ASSIGNMENT 1: LECTURE ALGEBRAIC TOPOLOGY

Exercise 1. An *n* rose, or a bouquet of *n* circles, is $\bigvee_{i=1}^{n} S^{1}$, e.g. for n = 4:

Show that any connected, finite graph is homotopy equivalent to an n rose for some n.

Exercise 2. Let X be the subset of \mathbb{R}^3 given by the most common immersion of the Klein bottle into \mathbb{R}^3 (we consider X as a subset of \mathbb{R}^3 and not as the Klein bottle itself):

Exercise 3. Compute $\pi_1(S^1 \vee S^1 \vee S^1)$ and solve the following variant of Spivak's hanging-picturespuzzle: "Hang a picture on three nails so that removing any two nails fells the picture, but removing any one nail leaves the picture hanging.".

Hint: The solution to the original puzzle "Hang a picture on two nails so that removing any nail fells the picture." in algebraic notation is

Exercise 4. Let $M_{g,0}$ be the surface of genus g and with no boundary. Compute $\pi_1(M_{g,0})$ for g > 0. Addendum:

- ▶ You can assume that $M_{g,0}$ is defined via its fundamental polygon obtained by identifying edges of a 4g-gon as in the picture below.
- ► Hint:

- ▶ The first assignment is due 17.Sep.2021, latest 11:59pm.
- ▶ Please upload your answers to Canvas.
- ▶ The material from the first four lectures can be used freely, including the relevant sections in Hatcher.