ASSIGNMENT 1: LECTURE ALGEBRAIC TOPOLOGY

Exercise 1. An n rose, or a bouquet of n circles, is $\bigvee_{i=1}^{n} S^{1}$, e.g. for $n=4$:

Show that any connected, finite graph is homotopy equivalent to an n rose for some n.
Exercise 2. Let X be the subset of \mathbb{R}^{3} given by the most common immersion of the Klein bottle into \mathbb{R}^{3} (we consider X as a subset of \mathbb{R}^{3} and not as the Klein bottle itself):

Show, e.g. by drawing the relevant pictures, that $X \simeq S^{1} \vee S^{1} \vee S^{2}$.
Exercise 3. Compute $\pi_{1}\left(S^{1} \vee S^{1} \vee S^{1}\right)$ and solve the following variant of Spivak's hanging-picturespuzzle: "Hang a picture on three nails so that removing any two nails fells the picture, but removing any one nail leaves the picture hanging.".

Hint: The solution to the original puzzle "Hang a picture on two nails so that removing any nail fells the picture." in algebraic notation is

Exercise 4. Let $M_{g, 0}$ be the surface of genus g and with no boundary. Compute $\pi_{1}\left(M_{g, 0}\right)$ for $g>0$. Addendum:

- You can assume that $M_{g, 0}$ is defined via its fundamental polygon obtained by identifying edges of a $4 g$-gon as in the picture below.
- Hint:

- The first assignment is due 17.Sep.2021, latest 11:59pm.
- Please upload your answers to Canvas.
- The material from the first four lectures can be used freely, including the relevant sections in Hatcher.

