ASSIGNMENT 1 - SOLUTIONS: LECTURE ALGEBRAIC TOPOLOGY

Exercise 1. Compute the homology $H_{*}(G)$ of the Petersen graph G :

Can you guess what the homology of a general graph is?
Hint: The following two pictures should be helpful.

Solution (sketch) 1. Every connected finite graph G is homotopy equivalent to some n-rose. Here $n=E-V+1$ is the number of edges not contained in a spanning tree of G, where V and E denote the number of vertices respectively edges of G. This immediately gives

$$
H_{*}(G) \cong \mathbb{Z} \oplus t \mathbb{Z}^{\oplus(E-V+1)}
$$

by observing that all gluing maps for n-roses are zero.
In particular, when G is the Petersen graph we get

$$
H_{*}(G) \cong \mathbb{Z} \oplus t \mathbb{Z}^{\oplus 6}
$$

For a non-connected finite graph $G=\coprod_{i} G_{i}$ we use additivity of H_{*} and get

$$
H_{*}(G) \cong \bigoplus_{i}\left(\mathbb{Z} \oplus t \mathbb{Z}^{\oplus\left(E_{i}-V_{i}+1\right)}\right) \cong \mathbb{Z}^{\oplus i} \oplus t \mathbb{Z}^{\oplus(E-V+1)}
$$

Here the G_{i} are the connected component of G whose number of vertices and edges are denoted by V_{i} respectively E_{i}.

For an infinite graph set-theoretical issues arise. This case is omitted (and was not asked for).
Exercise 2. Classify the Platonic solids by using that they are cell complexes for the sphere S^{2} and that $\chi\left(S^{2}\right)=2$.

Addendum:

- Note that Platonic solids have a definition and are not arbitrary polyhedra: they are convex regular polyhedron in \mathbb{R}^{3}.
- Hint: We know the answer, so let us make a table where m, n are defined by $m V=2 E=n F$:

	m	n	V	E	F
Tetrahedron	3	3	4	6	4
Cube	3	4	8	12	6
Octahedron	4	3	6	12	8
Dodecahedron	3	5	20	30	12
Icosahedron	5	3	12	30	20

Observe that $\frac{1}{2}<\frac{1}{m}+\frac{1}{n}$ holds.
Solution (sketch) 2. Any Platonic solid P gives a cell structure of S^{2}. In particular, using the notions V, E and F for vertices, edges and faces, we get

$$
\chi(P)=V-E+F=2
$$

By definition of a Platonic solid every face of P has the same number of edges while every edge is adjacent to two faces. Thus, we can write $n F=2 E$ for some $n>2$. (Yes, the Greek's excluded zerogons, monogons and digons. If you try to draw the as regular polygons you realize that you need curved edges - duh ;-)) The same is true for vertices, having the same number of surrounding edges by definition of a Platonic solid. So we get $m V=2 E$ for some $m>2$. In other words, $F=2 / n E$ and $V=2 / m E$ giving
$2=\chi(P)=V-E+F=2 / m E-E+2 / n E=(1 / m-1 / 2+1 / n) 2 E \Rightarrow 1 / E=1 / m-1 / 2+1 / n$.
In particular, since $1 / E>0$ we get

$$
1 / m+1 / n>1 / 2
$$

This equation is precisely satisfied as in the solution table

	m	n	V	E	F
Tetrahedron	3	3	4	6	4
Cube	3	4	8	12	6
Octahedron	4	3	6	12	8
Dodecahedron	3	5	20	30	12
Icosahedron	5	3	12	30	20

To see this observe that $m=6$ already gives

$$
1 / n>1 / 3
$$

so maximally $n=2$, which is excluded. Since bigger values of m let $1 / 2-1 / m$ go even closer to $1 / 2$ we conclude that $2<m<6$. Similarly for n. It is then easy to see that $m=4=n$ or $m=4, n=5$ or $m=5, n=4$ do not satisfy $1 / m+1 / n>1 / 2$, So the table says we are done: every solution to $1 / m+1 / n>1 / 2$ is as in the table and, conversely, any such solution corresponds to the indicated polyhedron so is not a numerical solution.

Exercise 3. For $g \geq 1$ let $M_{g, 0}^{-}$denote the closed non-orientable surface of genus g defines via its fundamental polygon, i.e. a $2 g$-sided polygon with attaching word $a_{1}^{2} \ldots a_{g}^{2}$. For example, for $g=4$
we have:

Compute the homology $H_{*}\left(M_{g, 0}^{-}\right)$and the Hilbert-Poincare polynomial $P\left(M_{g, 0}^{-}\right)$.
Hint: Note that $M_{1,0}^{-} \cong \mathbb{R} P^{2}$ and $M_{2,0}^{-}$is the Klein bottle, and recall how to calculate their homologies. (Beware that the above are not the standard presentations of these two surfaces: a surface can be defined by different fundamental polygons.)

Solution (sketch) 3. The cellular chain complex is given by

$$
C_{*}: \mathbb{Z} \xrightarrow[\text { ker }=0, \text { rank }=1]{\left(\begin{array}{llll}
2 & \cdots & 2 & 2
\end{array}\right)^{T}} \mathbb{Z}^{g} \xrightarrow[\text { ker }=g, \text { rank }=0]{\left(\begin{array}{llll}
0 & \ldots & 0 & 0
\end{array}\right)} \mathbb{Z}
$$

(Kernels and ranks indicated for the computation of the Hilbert-Poincaré polynomial.) After Gaussian elimination we get

$$
C_{*}: \mathbb{Z} \xrightarrow{\left(\begin{array}{llll}
0 & \ldots & 0 & 2
\end{array}\right)^{T}} \mathbb{Z}^{g} \xrightarrow{\left(\begin{array}{llll}
0 & \ldots & 0 & 0
\end{array}\right)} \mathbb{Z} .
$$

from which we directly read-off the homology:

$$
H_{*}\left(M_{g, 0}\right) \cong \mathbb{Z} \oplus t\left(\mathbb{Z}^{\oplus(g-1)} \oplus \mathbb{Z} / 2 \mathbb{Z}\right) .
$$

Extending scalars to \mathbb{Q} and computing kernel-rank (indicated above) gives

$$
P\left(M_{g, 0}\right)=1+(g-1) t .
$$

Exercise 4. Compute the cohomology ring $H^{\bullet}(T)$ of the torus T from the definitions (i.e. not going to the intersection ring).

Addendum:

- You can assume that T is defined via the following simplicial structure:

- Hint: The main calculations in the intersection ring are

$$
[A] \cap[B]=[P]
$$

The main point is to find expressions of $[A]$ and $[B]$ in $C^{*}(T)$. It is then not hard to verify that the intersection calculation is reflected in singular cohomology.
Solution (sketch) 4. Recall that

$$
H_{*}(T) \cong H^{*}(T) \cong \mathbb{Z} \oplus t \mathbb{Z}^{\oplus 2} \oplus \mathbb{Z}
$$

By using the simplicial structure

it is easy to see that we can choose the following generators of homology, where * denotes the duals:

$$
\begin{gathered}
H_{0}(T) \cong \mathbb{Z}\{v\}, \quad H_{1}(T) \cong \mathbb{Z}\{a+c, b+c\}, \quad H_{2}(T) \cong \mathbb{Z}\{U+L\}, \\
H^{0}(T) \cong \mathbb{Z}\left\{v^{*}\right\}, \quad H^{1}(T) \cong \mathbb{Z}\left\{a^{*}+c^{*}, b^{*}+c^{*}\right\}, \quad H^{2}(T) \cong \mathbb{Z}\left\{U^{*}+L^{*}\right\} .
\end{gathered}
$$

The multiplication table (meaning $x \smile y$ for x indexed by the columns) is

	v^{*}	$a^{*}+c^{*}$	$b^{*}+c^{*}$	$U^{*}+L^{*}$
v^{*}	v^{*}	$a^{*}+c^{*}$	$b^{*}+c^{*}$	$U^{*}+L^{*}$
$a^{*}+c^{*}$	$a^{*}+c^{*}$	0	$U^{*}+L^{*}$	0
$b^{*}+c^{*}$	$b^{*}+c^{*}$	$-U^{*}-L^{*}$	0	0
$U^{*}+L^{*}$	$U^{*}+L^{*}$	0	0	0

Most of these are immediate.
First, v^{*} is the unit: By degree reasons the unit is a generator of $H^{0}(T)$, so it is either v^{*} or $-v^{*}$. We have $\left(v^{*} \smile v^{*}\right)(v)=v^{*}(v)=1$, so v^{*} is the unit.

Moreover, U^{*} multiplies with everything except v^{*} to zero for degree reasons again, while $\left(a^{*}+c^{*}\right)^{2}=$ $\left(b^{*}+c^{*}\right)^{2}=0$, and $\left(a^{*}+c^{*}\right) \smile\left(b^{*}+c^{*}\right)=-\left(b^{*}+c^{*}\right) \smile\left(a^{*}+c^{*}\right)$ by graded anticommutativity.

It remains to argue that

$$
\left(\left(a^{*}+c^{*}\right) \smile\left(b^{*}+c^{*}\right)\right)(U+L)=-1 .
$$

This is immediate from the definition of the singular cochains. To see this let us denote the vertex of the above simplicial complex by 0 to 3 starting northeast and going clockwise. (This is for notation purposes - they are all the same vertex.) Then $U=[3,0,2]$ and $L=[1,0,2]$, while $a=[1,0]=[2,3]$, $b=[3,0]=[2,1]$ and $c=[2,0]$. So

$$
\left(\left(a^{*}+c^{*}\right) \smile\left(b^{*}+c^{*}\right)\right)(U)=\left(a^{*}+c^{*}\right)([3,0])\left(b^{*}+c^{*}\right)([0,2])=0 .
$$

Moreover,

$$
\left(\left(a^{*}+c^{*}\right) \smile\left(b^{*}+c^{*}\right)\right)(L)=\left(a^{*}+c^{*}\right)([1,0])\left(b^{*}+c^{*}\right)([0,2])=a^{*}([1,0]) c^{*}([0,2])=-1
$$

and we are done. (Note that $[0,2]=-c$.)
The multiplication table gives us immediately the (expected) result

$$
H^{\bullet}(T) \cong \mathbb{Z}\langle X, Y\rangle /\left(X^{2}=Y^{2}, X Y=-Y X\right)
$$

