
ASSIGNMENT 1 – SOLUTIONS: LECTURE ALGEBRAIC TOPOLOGY

Exercise 1. Compute the homology H∗(G) of the Petersen graph G:

G =

Can you guess what the homology of a general graph is?
Hint: The following two pictures should be helpful.

Solution (sketch) 1. Every connected finite graph G is homotopy equivalent to some n-rose. Here
n = E − V + 1 is the number of edges not contained in a spanning tree of G, where V and E denote
the number of vertices respectively edges of G. This immediately gives

H∗(G) ∼= Z⊕ tZ⊕(E−V+1)

by observing that all gluing maps for n-roses are zero.
In particular, when G is the Petersen graph we get

H∗(G) ∼= Z⊕ tZ⊕6.

For a non-connected finite graph G =
∐

iGi we use additivity of H∗ and get

H∗(G) ∼=
⊕
i

(
Z⊕ tZ⊕(Ei−Vi+1)

) ∼= Z⊕i ⊕ tZ⊕(E−V+1).

Here the Gi are the connected component of G whose number of vertices and edges are denoted by
Vi respectively Ei.

For an infinite graph set-theoretical issues arise. This case is omitted (and was not asked for).

Exercise 2. Classify the Platonic solids by using that they are cell complexes for the sphere S2 and
that χ(S2) = 2.

Addendum:
I Note that Platonic solids have a definition and are not arbitrary polyhedra: they are convex

regular polyhedron in R3.
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I Hint: We know the answer, so let us make a table where m,n are defined by mV = 2E = nF :

m n V E F
Tetrahedron 3 3 4 6 4

Cube 3 4 8 12 6
Octahedron 4 3 6 12 8

Dodecahedron 3 5 20 30 12
Icosahedron 5 3 12 30 20

Observe that 1
2 <

1
m + 1

n holds.

Solution (sketch) 2. Any Platonic solid P gives a cell structure of S2. In particular, using the
notions V , E and F for vertices, edges and faces, we get

χ(P ) = V − E + F = 2.

By definition of a Platonic solid every face of P has the same number of edges while every edge is
adjacent to two faces. Thus, we can write nF = 2E for some n > 2. (Yes, the Greek’s excluded
zerogons, monogons and digons. If you try to draw the as regular polygons you realize that you need
curved edges - duh ;-)) The same is true for vertices, having the same number of surrounding edges
by definition of a Platonic solid. So we get mV = 2E for some m > 2. In other words, F = 2/nE
and V = 2/mE giving

2 = χ(P ) = V − E + F = 2/mE − E + 2/nE = (1/m− 1/2 + 1/n)2E ⇒ 1/E = 1/m− 1/2 + 1/n.

In particular, since 1/E > 0 we get

1/m+ 1/n > 1/2.

This equation is precisely satisfied as in the solution table

m n V E F
Tetrahedron 3 3 4 6 4

Cube 3 4 8 12 6
Octahedron 4 3 6 12 8

Dodecahedron 3 5 20 30 12
Icosahedron 5 3 12 30 20

To see this observe that m = 6 already gives

1/n > 1/3

so maximally n = 2, which is excluded. Since bigger values of m let 1/2− 1/m go even closer to 1/2
we conclude that 2 < m < 6. Similarly for n. It is then easy to see that m = 4 = n or m = 4, n = 5
or m = 5, n = 4 do not satisfy 1/m+ 1/n > 1/2, So the table says we are done: every solution to
1/m+ 1/n > 1/2 is as in the table and, conversely, any such solution corresponds to the indicated
polyhedron so is not a numerical solution.

Exercise 3. For g ≥ 1 let M−
g,0 denote the closed non-orientable surface of genus g defines via its

fundamental polygon, i.e. a 2g-sided polygon with attaching word a21 . . . a2g. For example, for g = 4
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we have:

M−
4,0 !

Compute the homology H∗(M
−
g,0) and the Hilbert–Poincare polynomial P (M−

g,0).
Hint: Note that M−

1,0
∼= RP 2 and M−

2,0 is the Klein bottle, and recall how to calculate their
homologies. (Beware that the above are not the standard presentations of these two surfaces: a
surface can be defined by different fundamental polygons.)

Solution (sketch) 3. The cellular chain complex is given by

C∗ : Z

(
2 . . . 2 2

)
−−−−−−−−−−−→

ker=0,rank=1

T

Zg

(
0 . . . 0 0

)
−−−−−−−−−−−→

ker=g,rank=0
Z.

(Kernels and ranks indicated for the computation of the Hilbert–Poincaré polynomial.) After Gaussian
elimination we get

C∗ : Z

(
0 . . . 0 2

)
−−−−−−−−−−−→

T

Zg

(
0 . . . 0 0

)
−−−−−−−−−−−→ Z.

from which we directly read-off the homology:

H∗(Mg,0) ∼= Z⊕ t(Z⊕(g−1) ⊕ Z/2Z).

Extending scalars to Q and computing kernel-rank (indicated above) gives

P (Mg,0) = 1 + (g − 1)t.

Exercise 4. Compute the cohomology ring H•(T ) of the torus T from the definitions (i.e. not going
to the intersection ring).

Addendum:

I You can assume that T is defined via the following simplicial structure:
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I Hint: The main calculations in the intersection ring are

[A]∩ [B] = [P ] ! [B]∩ [B] = 0 !

The main point is to find expressions of [A] and [B] in C∗(T ). It is then not hard to verify
that the intersection calculation is reflected in singular cohomology.

Solution (sketch) 4. Recall that

H∗(T ) ∼= H∗(T ) ∼= Z⊕ tZ⊕2 ⊕ Z.

By using the simplicial structure

it is easy to see that we can choose the following generators of homology, where ∗ denotes the duals:

H0(T ) ∼= Z{v}, H1(T ) ∼= Z{a+ c, b+ c}, H2(T ) ∼= Z{U + L},
H0(T ) ∼= Z{v∗}, H1(T ) ∼= Z{a∗ + c∗, b∗ + c∗}, H2(T ) ∼= Z{U∗ + L∗}.

The multiplication table (meaning x ^ y for x indexed by the columns) is
v∗ a∗ + c∗ b∗ + c∗ U∗ + L∗

v∗ v∗ a∗ + c∗ b∗ + c∗ U∗ + L∗

a∗ + c∗ a∗ + c∗ 0 U∗ + L∗ 0
b∗ + c∗ b∗ + c∗ −U∗ − L∗ 0 0
U∗ + L∗ U∗ + L∗ 0 0 0

.

Most of these are immediate.
First, v∗ is the unit: By degree reasons the unit is a generator of H0(T ), so it is either v∗ or −v∗.

We have (v∗ ^ v∗)(v) = v∗(v) = 1, so v∗ is the unit.
Moreover, U∗ multiplies with everything except v∗ to zero for degree reasons again, while (a∗+c∗)2 =

(b∗ + c∗)2 = 0, and (a∗ + c∗)^ (b∗ + c∗) = −(b∗ + c∗)^ (a∗ + c∗) by graded anticommutativity.
It remains to argue that (

(a∗ + c∗)^ (b∗ + c∗)
)
(U + L) = −1.

This is immediate from the definition of the singular cochains. To see this let us denote the vertex of
the above simplicial complex by 0 to 3 starting northeast and going clockwise. (This is for notation
purposes – they are all the same vertex.) Then U = [3, 0, 2] and L = [1, 0, 2], while a = [1, 0] = [2, 3],
b = [3, 0] = [2, 1] and c = [2, 0]. So(

(a∗ + c∗)^ (b∗ + c∗)
)
(U) = (a∗ + c∗)([3, 0])(b∗ + c∗)([0, 2]) = 0.
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Moreover,(
(a∗ + c∗)^ (b∗ + c∗)

)
(L) = (a∗ + c∗)([1, 0])(b∗ + c∗)([0, 2]) = a∗([1, 0])c∗([0, 2]) = −1,

and we are done. (Note that [0, 2] = −c.)
The multiplication table gives us immediately the (expected) result

H•(T ) ∼= Z〈X,Y 〉/(X2 = Y 2, XY = −Y X).


