Two-block Springer fibers and Springer representations in types C \& D

Arik Wilbert
Hausdorff Research Institute for Mathematics

November 30, 2017
$G L_{m}(\mathbb{C})$-conjugacy classes of
nilpotent endomorphisms of \mathbb{C}^{m}

$$
\begin{array}{lll}
G L_{m}(\mathbb{C}) \text {-conjugacy classes of } & \text { deeper/direct } \\
\text { ilpotent endomorphisms of } \mathbb{C}^{m} & \begin{array}{c}
\text { complex, finite-dimensional, } \\
\text { connection? }
\end{array} & \begin{array}{c}
\text { irreducible } S_{m} \text {-representations } \\
\text { (up to isomorphism) }
\end{array}
\end{array}
$$

$$
\begin{array}{ccc}
\begin{array}{c}
G L_{m}(\mathbb{C}) \text {-conjugacy classes of } \\
\text { nilpotent endomorphisms of } \mathbb{C}^{m}
\end{array} & \begin{array}{c}
\text { deeper/direct } \\
-\cdots-2-1 \\
\text { connection? }
\end{array} & \begin{array}{c}
\text { complex, finite-dimensional, } \\
\text { irreducible } S_{m} \text {-representations } \\
\text { (up to isomorphism) }
\end{array}
\end{array}
$$

\mathcal{O}_{λ} ュuぃ $\mathcal{B}_{G L_{m}}^{\lambda}$ Springer fiber

\mathcal{O}_{λ} ~um $\rightarrow \mathcal{B}_{G L_{m}}^{\lambda}$ Springer fiber

Definition (Springer fiber of type A)

$x: \mathbb{C}^{m} \rightarrow \mathbb{C}^{m}$ nilpotent endomorphism of Jordan type λ

$$
\mathcal{B}_{G L_{m}}^{\lambda}=\left\{\{0\} \subsetneq F_{1} \subsetneq F_{2} \subsetneq \ldots \subsetneq F_{m}=\mathbb{C}^{m} \mid x F_{i} \subseteq F_{i-1}\right\}
$$

\mathcal{O}_{λ} unm $\mathcal{B}_{G L_{m}}^{\lambda}$ Springer fiber $\leadsto \nsim H^{*}\left(\mathcal{B}_{G L_{m}}^{\lambda}, \mathbb{C}\right)$

Definition (Springer fiber of type A)

$x: \mathbb{C}^{m} \rightarrow \mathbb{C}^{m}$ nilpotent endomorphism of Jordan type λ

$$
\mathcal{B}_{G L_{m}}^{\lambda}=\left\{\{0\} \subsetneq F_{1} \subsetneq F_{2} \subsetneq \ldots \subsetneq F_{m}=\mathbb{C}^{m} \mid x F_{i} \subseteq F_{i-1}\right\}
$$

$G L_{m}(\mathbb{C})$-conjugacy classes of nilpotent endomorphisms of \mathbb{C}^{m}
deeper/direct connection?
complex, finite-dimensional, irreducible S_{m}-representations (up to isomorphism)

$$
\mathcal{O}_{\lambda} \leadsto \sim m \not \mathcal{B}_{G L_{m}}^{\lambda} \text { Springer fiber } \leadsto \nrightarrow H^{*}\left(\mathcal{B}_{G L_{m}}^{\lambda}, \mathbb{C}\right)
$$

Definition (Springer fiber of type A)

$x: \mathbb{C}^{m} \rightarrow \mathbb{C}^{m}$ nilpotent endomorphism of Jordan type λ

$$
\mathcal{B}_{G L_{m}}^{\lambda}=\left\{\{0\} \subsetneq F_{1} \subsetneq F_{2} \subsetneq \ldots \subsetneq F_{m}=\mathbb{C}^{m} \mid x F_{i} \subseteq F_{i-1}\right\}
$$

Theorem (Springer, 1978)

There exists a graded S_{m}-action on $H^{*}\left(\mathcal{B}_{G L_{m}}^{\lambda}, \mathbb{C}\right)$ such that $H^{\text {top }}\left(\mathcal{B}_{G L_{m}}^{\lambda}, \mathbb{C}\right)$ is the irreducible S_{m}-representation labeled by λ. This yields a correspondence

$$
\operatorname{Irr}_{\mathbb{C}}^{\text {f.d. }}\left(S_{m}\right) \xrightarrow{1: 1}\left\{\text { nilpotent endomorphisms of } \mathbb{C}^{m}\right\} / G L_{m}(\mathbb{C})
$$

G connected, reductive, complex, algebraic group

$\rightsquigarrow \mathcal{W}_{G}$ Weyl group
G connected, reductive, complex, algebraic group, $\quad \mathfrak{g}=\operatorname{Lie}(\mathrm{G})$
$\rightsquigarrow \mathcal{W}_{G}$ Weyl group

Theorem (Gerstenhaber, 1961)

The $S p_{2 m}$-conjugacy classes of nilpotent elements in $\mathfrak{s p}_{2 m}$ are in bijective correspondence with partitions of $2 m$ in which odd parts occur with even multiplicity.
G connected, reductive, complex, algebraic group, $\quad \mathfrak{g}=\operatorname{Lie}(\mathrm{G})$
$\rightsquigarrow \mathcal{W}_{G}$ Weyl group

Theorem (Gerstenhaber, 1961)

The $S p_{2 m}$-conjugacy classes of nilpotent elements in $\mathfrak{s p}_{2 m}$ are in bijective correspondence with partitions of $2 m$ in which odd parts occur with even multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

G connected, reductive, complex, algebraic group,
 $$
\mathfrak{g}=\operatorname{Lie}(\mathrm{G})
$$

$\rightsquigarrow \mathcal{W}_{G}$ Weyl group

Theorem (Gerstenhaber, 1961)

The $S p_{2 m}$-conjugacy classes of nilpotent elements in $\mathfrak{s p}_{2 m}$ are in bijective correspondence with partitions of $2 m$ in which odd parts occur with even multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

partitions of 4:

$$
\mathfrak{g}=\operatorname{Lie}(\mathrm{G})
$$

$\rightsquigarrow \mathcal{W}_{G}$ Weyl group

Theorem (Gerstenhaber, 1961)

The $S p_{2 m}$-conjugacy classes of nilpotent elements in $\mathfrak{s p}_{2 m}$ are in bijective correspondence with partitions of $2 m$ in which odd parts occur with even multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

partitions of 4:

$$
(1,1,1,1),(2,1,1),(2,2),(3,1),(4)
$$

$$
\mathfrak{g}=\operatorname{Lie}(\mathrm{G})
$$

$\rightsquigarrow \mathcal{W}_{G}$ Weyl group

Theorem (Gerstenhaber, 1961)

The $S p_{2 m}$-conjugacy classes of nilpotent elements in $\mathfrak{s p}_{2 m}$ are in bijective correspondence with partitions of $2 m$ in which odd parts occur with even multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

partitions of 4:

$$
(1,1,1,1),(2,1,1),(2,2),(3,1),(4)
$$

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations of the Weyl group $\mathcal{W}_{S p_{2 m}}$ are in bijective correspondence with bipartitions of m.
G connected, reductive, complex, algebraic group,

$$
\mathfrak{g}=\operatorname{Lie}(\mathrm{G})
$$

$\rightsquigarrow \mathcal{W}_{G}$ Weyl group

Theorem (Gerstenhaber, 1961)

The $S p_{2 m}$-conjugacy classes of nilpotent elements in $\mathfrak{s p}_{2 m}$ are in bijective correspondence with partitions of $2 m$ in which odd parts occur with even multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.

partitions of 4:

$$
(1,1,1,1),(2,1,1),(2,2),(3,1),(4)
$$

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations of the Weyl group $\mathcal{W}_{S p_{2 m}}$ are in bijective correspondence with bipartitions of m.
bipartitions of $m=2$:
G connected, reductive, complex, algebraic group,

$$
\mathfrak{g}=\operatorname{Lie}(\mathrm{G})
$$

$\rightsquigarrow \mathcal{W}_{G}$ Weyl group

Theorem (Gerstenhaber, 1961)

The $S p_{2 m}$-conjugacy classes of nilpotent elements in $\mathfrak{s p}_{2 m}$ are in bijective correspondence with partitions of $2 m$ in which odd parts occur with even multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an element in the conjugacy class.
partitions of 4:

$$
(1,1,1,1),(2,1,1),(2,2),(3,1),(4)
$$

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations of the Weyl group $\mathcal{W}_{S p_{2 m}}$ are in bijective correspondence with bipartitions of m.
bipartitions of $\mathrm{m}=2$:

G connected, reductive, complex, algebraic group, $\quad \mathfrak{g}=\operatorname{Lie}(\mathrm{G})$
$\rightsquigarrow \mathcal{W}_{G}$ Weyl group
G connected, reductive, complex, algebraic group, $x \in \mathfrak{g}=\operatorname{Lie}(\mathrm{G})$
$\rightsquigarrow \mathcal{W}_{G}$ Weyl group
G connected, reductive, complex, algebraic group, $x \in \mathfrak{g}=\operatorname{Lie}(\mathrm{G})$ nilpotent
$\rightsquigarrow \mathcal{W}_{G}$ Weyl group
G connected, reductive, complex, algebraic group, $x \in \mathfrak{g}=\operatorname{Lie}(\mathrm{G})$ nilpotent
$\rightsquigarrow \mathcal{W}_{G}$ Weyl group $\rightsquigarrow A_{x}=C_{G}(x) / C_{G}^{0}(x) \quad$ component group
G connected, reductive, complex, algebraic group, $x \in \mathfrak{g}=$ Lie(G$)$ nilpotent $\rightsquigarrow \mathcal{W}_{G}$ Weyl group $\rightsquigarrow A_{x}=C_{G}(x) / C_{G}^{0}(x) \quad$ component group

Definition (Springer fiber)

$$
\mathcal{B}_{G}^{x}=\{\text { Borel subgroups } B \subseteq G \mid x \in \operatorname{Lie}(B)\}, x \in \mathfrak{g} \text { nilpotent }
$$

G connected, reductive, complex, algebraic group, $x \in \mathfrak{g}=$ Lie(G$)$ nilpotent $\rightsquigarrow \mathcal{W}_{G}$ Weyl group $\rightsquigarrow A_{x}=C_{G}(x) / C_{G}^{0}(x) \quad$ component group

Definition (Springer fiber)

$$
\mathcal{B}_{G}^{x}=\{\text { Borel subgroups } B \subseteq G \mid x \in \operatorname{Lie}(B)\}, x \in \mathfrak{g} \text { nilpotent }
$$

Theorem (Springer, 1978)

- There exist grading-preserving, commuting actions of \mathcal{W}_{G} and A_{x} on $H^{*}\left(\mathcal{B}_{G}^{x}, \mathbb{C}\right)$.
G connected, reductive, complex, algebraic group, $x \in \mathfrak{g}=\operatorname{Lie}(\mathrm{G})$ nilpotent $\rightsquigarrow \mathcal{W}_{G}$ Weyl group $\rightsquigarrow A_{x}=C_{G}(x) / C_{G}^{0}(x) \quad$ component group

Definition (Springer fiber)

$$
\mathcal{B}_{G}^{x}=\{\text { Borel subgroups } B \subseteq G \mid x \in \operatorname{Lie}(B)\}, x \in \mathfrak{g} \text { nilpotent }
$$

Theorem (Springer, 1978)

- There exist grading-preserving, commuting actions of \mathcal{W}_{G} and A_{x} on $H^{*}\left(\mathcal{B}_{G}^{x}, \mathbb{C}\right)$.
- The decomposition

$$
H^{\operatorname{top}}\left(\mathcal{B}_{G}^{x}, \mathbb{C}\right)=\bigoplus_{\lambda} H_{\lambda}^{\operatorname{top}}\left(\mathcal{B}_{G}^{x}, \mathbb{C}\right)
$$

into non-zero A_{x}-isotypic subspaces is a decomposition into irreducible \mathcal{W}_{G}-representations.
G connected, reductive, complex, algebraic group, $x \in \mathfrak{g}=\operatorname{Lie}(\mathrm{G})$ nilpotent $\rightsquigarrow \mathcal{W}_{G}$ Weyl group $\rightsquigarrow A_{x}=C_{G}(x) / C_{G}^{0}(x) \quad$ component group

Definition (Springer fiber)

$$
\mathcal{B}_{G}^{x}=\{\text { Borel subgroups } B \subseteq G \mid x \in \operatorname{Lie}(B)\}, x \in \mathfrak{g} \text { nilpotent }
$$

Theorem (Springer, 1978)

- There exist grading-preserving, commuting actions of \mathcal{W}_{G} and A_{x} on $H^{*}\left(\mathcal{B}_{G}^{x}, \mathbb{C}\right)$.
- The decomposition

$$
H^{\mathrm{top}}\left(\mathcal{B}_{G}^{x}, \mathbb{C}\right)=\bigoplus_{\lambda} H_{\lambda}^{\mathrm{top}}\left(\mathcal{B}_{G}^{x}, \mathbb{C}\right)
$$

into non-zero A_{x}-isotypic subspaces is a decomposition into irreducible \mathcal{W}_{G}-representations.

- This yields the Springer correspondence

$$
\operatorname{Irr}_{\mathbb{C}}^{\mathrm{f} . \mathrm{d} .}\left(\mathcal{W}_{G}\right) \hookrightarrow\{\text { nilpotent elements in } \mathfrak{g}\} / G \times \operatorname{Irr} \underset{\mathbb{C}}{\text { f.d. }}\left(A_{x}\right)
$$

- The \mathcal{W}_{G}-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).
- The \mathcal{W}_{G}-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).
- The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).
- The \mathcal{W}_{G}-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).
- The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

NOW:

- The \mathcal{W}_{G}-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).
- The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

NOW:

(type D)

- The \mathcal{W}_{G}-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).
- The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

$$
\text { NOW: } \quad G=S O_{2 m} \quad \text { (type D) }
$$

- The \mathcal{W}_{G}-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).
- The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

$$
\text { NOW: } \quad G=S O_{2 m} \quad \mathcal{W}_{G}=\mathcal{W}_{D_{m}} \quad(\text { type D) }
$$

- The \mathcal{W}_{G}-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).
- The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

$$
\text { NOW: } \quad G=S O_{2 m} \quad \mathcal{W}_{G}=\mathcal{W}_{D_{m}} \quad(\text { type D })
$$

$$
\mathcal{W}_{D_{m}}
$$

- The \mathcal{W}_{G}-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).
- The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

$$
\text { NOW: } \quad G=S O_{2 m} \quad \mathcal{W}_{G}=\mathcal{W}_{D_{m}} \quad(\text { type D) }
$$

- The \mathcal{W}_{G}-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).
- The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

- The \mathcal{W}_{G}-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).
- The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

$$
\text { NOW: } \quad G=S O_{2 m} \quad \mathcal{W}_{G}=\mathcal{W}_{D_{m}} \quad(\text { type D) }
$$

- The \mathcal{W}_{G}-action on cohomology is not induced from an action on the space (restrict action on Springer sheaf to its stalks).
- The topology and geometry of the Springer fiber is poorly understood (in general singular, many irreducible components).

$$
\text { NOW: } \quad G=S O_{2 m} \quad \mathcal{W}_{G}=\mathcal{W}_{D_{m}} \quad(\text { type D) }
$$

Theorem (Lusztig, 2004)

There exists an isomorphism of $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-modules

$\left\{\right.$ standard basis b_{λ} \}
\{standard basis $\left.b_{\lambda}\right\}$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\}$

\{standard basis $\left.b_{\lambda}\right\}$

$$
\underline{b}_{\mu}=\sum_{\lambda} \alpha_{\lambda, \mu} b_{\lambda}
$$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\}$

\{standard basis $\left.b_{\lambda}\right\}$

$$
\xi \underline{b}_{\mu}=\sum_{\lambda} \alpha_{\lambda, \mu} b_{\lambda}
$$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\}$

Question

Where else do the $\alpha_{\lambda, \mu}$ appear? Why are they interesting?
\{standard basis $\left.b_{\lambda}\right\}$

$$
\underline{b}_{\mu}=\sum_{\lambda} \alpha_{\lambda, \mu} b_{\lambda}
$$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\}$

Question

Where else do the $\alpha_{\lambda, \mu}$ appear? Why are they interesting?

- Infinite-dimensional representation theory of Lie algebras.

$$
\mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{s o}_{2 m}(\mathbb{C})\right) \quad[M(\lambda): L(\mu)]=\alpha_{\lambda, \mu}
$$

(Kazhdan-Lusztig, Beilinson-Bernstein, Brylinski-Kashiwara, Elias-Williamson)
\{standard basis b_{λ} \}

$$
\underline{b}_{\mu}=\sum_{\lambda} \alpha_{\lambda, \mu} b_{\lambda}
$$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\}$

Question

Where else do the $\alpha_{\lambda, \mu}$ appear? Why are they interesting?

- Infinite-dimensional representation theory of Lie algebras.

$$
\mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{s o}_{2 m}(\mathbb{C})\right) \quad[M(\lambda): L(\mu)]=\alpha_{\lambda, \mu}
$$

(Kazhdan-Lusztig, Beilinson-Bernstein, Brylinski-Kashiwara, Elias-Williamson)

- Non-semisimple representation theory of the Brauer algebra.

$$
\operatorname{Br}_{m}(\delta)-\bmod \quad(\delta \in \mathbb{Z}) \quad[\Delta(\lambda): L(\mu)]=\alpha_{\lambda, \mu}
$$

(Martin, Cox-DeVisscher, Ehrig-Stroppel)
\{standard basis b_{λ} \}

$$
\underline{b}_{\mu}=\sum_{\lambda} \alpha_{\lambda, \mu} b_{\lambda}
$$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\}$

Question

Where else do the $\alpha_{\lambda, \mu}$ appear? Why are they interesting?

- Infinite-dimensional representation theory of Lie algebras.

$$
\mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{s o}_{2 m}(\mathbb{C})\right) \quad[M(\lambda): L(\mu)]=\alpha_{\lambda, \mu}
$$

(Kazhdan-Lusztig, Beilinson-Bernstein, Brylinski-Kashiwara, Elias-Williamson)

- Non-semisimple representation theory of the Brauer algebra.

$$
\operatorname{Br}_{m}(\delta)-\bmod \quad(\delta \in \mathbb{Z}) \quad[\Delta(\lambda): L(\mu)]=\alpha_{\lambda, \mu}
$$

(Martin, Cox-DeVisscher, Ehrig-Stroppel)

Question

Can we explicitly compute the $\alpha_{\lambda, \mu}$?
\{standard basis $\left.b_{\lambda}\right\}$

$$
\underline{b}_{\mu}=\sum_{\lambda} \alpha_{\lambda, \mu} b_{\lambda}
$$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\}$

$\left\{\right.$ standard basis $\left.b_{\lambda}\right\} \xrightarrow{\phi} \cong\left\{\begin{array}{l}\{\wedge, \vee\} \text {-sequences, } \\ \text { length } m, \#(\wedge) \text { even }\end{array}\right\}$

$$
\xi \underline{b}_{\mu}=\sum_{\lambda} \alpha_{\lambda, \mu} b_{\lambda}
$$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\}$
$\left\{\right.$ standard basis $\left.b_{\lambda}\right\} \xrightarrow{\phi} \xlongequal{\cong}\left\{\begin{array}{l}\{\wedge, \vee\} \text {-sequences, } \\ \text { length } m, \#(\wedge) \text { even }\end{array}\right\}$

$$
\underline{b}_{\mu}=\sum_{\lambda} \alpha_{\lambda, \mu} b_{\lambda}
$$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\}$

Example: $(m=4)$
$\left\{\right.$ standard basis $\left.b_{\lambda}\right\} \xrightarrow{\phi} \xlongequal{\cong}\left\{\begin{array}{l}\{\wedge, \vee\} \text {-sequences, } \\ \text { length } m, \#(\wedge) \text { even }\end{array}\right\}$

$$
\xi \underline{b}_{\mu}=\sum_{\lambda} \alpha_{\lambda, \mu} b_{\lambda}
$$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\}$

Example: $(m=4)$
$\vee \vee \vee \vee, \vee \vee \wedge \wedge, \vee \wedge \vee \wedge, \vee \wedge \wedge \vee, \wedge \vee \vee \wedge, \wedge \vee \wedge \vee, \wedge \wedge \vee \vee, \wedge \wedge \wedge \wedge$
$\left\{\right.$ standard basis $\left.b_{\lambda}\right\} \xrightarrow{\phi} \cong\left\{\begin{array}{l}\{\wedge, \vee\} \text {-sequences, } \\ \text { length } m, \#(\wedge) \text { even }\end{array}\right\}$

$$
\underline{b}_{\mu}=\sum_{\lambda} \alpha_{\lambda, \mu} b_{\lambda}
$$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\} \xrightarrow{\cong}\{$ cup diagrams on m vertices, $\}$
Example: $(m=4)$
$\vee \vee \vee \vee, \vee \vee \wedge \wedge, \vee \wedge \vee \wedge, \vee \wedge \wedge \vee, \wedge \vee \vee \wedge, \wedge \vee \wedge \vee, \wedge \wedge \vee \vee, \wedge \wedge \wedge \wedge$
$\left\{\right.$ standard basis $\left.\left.b_{\lambda}\right\} \xrightarrow[\}\right]{\varrho} \cong\left\{\begin{array}{l}\{\wedge, \vee\} \text {-sequences, } \\ \text { length } m, \#(\wedge) \text { even }\end{array}\right\}$

$$
\xi \underline{b}_{\mu}=\sum_{\lambda} \alpha_{\lambda, \mu} b_{\lambda}
$$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\} \xrightarrow{\cong}\left\{\begin{array}{l}\text { cup diagrams on } m \text { vertices, } \\ \#(\boldsymbol{\phi})+\#(\bigcup) \text { even }\end{array}\right\}$
Example: $(m=4)$
$\vee \vee \vee \vee, \vee \vee \wedge \wedge, \vee \wedge \vee \wedge, \vee \wedge \wedge \vee, \wedge \vee \vee \wedge, \wedge \vee \wedge \vee, \wedge \wedge \vee \vee, \wedge \wedge \wedge \wedge$
$\left\{\right.$ standard basis $\left.\left.b_{\lambda}\right\} \xrightarrow[\}\right]{\cong} \xlongequal{\varrho}\left\{\begin{array}{l}\{\wedge, \vee\} \text {-sequences, } \\ \text { length } m, \#(\wedge) \text { even }\end{array}\right\}$

$$
\underline{b}_{\mu}=\sum_{\lambda} \alpha_{\lambda, \mu} b_{\lambda}
$$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\} \xrightarrow{\cong}\left\{\begin{array}{l}\text { cup diagrams on } m \text { vertices, } \\ \#(\boldsymbol{\phi})+\#(\bigcup) \text { even }\end{array}\right\}$
Example: $(\mathrm{m}=4)$
$\vee \vee \vee \vee, \vee \vee \wedge \wedge, \vee \wedge \vee \wedge, \vee \wedge \wedge \vee, \wedge \vee \vee \wedge, \wedge \vee \wedge \vee, \wedge \wedge \vee \vee, \wedge \wedge \wedge \wedge$

$\left\{\right.$ standard basis $\left.b_{\lambda}\right\} \xrightarrow[3]{\cong} \xlongequal{\phi}\left\{\begin{array}{l}\{\wedge, \vee\} \text {-sequences, } \\ \text { length } m, \#(\wedge) \text { even }\end{array}\right\}$

$$
\underline{b}_{\mu}=\sum_{\lambda} \alpha_{\lambda, \mu} b_{\lambda}
$$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\} \xrightarrow{\cong}\left\{\begin{array}{l}\text { cup diagrams on } m \text { vertices, } \\ \#(\boldsymbol{\phi})+\#(\bigcup) \text { even }\end{array}\right\}$
Example: $(m=4)$

Theorem (Lejczyk-Stroppel, 2013)

$$
\alpha_{\lambda, \mu}= \begin{cases}1, & \text { if } \\ & \phi\left(b_{\lambda}\right) \\ 0, & \text { else. }\end{cases}
$$

$$
(\vee \wedge) \quad(\wedge \wedge)
$$

$$
\hat{\vartheta}, Y, \hat{Y}, \hat{\uparrow}
$$

$$
\begin{aligned}
& \vee \vee \vee \vee, \vee \vee \wedge \wedge, \vee \wedge \vee \wedge, \vee \wedge \wedge \vee, \wedge \vee \vee \wedge, \wedge \vee \wedge \vee, \wedge \wedge \vee \vee, \wedge \wedge \wedge \wedge \\
& \cup \nmid \\
& \cup \cup
\end{aligned}
$$

$\left\{\right.$ standard basis $\left.b_{\lambda}\right\} \xrightarrow[3]{\cong} \xlongequal{\phi}\left\{\begin{array}{l}\{\wedge, \vee\} \text {-sequences, } \\ \text { length } m, \#(\wedge) \text { even }\end{array}\right\}$

$$
\underline{b}_{\mu}=\sum_{\lambda} \alpha_{\lambda, \mu} b_{\lambda}
$$

$\left\{\right.$ Kazhdan-Lusztig basis $\left.\underline{b}_{\mu}\right\} \xrightarrow[\cong]{\cong}\left\{\begin{array}{l}\text { cup diagrams on } m \text { vertices, } \\ \#(\boldsymbol{\phi})+\#(\bigcup) \text { even }\end{array}\right\}=C_{\mathrm{KL}}(m)$
Example: $(m=4)$

Theorem (Lejczyk-Stroppel, 2013)

$$
\alpha_{\lambda, \mu}= \begin{cases}1, & \text { if } \\ & \phi\left(b_{\lambda}\right) \\ 0, & \text { else. }\end{cases}
$$

$$
(\vee \wedge) \quad(\wedge \wedge)
$$

$$
\hat{\vartheta}, Y, \hat{Y}, \hat{\uparrow}
$$

$$
\begin{aligned}
& \vee \vee \vee \vee, \vee \vee \wedge \wedge, \vee \wedge \vee \wedge, \vee \wedge \wedge \vee, \wedge \vee \vee \wedge, \wedge \vee \wedge \vee, \wedge \wedge \vee \vee, \wedge \wedge \wedge \wedge \\
& \cup \nmid \\
& \cup \cup
\end{aligned}
$$

Question

Can we describe the $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-module $\mathbb{C} \otimes_{\mathbb{C}\left[S_{m}\right]} \mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$ using cup diagrams?

Question

Can we describe the $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-module $\mathbb{C} \otimes_{\mathbb{C}\left[S_{m}\right]} \mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$ using cup diagrams?

Proposition (Lejczyk-Stroppel, 2013)

$$
\mathbb{C} \otimes_{\mathbb{C}\left[S_{m}\right]} \mathbb{C}\left[\mathcal{W}_{D_{m}}\right] \stackrel{\cong}{\cong}\left[C_{\mathrm{KL}}(m)\right], \quad \underline{b}_{\mu} \mapsto \psi\left(\underline{b}_{\mu}\right)
$$

Question

Can we describe the $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-module $\mathbb{C} \otimes_{\mathbb{C}\left[S_{m}\right]} \mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$ using cup diagrams?

Proposition (Lejczyk-Stroppel, 2013)

$$
\mathbb{C} \otimes_{\mathbb{C}\left[S_{m}\right]} \mathbb{C}\left[\mathcal{W}_{D_{m}}\right] \stackrel{\cong}{\cong}\left[C_{\mathrm{KL}}(m)\right], \quad \underline{b}_{\mu} \mapsto \psi\left(\underline{b}_{\mu}\right)
$$

$\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-action on $\mathbb{C}\left[C_{\mathrm{KL}}(m)\right]$:

Question

Can we describe the $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-module $\mathbb{C} \otimes_{\mathbb{C}\left[S_{m}\right]} \mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$ using cup diagrams?

Proposition (Lejczyk-Stroppel, 2013)

$$
\mathbb{C} \otimes_{\mathbb{C}\left[S_{m}\right]} \mathbb{C}\left[\mathcal{W}_{D_{m}}\right] \stackrel{\cong}{\leftrightarrows}\left[C_{\mathrm{KL}}(m)\right], \quad \underline{b}_{\mu} \mapsto \psi\left(\underline{b}_{\mu}\right)
$$

$\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-action on $\mathbb{C}\left[C_{\mathrm{KL}}(m)\right]$:

$$
\begin{aligned}
& e_{0}=s_{0}-1=\stackrel{\underbrace{1}_{0}}{\substack{2 \\
\overbrace{0}}}| | \cdots \mid \\
& e_{i}=s_{i}-1=\left|\left|\ldots \bigcap_{\bigcap}^{i+1} \ldots\right| \quad i \neq 0\right.
\end{aligned}
$$

Question

Can we describe the $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-module $\mathbb{C} \otimes_{\mathbb{C}\left[S_{m}\right]} \mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$ using cup diagrams?

Proposition (Lejczyk-Stroppel, 2013)

$$
\mathbb{C} \otimes_{\mathbb{C}\left[S_{m}\right]} \mathbb{C}\left[\mathcal{W}_{D_{m}}\right] \stackrel{\cong}{\leftrightarrows}\left[C_{\mathrm{KL}}(m)\right], \underline{b}_{\mu} \mapsto \psi\left(\underline{b}_{\mu}\right)
$$

$\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-action on $\mathbb{C}\left[C_{\mathrm{KL}}(m)\right]$:
$e_{0}=s_{0}-1=\stackrel{\text { (1) }}{\substack{1 \\ 2 \\ 0}}| | \cdots \mid$

$$
e_{i}=s_{i}-1=\left|\left|\cdots \bigcap_{\bigcap}^{i} \cdots\right| \quad i \neq 0\right.
$$

1. Put $e_{i}=s_{i}-1$ on top of $\psi\left(\underline{b}_{\mu}\right)$.

Question

Can we describe the $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-module $\mathbb{C} \otimes_{\mathbb{C}\left[S_{m}\right]} \mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$ using cup diagrams?

Proposition (Lejczyk-Stroppel, 2013)

$$
\mathbb{C} \otimes_{\mathbb{C}\left[S_{m}\right]} \mathbb{C}\left[\mathcal{W}_{D_{m}}\right] \stackrel{\cong}{\leftrightarrows}\left[C_{\mathrm{KL}}(m)\right], \underline{b}_{\mu} \mapsto \psi\left(\underline{b}_{\mu}\right)
$$

$\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-action on $\mathbb{C}\left[C_{\mathrm{KL}}(m)\right]$:

1. Put $e_{i}=s_{i}-1$ on top of $\psi\left(\underline{b}_{\mu}\right)$.
2. Apply relations:

$$
\begin{aligned}
& \because \bigcirc^{\cdots}=(-2) \cdot \stackrel{\vdots}{\square} \quad \vdots \quad \vdots=0 \\
& \therefore \vdots=0 \quad \therefore \because=1
\end{aligned}
$$

Question

Can we describe the $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-module $\mathbb{C} \otimes_{\mathbb{C}\left[S_{m}\right]} \mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$ using cup diagrams?

Proposition (Lejczyk-Stroppel, 2013)

We have an isomorphism of $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-modules

$$
\mathbb{C} \otimes_{\mathbb{C}\left[S_{m}\right]} \mathbb{C}\left[\mathcal{W}_{D_{m}}\right] \stackrel{\cong}{\rightrightarrows} \mathbb{C}\left[C_{\mathrm{KL}}(m)\right], \underline{b}_{\mu} \mapsto \psi\left(\underline{b}_{\mu}\right)
$$

$\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-action on $\mathbb{C}\left[C_{\mathrm{KL}}(m)\right]$:

1. Put $e_{i}=s_{i}-1$ on top of $\psi\left(\underline{b}_{\mu}\right)$.
2. Apply relations:

$$
\begin{aligned}
& \because \bigcirc^{\cdots}=(-2) \cdot \stackrel{\vdots}{\square} \quad \vdots \quad \vdots=0 \\
& \therefore \vdots=0 \quad \vdots \backsim=1
\end{aligned}
$$

Example: $(m=4)$

Example: $(m=4)$

Remark

There exists a filtration

$$
\{0\} \subseteq \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{\left[\frac{m}{2}\right\rfloor} \subseteq \ldots \subseteq \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{n} \subseteq \ldots \subseteq \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{0}=\mathbb{C}\left[C_{\mathrm{KL}}(m)\right]
$$

of $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-modules, where

$$
\mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{n}=\operatorname{span}_{\mathbb{C}}\left\{\mathbf{a} \in C_{\mathrm{KL}}(m) \mid \#(\text { cups }) \geq n\right\} .
$$

Example: $(m=4)$

Remark

There exists a filtration

$$
\{0\} \subseteq \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{\left[\frac{m}{2}\right\rfloor} \subseteq \ldots \subseteq \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{n} \subseteq \ldots \subseteq \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{0}=\mathbb{C}\left[C_{\mathrm{KL}}(m)\right]
$$

of $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-modules, where

$$
\mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{n}=\operatorname{span}_{\mathbb{C}}\left\{\mathbf{a} \in C_{\mathrm{KL}}(m) \mid \#(\text { cups }) \geq n\right\} .
$$

Example: $(m=4)$

Remark

There exists a filtration

$$
\{0\} \subseteq \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{\left[\frac{m}{2}\right\rfloor} \subseteq \ldots \subseteq \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{n} \subseteq \ldots \subseteq \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{0}=\mathbb{C}\left[C_{\mathrm{KL}}(m)\right]
$$

of $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-modules, where

$$
\mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{n}=\operatorname{span}_{\mathbb{C}}\left\{\mathbf{a} \in C_{\mathrm{KL}}(m) \mid \#(\text { cups }) \geq n\right\} .
$$

Remark (cont.)

The subquotients

$$
\mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{n} / \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{n+1}=\operatorname{span}_{\mathbb{C}}\left\{[\mathbf{a}] \mid \mathbf{a} \in C_{\mathrm{KL}}(m), \#(\text { cups })=n\right\}
$$ are irreducible $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-modules with $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-action given by:

$$
\begin{aligned}
& s_{0}-1=\stackrel{\underbrace{2}}{\substack{2\\
)}}| | \cdots \mid \\
& s_{i}-1=\left|\left|\cdots \bigcup_{\bigcap}^{i} \cdots\right| \quad i \neq 0\right.
\end{aligned}
$$

Remark (cont.)

The subquotients

$$
\mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{n} / \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{n+1}=\operatorname{span}_{\mathbb{C}}\left\{[\mathbf{a}] \mid \mathbf{a} \in C_{\mathrm{KL}}(m), \#(\text { cups })=n\right\}
$$

are irreducible $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-modules with $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-action given by:

$$
\begin{aligned}
& s_{0}-1=\stackrel{1}{4}_{\substack{2 \\
\hline}}^{2}|\cdots| \\
& s_{i}-1=\left|\left|\cdots \bigcup_{\bigcap}^{i+1} \cdots\right| \quad i \neq 0\right.
\end{aligned}
$$

Moreover, we have an isomorphism of $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-modules

$$
H^{*}\left(\mathcal{B}_{\mathrm{SO}_{2 m}}^{m, m}, \mathbb{C}\right) \cong \bigoplus_{n} \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{n} / \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{n+1}
$$

Question

Is the cup diagram combinatorics describing $H^{*}\left(\mathcal{B}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)$ already visible on the space $\mathcal{B}_{S O_{2 m}}^{m, m}$? Does this tell us anything about the topology of $\mathcal{B}_{S O_{2 m}}^{m, m}$ (or even more generally $\mathcal{B}_{S O_{2 m}}^{2 m-k, k}$)?

Question

Is the cup diagram combinatorics describing $H^{*}\left(\mathcal{B}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)$ already visible on the space $\mathcal{B}_{S O_{2 m}}^{m, m}$? Does this tell us anything about the topology of $\mathcal{B}_{S O_{2 m}}^{m, m}$ (or even more generally $\mathcal{B}_{S O_{2 m}}^{2 m-k, k}$)?

Question

Is the cup diagram combinatorics describing $H^{*}\left(\mathcal{B}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)$ already visible on the space $\mathcal{B}_{S O_{2 m}}^{m, m}$? Does this tell us anything about the topology of $\mathcal{B}_{S O_{2 m}}^{m, m}$ (or even more generally $\mathcal{B}_{S O_{2 m}}^{2 m-k, k}$)?

$$
C_{\mathrm{KL}}(m)
$$

Question

Is the cup diagram combinatorics describing $H^{*}\left(\mathcal{B}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)$ already visible on the space $\mathcal{B}_{S O_{2 m}}^{m, m}$? Does this tell us anything about the topology of $\mathcal{B}_{S O_{2 m}}^{m, m}$ (or even more generally $\mathcal{B}_{S O_{2 m}}^{2 m-k, k}$)?

Question

Is the cup diagram combinatorics describing $H^{*}\left(\mathcal{B}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)$ already visible on the space $\mathcal{B}_{S O_{2 m}}^{m, m}$? Does this tell us anything about the topology of $\mathcal{B}_{S O_{2 m}}^{m, m}$ (or even more generally $\mathcal{B}_{S O_{2 m}}^{2 m-k, k}$)?

$$
\mathbf{a} \in \underbrace{C_{2 m-k, k}(m)}_{\text {diagrams with }\left\lfloor\frac{k}{2}\right\rfloor \mathrm{cups}} \subseteq C_{\mathrm{KL}}(m)
$$

Question

Is the cup diagram combinatorics describing $H^{*}\left(\mathcal{B}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)$ already visible on the space $\mathcal{B}_{S O_{2 m}}^{m, m}$? Does this tell us anything about the topology of $\mathcal{B}_{S O_{2 m}}^{m, m}$ (or even more generally $\mathcal{B}_{S O_{2 m}}^{2 m-k, k}$)?

$S_{\mathbf{a}}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{S}^{2}\right)^{m} \mid \square\right.$

Question

Is the cup diagram combinatorics describing $H^{*}\left(\mathcal{B}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)$ already visible on the space $\mathcal{B}_{S O_{2 m}}^{m, m}$? Does this tell us anything about the topology of $\mathcal{B}_{S O_{2 m}}^{m, m}$ (or even more generally $\mathcal{B}_{S O_{2 m}}^{2 m-k, k}$)?

$S_{\mathbf{a}}=\left\{\left.\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{S}^{2}\right)^{m}\right|^{x_{j}=x_{i},} \quad\right.$ if $i \backsim j$,

Question

Is the cup diagram combinatorics describing $H^{*}\left(\mathcal{B}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)$ already visible on the space $\mathcal{B}_{S O_{2 m}}^{m, m}$? Does this tell us anything about the topology of $\mathcal{B}_{S O_{2 m}}^{m, m}$ (or even more generally $\mathcal{B}_{S O_{2 m}}^{2 m-k, k}$)?

$S_{\mathbf{a}}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{S}^{2}\right)^{m} \left\lvert\, \begin{array}{ll}x_{j}=x_{i}, & \text { if } i \backsim j, \\ x_{j}=-x_{i}, & \text { if } i-j,\end{array}\right.\right\}$

Question

Is the cup diagram combinatorics describing $H^{*}\left(\mathcal{B}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)$ already visible on the space $\mathcal{B}_{S O_{2 m}}^{m, m}$? Does this tell us anything about the topology of $\mathcal{B}_{S O_{2 m}}^{m, m}$ (or even more generally $\mathcal{B}_{S O_{2 m}}^{2 m-k, k}$)?

$S_{\mathbf{a}}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{S}^{2}\right)^{m} \left\lvert\, \begin{array}{ll}x_{j}=x_{i}, & \text { if } i \backsim j, \\ x_{j}=-x_{i}, & \text { if } i-j, \\ x_{i}=p, & \text { if } i\end{array}\right.\right\}$

Question

Is the cup diagram combinatorics describing $H^{*}\left(\mathcal{B}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)$ already visible on the space $\mathcal{B}_{S O_{2 m}}^{m, m}$? Does this tell us anything about the topology of $\mathcal{B}_{S O_{2 m}}^{m, m}$ (or even more generally $\mathcal{B}_{S O_{2 m}}^{2 m-k, k}$)?

$S_{\mathbf{a}}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{S}^{2}\right)^{m} \left\lvert\, \begin{array}{ll}x_{j}=x_{i}, & \text { if } i \backsim j, \\ x_{j}-x_{i}, & \text { if } i-j, \\ x_{i}=p, & \text { if } i \rightarrow, \\ x_{i}=-p, & \text { if } i+\text { rightmost ray, }\end{array}\right.\right\}$

Question

Is the cup diagram combinatorics describing $H^{*}\left(\mathcal{B}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)$ already visible on the space $\mathcal{B}_{S O_{2 m}}^{m, m}$? Does this tell us anything about the topology of $\mathcal{B}_{S O_{2 m}}^{m, m}$ (or even more generally $\mathcal{B}_{S O_{2 m}}^{2 m-k, k}$)?

$S_{\mathbf{a}}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{S}^{2}\right)^{m} \left\lvert\, \begin{array}{ll}x_{j}=x_{i}, & \text { if } i-j, \\ x_{j}-x_{i}, & \text { if } i-j, \\ x_{i}=p, & \text { if } i=, \\ x_{i}=-p, & \text { if } i+\text { rightmost ray, } \\ x_{i}=q, & \text { if } i+\text { not rightmost ray. }\end{array}\right.\right\}$

Question

Is the cup diagram combinatorics describing $H^{*}\left(\mathcal{B}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)$ already visible on the space $\mathcal{B}_{S O 2 m}^{m, m}$? Does this tell us anything about the topology of $\mathcal{B}_{S O 2 m}^{m, m}$ (or even more generally $\mathcal{B}_{S O_{2 m}}^{2 m-k, k}$)?

$S_{\mathbf{a}}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{S}^{2}\right)^{m} \left\lvert\, \begin{array}{ll}x_{j}=x_{i}, & \text { if } i-j, \\ x_{j}-x_{i}, & \text { if } i-j, \\ x_{i}=p, & \text { if } i=- \\ x_{i}-p, & \text { if } i \rightarrow \text { rightmost ray, } \\ x_{i}=q, & \text { if } i \rightarrow \text { not rightmost ray. }\end{array}\right.\right\} \cong\left(\mathbb{S}^{2}\right)^{\left\lfloor\frac{k}{2}\right\rfloor}$

Question

Is the cup diagram combinatorics describing $H^{*}\left(\mathcal{B}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)$ already visible on the space $\mathcal{B}_{S O 2 m}^{m, m}$? Does this tell us anything about the topology of $\mathcal{B}_{S O 2 m}^{m, m}$ (or even more generally $\mathcal{B}_{S O_{2 m}}^{2 m-k, k}$)?

$$
\begin{gathered}
\mathbf{a} \in \underbrace{C_{2 m-k, k}(m)}_{\text {diagrams with }\left\lfloor\frac{k}{2}\right\rfloor \text { cups }} \subseteq C_{\mathrm{KL}}(m) \\
\mathcal{S}_{S O_{2 m}}^{2 m-k, k}=\bigcup_{\mathbf{a} \in C_{2 m-k, k}(m)} S_{\mathbf{a}} \subseteq\left(\mathbb{S}^{2}\right)^{m}
\end{gathered}
$$

$$
q=(1,0,0)
$$

$$
S_{\mathbf{a}}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{S}^{2}\right)^{m} \left\lvert\, \begin{array}{ll}
x_{j}=x_{i}, & \text { if } i-j, \\
x_{j}-x_{i}, & \text { if } i-j, \\
x_{i}=, & \text { if } i=-1, \\
x_{i}-p, & \text { if } i \rightarrow \text { rightmost ray, } \\
x_{i}=q, & \text { if } i \rightarrow \text { not rightmost ray. }
\end{array}\right.\right\} \cong\left(\mathbb{S}^{2}\right)^{\left\lfloor\frac{k}{2}\right\rfloor}
$$

Theorem (2015)

There exists a homeomorphism $\mathcal{S}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S_{2 m}}^{2 m-k, k}$ such that the images of the S_{a} are the irreducible components.

Theorem (2015)

There exists a homeomorphism $\mathcal{S}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S O_{2 m}}^{2 m-k, k}$ such that the images of the S_{a} are the irreducible components.

Example: $(m=4, \lambda=(5,3))$

Theorem (2015)

There exists a homeomorphism $\mathcal{S}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S O_{2 m}}^{2 m-k, k}$ such that the images of the S_{a} are the irreducible components.

Example: $(m=4, \lambda=(5,3))$
$a=\cup \phi \mid$
$\mathbf{b}=\backslash \mid$
$\mathbf{c}=巾 \cup$
$d=\phi \mid \cup$

Theorem (2015)

There exists a homeomorphism $\mathcal{S}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S O_{2 m}}^{2 m-k, k}$ such that the images of the S_{a} are the irreducible components.

Example: $(m=4, \lambda=(5,3))$
$a=U \phi \mid$

$\mathbf{c}=\downarrow \cup$
$d=\phi \mid \cup$

- $S_{\mathbf{a}}=\left\{(x,-x, p, q) \mid x \in \mathbb{S}^{2}\right\}$
- $S_{\mathbf{b}}=\left\{(x, x,-p, q) \mid x \in \mathbb{S}^{2}\right\}$
- $S_{\mathbf{c}}=\left\{(p, x,-x, q) \mid x \in \mathbb{S}^{2}\right\}$
- $S_{\mathbf{d}}=\left\{(p, q, x,-x) \mid x \in \mathbb{S}^{2}\right\}$

Theorem (2015)

There exists a homeomorphism $\mathcal{S}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S O_{2 m}}^{2 m-k, k}$ such that the images of the S_{a} are the irreducible components.

Example: $(m=4, \lambda=(5,3))$
$a=U \phi \mid$

$\mathbf{c}=\downarrow \cup$
$d=\phi \mid \cup$

- $S_{\mathbf{a}}=\left\{(x,-x, p, q) \mid x \in \mathbb{S}^{2}\right\}$
- $S_{\mathbf{b}}=\left\{(x, x,-p, q) \mid x \in \mathbb{S}^{2}\right\}$
- $S_{\mathbf{c}}=\left\{(p, x,-x, q) \mid x \in \mathbb{S}^{2}\right\}$
- $S_{\mathbf{d}}=\left\{(p, q, x,-x) \mid x \in \mathbb{S}^{2}\right\}$

Theorem (2015)

There exists an isomorphism of varieties $\mathcal{B}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S p_{2(m-1)}}^{2 m-k-1, k-1}$.

Theorem (2015)

There exists an isomorphism of varieties $\mathcal{B}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S p_{2(m-1)}}^{2 m-k-1, k-1}$.

Philosophy

Theorem (2015)

There exists an isomorphism of varieties $\mathcal{B}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S p_{2(m-1)}}^{2 m-k-1, k-1}$.

Philosophy

We have equivalences of categories

$$
\mathbb{D}_{m}-\bmod \simeq \mathcal{P} \operatorname{erv}\left(\Upsilon_{m}^{D}\right) \simeq \mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{s o}_{2 m}(\mathbb{C})\right) .
$$

Theorem (2015)

There exists an isomorphism of varieties $\mathcal{B}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S p_{2(m-1)}}^{2 m-k-1, k-1}$.

Philosophy

We have equivalences of categories

$$
\mathbb{D}_{m}-\bmod \simeq \operatorname{Perv}\left(\Upsilon_{m}^{D}\right) \simeq \mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{5 0}_{2 m}(\mathbb{C})\right)
$$

$$
\begin{gathered}
\mathcal{P e r v}\left(\Upsilon_{m}^{D}\right) \\
\uparrow \sim \\
\mathcal{P e r v}\left(\Upsilon_{m-1}^{B}\right)
\end{gathered}
$$

Theorem (2015)

There exists an isomorphism of varieties $\mathcal{B}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S p_{2(m-1)}}^{2 m-k-1, k-1}$.

Philosophy

We have equivalences of categories

$$
\mathbb{D}_{m}-\bmod \simeq \operatorname{Perv}\left(\Upsilon_{m}^{D}\right) \simeq \mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{5 O}_{2 m}(\mathbb{C})\right) .
$$

$$
\mathcal{P e r v}\left(\Upsilon_{m}^{D}\right)
$$

(Ehrig-Stroppel) $\uparrow \sim$

$$
\operatorname{Perv}\left(\Upsilon_{m-1}^{B}\right)
$$

Theorem (2015)

There exists an isomorphism of varieties $\mathcal{B}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S p_{2(m-1)}}^{2 m-k-1, k-1}$.

Philosophy

We have equivalences of categories

$$
\mathbb{D}_{m}-\bmod \simeq \mathcal{P} \operatorname{erv}\left(\Upsilon_{m}^{D}\right) \simeq \mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{5 O}_{2 m}(\mathbb{C})\right) .
$$

$$
\mathcal{P e r v}\left(\Upsilon_{m}^{D}\right)
$$

(Ehrig-Stroppel) $\uparrow \sim$

$$
\operatorname{Perv}\left(\Upsilon_{m-1}^{B}\right)
$$

"cup diagram side"

Theorem (2015)

There exists an isomorphism of varieties $\mathcal{B}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S p_{2(m-1)}}^{2 m-k-1, k-1}$.

Philosophy

We have equivalences of categories

$$
\mathbb{D}_{m}-\bmod \simeq \operatorname{Perv}\left(\Upsilon_{m}^{D}\right) \simeq \mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{5 O}_{2 m}(\mathbb{C})\right) .
$$

$$
\operatorname{Perv}\left(\Upsilon_{m}^{D}\right)
$$

$$
D^{b}\left(\operatorname{Coh}\left(Y_{m}^{D}\right)\right)
$$

(Ehrig-Stroppel) $\uparrow \sim$

$$
\operatorname{Perv}\left(\Upsilon_{m-1}^{B}\right)
$$

$$
D^{b}\left(\operatorname{Coh}\left(Y_{m-1}^{C}\right)\right)
$$

"cup diagram side"

Theorem (2015)

There exists an isomorphism of varieties $\mathcal{B}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S p_{2(m-1)}}^{2 m-k-1, k-1}$.

Philosophy

We have equivalences of categories

$$
\mathbb{D}_{m}-\bmod \simeq \operatorname{Perv}\left(\Upsilon_{m}^{D}\right) \simeq \mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{5 O}_{2 m}(\mathbb{C})\right) .
$$

$$
\operatorname{Perv}\left(\Upsilon_{m}^{D}\right)
$$

(Ehrig-Stroppel) $\uparrow \sim$

$$
D^{b}\left(\operatorname{Coh}\left(Y_{m}^{D}\right)\right)
$$

$$
\operatorname{Perv}\left(\Upsilon_{m-1}^{B}\right)
$$

$$
D^{b}\left(\operatorname{Coh}\left(Y_{m-1}^{C}\right)\right)
$$

"cup diagram side"

Theorem (2015)

There exists an isomorphism of varieties $\mathcal{B}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S p_{2(m-1)}}^{2 m-k-1, k-1}$.

Philosophy

We have equivalences of categories

$$
\mathbb{D}_{m}-\bmod \simeq \mathcal{P e r v}\left(\Upsilon_{m}^{D}\right) \simeq \mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{s o}_{2 m}(\mathbb{C})\right)
$$

$$
\mathcal{P e r v}\left(\Upsilon_{m}^{D}\right)
$$

(Ehrig-Stroppel) $\uparrow \sim$

$$
D^{b}\left(\operatorname{Coh}\left(Y_{m}^{D}\right)\right)
$$

$$
\mathcal{P e r v}\left(\Upsilon_{m-1}^{B}\right)
$$

$$
D^{b}\left(\operatorname{Coh}\left(Y_{m-1}^{C}\right)\right)
$$

"cup diagram side"

"Springer fiber side"

Theorem (2015)

There exists an isomorphism of varieties $\mathcal{B}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S p_{2(m-1)}}^{2 m-k-1, k-1}$.

Philosophy

We have equivalences of categories

$$
\mathbb{D}_{m}-\bmod \simeq \mathcal{P e r v}\left(\Upsilon_{m}^{D}\right) \simeq \mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{s o}_{2 m}(\mathbb{C})\right)
$$

$$
\operatorname{Perv}\left(\Upsilon_{m}^{D}\right) \quad-\cdots-\cdots \quad D^{b}\left(\operatorname{Coh}\left(Y_{m}^{D}\right)\right)
$$

(Ehrig-Stroppel) $\uparrow \sim$

$$
\mathcal{P e r v}\left(\Upsilon_{m-1}^{B}\right)
$$

"cup diagram side"

$$
\begin{equation*}
D^{b}\left(\operatorname{Coh}\left(Y_{m-1}^{C}\right)\right) \tag{Li}
\end{equation*}
$$

"Springer fiber side"

Theorem (2015)

There exists an isomorphism of varieties $\mathcal{B}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S p_{2(m-1)}}^{2 m-k-1, k-1}$.

Philosophy

We have equivalences of categories

$$
\mathbb{D}_{m}-\bmod \simeq \mathcal{P e r v}\left(\Upsilon_{m}^{D}\right) \simeq \mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{s o}_{2 m}(\mathbb{C})\right)
$$

$$
\operatorname{Perv}\left(\Upsilon_{m}^{D}\right) \quad \text { (Stroppel-Webster)" } \quad D^{b}\left(\operatorname{Coh}\left(Y_{m}^{D}\right)\right)
$$

(Ehrig-Stroppel) $\uparrow \sim$

$$
\mathcal{P e r v}\left(\Upsilon_{m-1}^{B}\right)
$$

"cup diagram side"

$$
\begin{equation*}
D^{b}\left(\operatorname{Coh}\left(Y_{m-1}^{C}\right)\right) \tag{Li}
\end{equation*}
$$

"Springer fiber side"

Theorem (2015)

There exists an isomorphism of varieties $\mathcal{B}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S p_{2(m-1)}}^{2 m-k-1, k-1}$.

Philosophy

We have equivalences of categories

$$
\mathbb{D}_{m}-\bmod \simeq \mathcal{P e r v}\left(\Upsilon_{m}^{D}\right) \simeq \mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{s o}_{2 m}(\mathbb{C})\right)
$$

$$
\operatorname{Perv}\left(\Upsilon_{m}^{D}\right) \quad \text { "(Stroppel-Webster)" } \quad D^{b}\left(\operatorname{Coh}\left(Y_{m}^{D}\right)\right)
$$

(Ehrig-Stroppel) $\uparrow \sim$

$$
\mathcal{P e r v}\left(\Upsilon_{m-1}^{B}\right)-\cdots D^{b}\left(\operatorname{Coh}\left(Y_{m-1}^{C}\right)\right)
$$

"cup diagram side"

"Springer fiber side"

Theorem (2015)

There exists an isomorphism of varieties $\mathcal{B}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S p_{2(m-1)}}^{2 m-k-1, k-1}$.

Philosophy

We have equivalences of categories

$$
\mathbb{D}_{m}-\bmod \simeq \operatorname{Perv}\left(\Upsilon_{m}^{D}\right) \simeq \mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{s o}_{2 m}(\mathbb{C})\right)
$$

$$
\operatorname{Perv}\left(\Upsilon_{m}^{D}\right) \quad \text { "(Stroppel-Webster)" } \quad D^{b}\left(\operatorname{Coh}\left(Y_{m}^{D}\right)\right)
$$

(Ehrig-Stroppel) $\uparrow \sim$

$$
\begin{equation*}
\mathcal{P e r v}\left(\Upsilon_{m-1}^{B}\right)-\cdots D^{b}\left(\operatorname{Coh}\left(Y_{m-1}^{C}\right)\right) \tag{Li}
\end{equation*}
$$

Langlands duality
Nnnnnmonnmonn

"Springer fiber side"

Theorem (2015)

There exists an isomorphism of varieties $\mathcal{B}_{S O_{2 m}}^{2 m-k, k} \cong \mathcal{B}_{S p_{2(m-1)}}^{2 m-k-1, k-1}$.

Philosophy

We have equivalences of categories

$$
\mathbb{D}_{m}-\bmod \simeq \operatorname{Perv}\left(\Upsilon_{m}^{D}\right) \simeq \mathcal{O}_{0}^{\mathfrak{p}}\left(\mathfrak{s o}_{2 m}(\mathbb{C})\right) .
$$

We have a "commutative diagram"

$$
\mathcal{P e r v}\left(\Upsilon_{m}^{D}\right) \quad \text { "(Stroppel-Webster)" } \quad{ }^{b}----->\quad D^{b}\left(\operatorname{Coh}\left(Y_{m}^{D}\right)\right)
$$

(Ehrig-Stroppel) $\uparrow \sim$
$\operatorname{Perv}\left(\Upsilon_{m-1}^{B}\right)------>D^{b}\left(\operatorname{Coh}\left(Y_{m-1}^{C}\right)\right)$

"cup diagram side"

Langlands duality

"Springer fiber side"

Question

Can we reconstruct the Springer representation in an elementary way using the topological model $\mathcal{S}_{S_{2 m}}^{m, m}$?

Question

Can we reconstruct the Springer representation in an elementary way using the topological model $\mathcal{S}_{S_{2 m}}^{m, m}$?

Question

Can we reconstruct the Springer representation in an elementary way using the topological model $\mathcal{S}_{S_{2 m}}^{m, m}$?

Question

Can we reconstruct the Springer representation in an elementary way using the topological model $\mathcal{S}_{\mathrm{SO}_{2 m}}^{m, m}$?

$$
\begin{gathered}
\text { action on }\left(\mathbb{S}^{2}\right)^{m}: \\
s_{0} \cdot\left(x_{1}, \ldots, x_{m}\right)=\left(-x_{2},-x_{1}, x_{3}, \ldots, x_{m}\right) \\
s_{i} \cdot\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{m}\right) \quad i \neq 0 \\
\int_{\left(\mathbb{S}^{2}\right)^{m}} \quad \mathfrak{C}\left[\mathcal{W}_{D_{m}}\right] \\
\int_{S O_{2 m}}^{m, m}
\end{gathered}
$$

Question

Can we reconstruct the Springer representation in an elementary way using the topological model $\mathcal{S}_{S_{2 m}}^{m, m}$?
induced by action on $\left(\mathbb{S}^{2}\right)^{m}$:
$s_{0} \cdot\left(x_{1}, \ldots, x_{m}\right)=\left(-x_{2},-x_{1}, x_{3}, \ldots, x_{m}\right)$
$s_{i} \cdot\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{m}\right) \quad i \neq 0$
s
$H_{*}\left(\left(\mathbb{S}^{2}\right)^{m}, \mathbb{C}\right) \bigvee \mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$

$H_{*}\left(\mathcal{S}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)$

Question

Can we reconstruct the Springer representation in an elementary way using the topological model $\mathcal{S}_{S_{2 m}}^{m, m}$?
induced by action on $\left(\mathbb{S}^{2}\right)^{m}$:
$s_{0} \cdot\left(x_{1}, \ldots, x_{m}\right)=\left(-x_{2},-x_{1}, x_{3}, \ldots, x_{m}\right)$
$s_{i} \cdot\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{m}\right) \quad i \neq 0$
ξ
$H_{*}\left(\left(\mathbb{S}^{2}\right)^{m}, \mathbb{C}\right) \supset \mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$

$$
H_{*}\left(\mathcal{S}_{S O_{2 m}}^{m, m}, \mathbb{C}\right) \bigcirc \mathbb{C}\left[\mathcal{W}_{D_{m}}\right]
$$

Question

Can we reconstruct the Springer representation in an elementary way using the topological model $\mathcal{S}_{S_{2 m}}^{m, m}$?
induced by action on $\left(\mathbb{S}^{2}\right)^{m}$:

$$
\begin{aligned}
& s_{0} \cdot\left(x_{1}, \ldots, x_{m}\right)=\left(-x_{2},-x_{1}, x_{3}, \ldots, x_{m}\right) \\
& s_{i} \cdot\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{m}\right) \quad i \neq 0
\end{aligned}
$$

$$
\xi
$$

$$
H_{*}\left(\left(\mathbb{S}^{2}\right)^{m}, \mathbb{C}\right) \circlearrowleft \mathbb{C}\left[\mathcal{W}_{D_{m}}\right]
$$

$$
\uparrow \quad\{\text { action restricts }
$$

$$
H_{*}\left(\mathcal{S}_{S O_{2 m}}^{m, m}, \mathbb{C}\right) \subseteq \mathbb{C}\left[\mathcal{W}_{D_{m}}\right]
$$

Question

Can we reconstruct the Springer representation in an elementary way using the topological model $\mathcal{S}_{S O_{2 m}}^{m, m}$?
induced by action on $\left(\mathbb{S}^{2}\right)^{m}$:

$$
\begin{aligned}
& s_{0} \cdot\left(x_{1}, \ldots, x_{m}\right)=\left(-x_{2},-x_{1}, x_{3}, \ldots, x_{m}\right) \\
& s_{i} \cdot\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{m}\right) \quad i \neq 0
\end{aligned}
$$

$$
H_{*}\left(\left(\mathbb{S}^{2}\right)^{m}, \mathbb{C}\right) \supset \mathbb{C}\left[\mathcal{W}_{D_{m}}\right]
$$

$$
\uparrow \quad \xi \text { action restricts }
$$

$$
H_{*}\left(\mathcal{S}_{S O_{2 m}}^{m, m}, \mathbb{C}\right) \subseteq \mathbb{C}\left[\mathcal{W}_{D_{m}}\right]
$$

(The component group for $\mathcal{B}_{S O_{2 m}}^{m, m}$ is trivial.)

$$
\mathcal{S}_{S O_{2 m}}^{m, m}=\coprod_{\mathbf{a} \in C_{\mathrm{KL}}(m)} C_{\mathbf{a}} \text { cell partition }
$$

$\mathcal{S}_{S O_{2 m}}^{m, m}=\coprod_{\mathbf{a} \in C_{\mathrm{KL}}(m)} C_{\mathbf{a}}$ cell partition

$$
C_{\mathbf{a}}=\left\{\begin{array}{l|l}
\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{S}^{2}\right)^{m} & \begin{array}{ll}
x_{j}=x_{i}, x_{i} \neq-p, & \text { if } i-j, \\
x_{j}=-x_{i}, x_{i} \neq p, & \text { if } i-j, \\
x_{i}=p, & \text { if } i \\
x_{i}=-p, & \text { if } i+.
\end{array}
\end{array}\right\} \cong \mathbb{R}^{2 \cdot \#(\mathrm{cups})}
$$

$\mathcal{S}_{S O_{2 m}}^{m, m}=\coprod_{\mathbf{a} \in C_{\mathrm{KL}}(m)} C_{\mathbf{a}}$ cell partition

$$
C_{\mathbf{a}}=\left\{\begin{array}{l|l}
\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{S}^{2}\right)^{m} & \begin{array}{ll}
x_{j}=x_{i}, x_{i} \neq-p, & \text { if } i-j, \\
x_{j}-x_{i}, x_{i} \neq p, & \text { if } i-j, \\
x_{i}=p, & \text { if } i \\
x_{i}=-p, & \text { if } i+.
\end{array}
\end{array}\right\} \cong \mathbb{R}^{2 \cdot \#(\mathrm{cups})}
$$

$$
\left.H_{*}\left(\mathcal{S}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)=\operatorname{span}_{\mathbb{C}}\left\{\left[C_{\mathbf{a}}\right]\right\} \quad \text { (hom. degree }=2 \cdot \#(\text { cups })\right)
$$

$$
\mathcal{S}_{S O_{2 m}}^{m, m}=\coprod_{\mathbf{a} \in C_{\mathrm{KL}}(m)} C_{\mathbf{a}} \text { cell partition }
$$

$$
C_{\mathbf{a}}=\left\{\begin{array}{l|l}
\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{S}^{2}\right)^{m} & \begin{array}{ll}
x_{j}=x_{i}, x_{i} \neq-p, & \text { if } i-j, \\
x_{j}=-x_{i}, x_{i} \neq p, & \text { if } i-j, \\
x_{i}=p, & \text { if } i \\
x_{i}=-p, & \text { if } i-.
\end{array}
\end{array}\right\} \cong \mathbb{R}^{2 \cdot \#(\text { cups })}
$$

$$
H_{*}\left(\mathcal{S}_{S_{2 m}, m}^{m, m}, \mathbb{C}\right)=\operatorname{span}_{\mathbb{C}}\left\{\left[C_{\mathbf{a}}\right]\right\} \quad(\text { hom. degree }=2 \cdot \#(\text { cups }))
$$

Theorem (2016)

We have an isomorphism of $\mathbb{C}\left[\mathcal{W}_{D_{m}}\right]$-modules

$$
H_{2 n}\left(\mathcal{S}_{S O_{2 m}}^{m, m}, \mathbb{C}\right) \xrightarrow{\cong} \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{n} / \mathbb{C}\left[C_{\mathrm{KL}}(m)\right]_{n+1},\left[C_{\mathbf{a}}\right] \mapsto[\mathbf{a}] .
$$

In particular,

$$
H_{*}\left(\mathcal{S}_{S O_{2 m}}^{m, m}, \mathbb{C}\right) \cong \mathbb{C}\left[C_{\mathrm{KL}}(m)\right] \cong \mathbb{C} \otimes_{\mathbb{C}\left[S_{m}\right]} \mathbb{C}\left[\mathcal{W}_{D_{m}}\right] \cong H^{*}\left(\mathcal{B}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)
$$

Question

How can we reconstruct the component group action on the topological model? What is its diagrammatic description?

Question

How can we reconstruct the component group action on the topological model? What is its diagrammatic description?
$x \in \mathfrak{s p}_{2(m-1)}$ be nilpotent of Jordan type ($m-1, m-1$)

Question

How can we reconstruct the component group action on the topological model? What is its diagrammatic description?
$x \in \mathfrak{s p}_{2(m-1)}$ be nilpotent of Jordan type ($m-1, m-1$)

$$
A_{x} \cong \begin{cases}\{e\} & \text { if } m \text { is even }, \\ \mathbb{Z} / 2 \mathbb{Z} & \text { if } m \text { is odd }\end{cases}
$$

Question

How can we reconstruct the component group action on the topological model? What is its diagrammatic description?
$x \in \mathfrak{s p}_{2(m-1)}$ be nilpotent of Jordan type ($m-1, m-1$)

$$
A_{x} \cong \begin{cases}\{e\} & \text { if } m \text { is even }, \\ \mathbb{Z} / 2 \mathbb{Z} & \text { if } m \text { is odd }\end{cases}
$$

Question

How can we reconstruct the component group action on the topological model? What is its diagrammatic description?
$x \in \mathfrak{s p}_{2(m-1)}$ be nilpotent of Jordan type ($m-1, m-1$)

$$
A_{x} \cong \begin{cases}\{e\} & \text { if } m \text { is even }, \\ \mathbb{Z} / 2 \mathbb{Z} & \text { if } m \text { is odd }\end{cases}
$$

Question

How can we reconstruct the component group action on the topological model? What is its diagrammatic description?
$x \in \mathfrak{s p}_{2(m-1)}$ be nilpotent of Jordan type ($m-1, m-1$)

$$
\begin{gathered}
A_{x} \cong \begin{cases}\{e\} & \text { if } m \text { is even, } \\
\mathbb{Z} / 2 \mathbb{Z} & \text { if } m \text { is odd. }\end{cases} \\
\text { action on }\left(\mathbb{S}^{2}\right)^{m}: \\
(-1) \cdot\left(x_{1}, \ldots, x_{m}\right)=\left(-x_{1}, x_{2}, \ldots, x_{m}\right) \\
\left(\mathbb{S}^{2}\right)^{m} \quad 乌 A_{x} \\
\uparrow
\end{gathered}
$$

Question

How can we reconstruct the component group action on the topological model? What is its diagrammatic description?
$x \in \mathfrak{s p}_{2(m-1)}$ be nilpotent of Jordan type ($m-1, m-1$)

$$
A_{x} \cong \begin{cases}\{e\} & \text { if } m \text { is even }, \\ \mathbb{Z} / 2 \mathbb{Z} & \text { if } m \text { is odd }\end{cases}
$$

induced by action on $\left(\mathbb{S}^{2}\right)^{m}$: $(-1) \cdot\left(x_{1}, \ldots, x_{m}\right)=\left(-x_{1}, x_{2}, \ldots, x_{m}\right)$

$$
\begin{gathered}
H_{*}\left(\left(\mathbb{S}^{2}\right)^{m}, \mathbb{C}\right) \zeta A_{x} \\
\prod_{H_{*}}\left(\mathcal{S}_{S O_{2 m}, m}^{m, \mathbb{C}}\right)
\end{gathered}
$$

Question

How can we reconstruct the component group action on the topological model? What is its diagrammatic description?
$x \in \mathfrak{s p}_{2(m-1)}$ be nilpotent of Jordan type ($m-1, m-1$)

$$
A_{x} \cong \begin{cases}\{e\} & \text { if } m \text { is even }, \\ \mathbb{Z} / 2 \mathbb{Z} & \text { if } m \text { is odd }\end{cases}
$$

induced by action on $\left(\mathbb{S}^{2}\right)^{m}$: $(-1) \cdot\left(x_{1}, \ldots, x_{m}\right)=\left(-x_{1}, x_{2}, \ldots, x_{m}\right)$

$$
\begin{array}{cc}
& \begin{array}{c}
\xi \\
H_{*}\left(\left(\mathbb{S}^{2}\right)^{m}, \mathbb{C}\right) \\
\underbrace{}_{\uparrow} \\
H_{*}\left(\mathcal{S}_{S O_{2 m}}^{m, m}, \mathbb{C}\right) \\
\end{array} \\
& \\
& \\
A_{x}
\end{array}
$$

Question

How can we reconstruct the component group action on the topological model? What is its diagrammatic description?
$x \in \mathfrak{s p}_{2(m-1)}$ be nilpotent of Jordan type ($m-1, m-1$)

$$
A_{x} \cong \begin{cases}\{e\} & \text { if } m \text { is even }, \\ \mathbb{Z} / 2 \mathbb{Z} & \text { if } m \text { is odd }\end{cases}
$$

induced by action on $\left(\mathbb{S}^{2}\right)^{m}$: $(-1) \cdot\left(x_{1}, \ldots, x_{m}\right)=\left(-x_{1}, x_{2}, \ldots, x_{m}\right)$

$$
\begin{aligned}
& \{ \\
& H_{*}\left(\left(\mathbb{S}^{2}\right)^{m}, \mathbb{C}\right) \bigvee A_{x} \\
& \uparrow \quad \text { action restricts } \\
& H_{*}\left(\mathcal{S}_{S O_{2 m}}^{m, m}, \mathbb{C}\right) \smile A_{x}
\end{aligned}
$$

$\mathbf{a} \in C_{\mathrm{KL}}(m), 1<i$ connected by a cup, leftmost ray in a connected to vertex j
$\mathbf{a} \in C_{\mathrm{KL}}(m), 1<i$ connected by a cup, leftmost ray in a connected to vertex j

$\mathbf{a} \in C_{\mathrm{KL}}(m), 1<i$ connected by a cup, leftmost ray in a connected to vertex j

Theorem (2016)

The $\mathbb{Z} / 2 \mathbb{Z}$-action on $H_{*}\left(\mathcal{S}_{S O_{2 m}}^{m, m}, \mathbb{C}\right)(m$ odd $)$ is given by

$$
(-1) \cdot\left[C_{\mathbf{a}}\right]= \begin{cases}{\left[C_{\mathbf{a}}\right]} & \text { if } 1 \text { is connected to a ray, } \\ {\left[C_{\mathbf{a}^{*}}\right]} & \text { if } 1 \text { is conntected to a cup. }\end{cases}
$$

