the cellular homology of S^2 using

as a simplicial complex, respectively, as a cell complex representing S^2 .

Exercise 2. Let T be the torus and K be the Klein bottle. Compute $H_*(T)$ and $H_*(K)$. Addendum:

- ► Conclude from the exercise that the Euler characteristic χ does not distinguish the torus T from the Klein bottle K, but the Poincaré polynomial P does.
- ▶ Hint: To compute homology use the cell structures given by their fundamental polygons

Hint: Use the inductive cell structure given by antipodal identifications

Exercise 4. Let us consider $S^1 \vee S^1$ using the cell structure

Let X be the cell complex obtained from $S^1 \vee S^1$ by attaching two 2-cells via a^5b^{-3} and $b^3(ab)^{-2}$.

- 1. Show that $H_1(X, \mathbb{Q})$ is trivial.
- 2. Show that $\pi_1(X)$ is not trivial.

Addendum:

▶ Hint: There is a map from $\pi_1(X)$ to the symmetry group of the dodecahedron given by

- \blacktriangleright Hint: The rotational symmetry group of the dodecahedron is A_5
- ▶ The exercises are optimal and not mandatory. Still, they are highly recommend.
- ▶ There will be 12 exercise sheets, all of which have four exercises.
- ▶ The sheets can be found on the homepage www.dtubbenhauer.com/lecture-algtop-2021.html.
- ▶ If not specified otherwise, spaces are topological space, maps are continuous *etc.*
- ▶ There might be typos on the exercise sheets, my bad, so be prepared.