What is...(2-)representation theory?

Or: A (fairy) tale of matrices and functors

October 2018
(1) Classical representation theory

- Main ideas
- Some classical results
- Some examples
(2) Categorical representation theory
- Main ideas
- Some categorical results
- An example

A linearization of group theory

Slogan. Representation theory is group theory in vector spaces.
symmetries of n-gons $\subset \mathcal{A u t}\left(\mathbb{R}^{2}\right)$

$\{$

A linearization of group theory

Slogan. Representation theory is group theory in vector spaces.

$$
\text { symmetries of } n \text {-gons } \subset \mathcal{A u t}\left(\mathbb{R}^{2}\right)
$$

$$
\left\{\begin{array}{c}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \\
1
\end{array}\right.
$$

A linearization of group theory

Slogan. Representation theory is group theory in vector spaces.

A linearization of group theory

Slogan. Representation theory is group theory in vector spaces.

A linearization of group theory

Slogan. Representation theory is group theory in vector spaces.

$$
\begin{gathered}
\text { symmetries of } n \text {-gons } \subset \mathcal{A u t}\left(\mathbb{R}^{2}\right) \\
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right)\right. \\
1
\end{gathered}
$$

A linearization of group theory

Slogan. Representation theory is group theory in vector spaces.

$$
\begin{gathered}
\text { symmetries of } n \text {-gons } \subset \mathcal{A u t}\left(\mathbb{R}^{2}\right) \\
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right)\right.
\end{gathered}
$$

A linearization of group theory

Slogan. Representation theory is group theory in vector spaces.

A linearization of group theory

Slogan. Representation theory is group theory in vector spaces.

These symmetry groups of the regular n-gons are the so-called dihedral groups

$$
\mathrm{D}_{2 n}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \underbrace{\ldots \text { tsts }}_{n}=w_{0}=\underbrace{\ldots \text { stst }}_{n}\rangle
$$

which are the easiest examples of Coxeter groups.
Example $n=4$; its Coxeter complex.

Pioneers of representation theory

Let G be a finite group.
Frobenius $\sim 1895++$, Burnside $\sim 1900++$. Representation theory is the study of linear group actions

$$
\mathcal{M}: \mathrm{G} \longrightarrow \mathcal{A u t}(\mathrm{v}), \quad " \mathcal{M}(g)=\text { a matrix in } \mathcal{A u t}(\mathrm{V}) "
$$

with V being some vector space. (Called modules or representations.)

The "atoms" of such an action are called simple. A module is called semisimple if it is a direct sum of simples.

Maschke ~1899. All modules are built out of simples ("Jordan-Hölder" filtration).

Pioneers of representation theory

Let G be a finite group.
Frobenius $\sim 1895++$, Burnside $\sim 1900+$. Representation theory is the study of linear group actions

$$
\mathcal{M}: \mathrm{G} \longrightarrow \mathcal{A u t}(\mathrm{v})
$$

with V being some vector space. (Called modules or representations.)

The "atoms" of such an action are called simple. A module is called semisimple if it is a direct sum of simples.

Maschke ~1899. All modules are built out of simples ("Jordan-Hölder" filtration).

> | We want to have a |
| :---: |
| categorical version of this! |

Pioneers of representation theory

Let A be a finite-dimensional algebra.
Noether $\sim 1928++$. Representation theory is the useful? study of algebra actions

$$
\mathcal{M}: \mathrm{A} \longrightarrow \mathcal{E} \operatorname{nd}(\mathrm{~V}), \quad " \mathcal{M}(\mathrm{a})=\text { a matrix in } \mathcal{E} \operatorname{nd}(\mathrm{V}) "
$$

with V being some vector space. (Called modules or representations.)
The "atoms" of such an action are called simple. A module is called semisimple if it is a direct sum of simples.

Noether, Schreier $\boldsymbol{\sim}$ 1928. All modules are built out of simples ("Jordan-Hölder" filtration).

Pioneers of representation theory

Let A be a finite-dimensional algebra.
Noether $\sim 1928++$. Representation theory is the useful? study of algebra actions

$$
\mathcal{M}: \mathrm{A} \longrightarrow \mathcal{E} \operatorname{nd}(\mathrm{v}),
$$

with V being some vector space. (Called modules or representations.)
The "atoms" of such an action are called simple. A module is called semisimple if it is a direct sum of simples.

Noether, Schreier $\boldsymbol{\sim}$ 1928. All modules are built out of simples ("Jordan-Hölder" filtration).
We want to have a
categorical version of this.

I am going to explain what we can do at present.

Life is non-semisimple

collection ("category") of modules m the world
modules $n \rightarrow$ chemical compounds
simples \leftrightarrows elements
semisimple $\leadsto \nrightarrow$ only trivial compounds
non-semisimple $x \rightarrow$ non-trivial compounds

Main goal of representation theory. Find the periodic table of simples.

non-semisimple $x \rightarrow$ non-trivial compounds

Main goal of representation theory. Find the periodic table of simples.

non-semisimple $\rightsquigarrow n \rightarrow$	Fact.	
Main goal of repres	Semisimple case: the character determines the module \rightarrow mass determines the chemical compound.	le of simples.

Life is non-semisimple

collection	Example.
modules ar	$\mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathcal{A u t}\left(\mathbb{C}^{2}\right), \quad 0 \mapsto\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \quad \& \quad 1 \mapsto\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)$
	Common eigenvectors: $(1,1)$ and $(1,-1)$ and base change gives
simples	$0 \mapsto\left(\begin{array}{c\|c} 1 & 0 \\ \hline 0 & 1 \end{array}\right) \quad \& \quad 1 \mapsto\left(\begin{array}{c\|c} 1 & 0 \\ \hline 0 & -1 \end{array}\right)$ and the module decomposes.
semisimple \longleftrightarrow only trivial compounds	

non-semisimple \nVdash non-trivial compounds

Main goal of representation theory. Find the periodic table of simples.

Life is non-semisimple

collection	Example.
modules *-	$\mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathcal{A u t}\left(\mathbb{C}^{2}\right), \quad 0 \mapsto\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \quad \& \quad 1 \mapsto\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)$
	Common eigenvectors: $(1,1)$ and $(1,-1)$ and base change gives
simples	$0 \mapsto\left(\begin{array}{c\|c} 1 & 0 \\ \hline 0 & 1 \end{array}\right) \quad \& \quad 1 \mapsto\left(\begin{array}{c\|c} 1 & 0 \\ \hline 0 & -1 \end{array}\right)$ and the module decomposes.
semisimple	\rightarrow only trivial compounds

Example.
Mon-semisimpl goal of
$\mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathcal{A u t}\left({\overline{\mathbb{f}_{2}}}^{2}\right), \quad 0 \mapsto\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \& 1 \mapsto\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
Common eigenvector: $(1,1)$ and base change gives
$0 \mapsto\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \& 1 \mapsto\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
and the module is non-simple, yet does not decompose.

Life is non-semisimple

collection	Example.
modules a	$\mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathcal{A u t}\left(\mathbb{C}^{2}\right), \quad 0 \mapsto\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \quad \& \quad 1 \mapsto\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)$
	Common eigenvectors: $(1,1)$ and $(1,-1)$ and base change gives
simples mor	$0 \mapsto\left(\begin{array}{c\|c} 1 & 0 \\ \hline 0 & 1 \end{array}\right) \quad \& \quad 1 \mapsto\left(\begin{array}{c\|c} 1 & 0 \\ \hline 0 & -1 \end{array}\right)$ and the module decomposes.
semisimple ${ }_{\text {ctan }}$	

non-semisimple	Example.
Main goal of	$\mathbb{Z} / 2 \mathbb{Z} \rightarrow \operatorname{Aut}\left({\overline{\mathbb{F}_{2}}}^{2}\right), \quad 0 \mapsto\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \quad \& \quad 1 \mapsto\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)$
	Common eigenvector: $(1,1)$ and base change gives $0 \mapsto\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \quad \& 1 \mapsto\left(\begin{array}{ll} 1 & 1 \\ 0 & 1 \end{array}\right)$ the module is non-simple, yet does not decompose.

The strategy

"Groups, as men, will be known by their actions." - Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and related field. Sadly, it is also very hard.

Representation theory approach. The analog linear problem of classifying G-modules has a satisfactory answer for many groups.

Problem involving
a group action $G \subset X$

The strategy

"Groups, as men, will be known by their actions." - Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and related field. Sadly, it is also very hard.

Representation theory approach. The analog linear problem of classifying G-modules has a satisfactory answer for many groups.

The strategy

"Groups, as men, will be known by their actions." - Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and related field. Sadly, it is also very hard.

Representation theory approach. The analog linear problem of classifying G-modules has a satisfactory answer for many groups.

The strategy

"Groups, as men, will be known by their actions." - Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and related field. Sadly, it is also very hard.

Representation theory approach. The analog linear problem of classifying G-modules has a satisfactory answer for many groups.

Philosophy. Turn problems into linear algebra.

Some theorems in classical representation theory

\triangleright All G-modules are built out of simples.
\triangleright The character of a simple G-module is an invariant.
\triangleright There is an injection

$$
\begin{gathered}
\text { \{simple G-modules\}/iso } \\
\hookrightarrow \\
\{\text { conjugacy classes in } \mathrm{G}\},
\end{gathered}
$$

which is $1: 1$ in the semisimple case.
\triangleright All simples can be constructed intrinsically using the regular G-module.

Some theorems in classical representation theory

\triangleright All G-modules are built out of simples.
\triangleright The character of a simple G-module is an invariant.
\triangleright There is an injection

$$
\begin{gathered}
\text { \{simple G-modules\}/iso } \\
\hookrightarrow \\
\text { \{conjugacy classes in G }\}
\end{gathered}
$$

which is $1: 1$ in the semisimple case.
\triangleright All simples can be constructed intrinsically using the regular G-module.

Some theorems in classical representation theory

Find categorical versions of these facts.
\triangleright All G-modules are built out of simples.
\triangleright The character of a simple G-module is an invariant.
\triangleright There is an injection

$$
\begin{gathered}
\text { \{simple G-modules\}/iso } \\
\text { \{conjugacy classes in } \mathrm{G}\}
\end{gathered}
$$

which is $1: 1$ in the semisimple case.
\triangleright All simples can be constructed intrinsically using the regular G-module.

Dihedral representation theory on one slide

One-dimensional modules. $\mathcal{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, \mathrm{s} \mapsto \lambda_{\mathrm{s}}, \mathrm{t} \mapsto \lambda_{\mathrm{t}}$.

Two-dimensional modules. $\mathcal{M}_{z}, z \in \mathbb{C}, \mathrm{~s} \mapsto\left(\begin{array}{cc}1 & z \\ 0 & -1\end{array}\right)$, $\mathrm{t} \mapsto\left(\begin{array}{cc}-1 & 0 \\ \bar{z} & 1\end{array}\right)$.

$V(n)=\{2 \cos (\pi k / n-1) \mid k=1, \ldots, n-2\}$.

Dihedral representation theory on one slide

One-dimension=	The list of one- and two-dimensional $\mathrm{D}_{2 n}$-modules, is a complete, irredundant list of simples.	
	$\mathcal{M}_{-1,-1}, \mathcal{M}_{1,-1}, \mathcal{M}_{-1,1}, \mathcal{M}_{1,1}$	$\mathcal{M}_{-1,-1}, \mathcal{M}_{1,1}$
1 learned this construction from Mackaay in 2017.		
Two-dimensional modules. $\mathcal{M}_{z}, z \in \mathbb{C}, \mathrm{~s} \mapsto\left(\begin{array}{cc}1 & z \\ 0 & -1\end{array}\right), \mathrm{t} \mapsto\left(\begin{array}{cc}-1 & 0 \\ \bar{z} & 1\end{array}\right)$		
	$n \equiv 0 \bmod 2$	$n \not \equiv 0 \bmod 2$
	$\mathcal{M}_{z}, z \in V(n)-\{0\}$	$\mathcal{M}_{z}, z \in V(n)$
$V(n)=\{2 \cos (\pi k$	$(\pi k / n-1) \mid k=1, \ldots, n-2\}$.	

Dihedral representation theory on one slide

Beware of infinite dimensions

Take the infinite-dimensional Weyl algebra $\mathrm{W}=\mathbb{C}\langle x, \delta \mid \delta x=1+x \delta\rangle$.
It has a very nice infinite-dimensional module

$$
\mathrm{W} \rightarrow \mathcal{E} \operatorname{nd}(\mathbb{C}[X]), x \mapsto \cdot X, \delta \mapsto d / d X
$$

and $\delta x=1+x \delta$ just becomes Leibniz' product rule.
However, the classification of simples is not so easy. For example, W does not have any finite-dimensional module.

Why? Assume it has and $x \mapsto$ some matrix $M ; \delta \mapsto$ some matrix N. Then:

$$
\operatorname{tr}(M N)=\operatorname{tr}(N M)=1+\operatorname{tr}(M N) \quad \Rightarrow \quad 0=1
$$

But even there representation theory help

Take the infinite Artin-Tits group $\mathrm{B}(\mathrm{C})=\langle b_{i} \mid \ldots b_{j} b_{i} b_{j}=\underbrace{}_{i} b_{j} b_{i}\rangle$.

One can easily cook-up finite-dimensional modules which help to distinguish the elements of $\mathrm{B}(\mathrm{C})$.

However, it is very hard and not known in general how to find faithful ("injective") finite-dimensional modules.

Categorification in a nutshell

2-representation theory in a nutshell

> | The ladder of categorification: in each step there is a new layer of structure |
| :---: |
| which is invisible on the ladder rung below. |

2-representation theory in a nutshell

The next ladder rung

Slogan. 2-representation theory is group theory in categories.

$$
\mathrm{W}=\mathbb{C}\langle x, \delta \mid \delta x=1+x \delta\rangle
$$

$\mathrm{W} \rightarrow \mathcal{E} \operatorname{nd}(\mathbb{C}[X]) \quad x \mapsto \cdot X \quad \delta \mapsto d / d X$

The next ladder rung

Slogan. 2-representation theory is group theory in categories.

$$
\mathrm{W}=\mathbb{C}\langle x, \delta \mid \delta x=1+x \delta\rangle
$$

$$
\mathrm{W} \rightarrow \mathcal{E} \operatorname{nd}\left(\bigoplus_{i \in \mathbb{N}_{0}} \mathbb{C}\left\{X^{i}\right\}\right) \quad x \mapsto \bigoplus_{i \in \mathbb{N}_{0}} \cdot X \quad \delta \mapsto \bigoplus_{i \in \mathbb{N}_{0}} d / d X
$$

The next ladder rung

Slogan. 2-representation theory is group theory in categories.

$$
\begin{gathered}
\qquad \begin{array}{c}
\mathrm{W}=\mathbb{C}\langle x, \delta \mid \delta x=1+x \delta\rangle \\
\mathrm{W} \rightarrow \mathscr{E} \operatorname{nd}\left(\bigoplus_{i \in \mathbb{N}_{0}} \mathrm{~N}_{i}-\mathcal{M o d}\right) \quad x \mapsto \bigoplus_{i \in \mathbb{N}_{0}} \cdot X \quad \delta \mapsto \bigoplus_{i \in \mathbb{N}_{0}} d / d X \\
\text { Step 1. } \\
\text { Replace the vector spaces } \mathbb{C}\left\{X^{i}\right\} \text { by appropriate categories } \mathrm{N}_{i} \text {-Mod. } \\
\text { Here } \mathrm{N}_{i} \text { are certain algebras ("Nil Coxeter") which embed into each other } \mathrm{N}_{i} \hookrightarrow \mathrm{~N}_{i+1}, \\
\text { of which we think about as lifting } \mathbb{C}\left\{X^{i}\right\} \stackrel{. x}{\longrightarrow} \mathbb{C}\left\{X^{i+1}\right\} .
\end{array} \\
\hline
\end{gathered}
$$

The next ladder rung

Slogan. 2-representation theory is group theory in categories.

$$
\mathrm{W}=\mathbb{C}\langle x, \delta \mid \delta x=1+x \delta\rangle
$$

$\mathrm{W} \rightarrow \mathscr{E} \operatorname{nd}\left(\bigoplus_{i \in \mathbb{N}_{0}} \mathrm{~N}_{i}-\right.$ Mod $) \quad x \mapsto \bigoplus_{i \in \mathbb{N}_{0}} \mathcal{I n d}_{i}^{i+1} \quad \delta \mapsto \bigoplus_{i \in \mathbb{N}_{0}} d / d X$

Step 2.
Replace the linear operators $\cdot X: \mathbb{C}\left\{X^{i}\right\} \rightarrow \mathbb{C}\left\{X^{i+1}\right\}$ by appropriate ("induction") functors $\mathcal{I n d}_{i}^{i+1}: \mathrm{N}_{\mathrm{i}}-\mathcal{M o d} \rightarrow \mathrm{N}_{i+1}$ - Mod.

The next ladder rung

Slogan. 2-representation theory is group theory in categories.

$$
\begin{gathered}
\mathrm{W}=\mathbb{C}\langle x, \delta \mid \delta x=1+x \delta\rangle \\
\downarrow \\
\mathrm{W} \rightarrow \mathscr{E} \operatorname{nd}\left(\bigoplus_{i \in \mathbb{N}_{0}} \mathrm{~N}_{i} \text {-Mod }\right) \quad x \mapsto \bigoplus_{i \in \mathbb{N}_{0}} \mathcal{I n d}_{i}^{i+1} \quad \delta \mapsto \bigoplus_{i \in \mathbb{N}_{0}} \mathcal{R e s}_{i+1}^{i}
\end{gathered}
$$

Step 3.

Replace the linear operators $d / d X: \mathbb{C}\left\{X^{i+1}\right\} \rightarrow \mathbb{C}\left\{X^{i}\right\}$ by appropriate ("restriction") functors $\operatorname{Res}_{i+1}^{i}: \mathrm{N}_{\mathrm{i}}$ - $\operatorname{Mod} \rightarrow \mathrm{N}_{i+1}$ - Mod.

The next ladder rung

Slogan. 2-representation theory is group theory in categories.

$$
\begin{gathered}
\mathrm{W}=\mathbb{C}\langle x, \delta \mid \delta x=1+x \delta\rangle \\
\downarrow \\
\mathrm{W} \rightarrow \mathscr{E} \operatorname{nd}\left(\bigoplus_{i \in \mathbb{N}_{0}} \mathrm{~N}_{i} \text {-Mod }\right) \quad x \mapsto \bigoplus_{i \in \mathbb{N}_{0}} \mathcal{I n d}_{i}^{i+1} \quad \delta \mapsto \bigoplus_{i \in \mathbb{N}_{0}} \mathcal{R e s}_{i+1}^{i}
\end{gathered}
$$

Step 4.

Check that everything works.
In particular, the reciprocity $\mathcal{R} \mathrm{es}_{i+1}^{i} \mathcal{I} \operatorname{nd}_{i}^{i+1} \cong \mathcal{I} \mathrm{~d} \oplus \mathcal{I} \mathrm{nd}_{i}^{i-1} \mathcal{R} \mathrm{es}_{i-1}^{i}$ categorifies Leibniz' product rule.

Pioneers of 2-representation theory

Let G be a finite group.

> | Plus some coherence conditions which I will not explain. |
| :--- |

Chuang-Rouquier \& many others $\mathbf{\sim} \mathbf{2 0 0 4 + +}$. Higher representation theory is the useful? study of (certain) categorical actions, e.g.

$$
\mathscr{M}: \mathrm{G} \longrightarrow \mathscr{A} \mathrm{ut}(\mathcal{V}), \quad " \mathscr{M}(\mathrm{~g})=\text { a functor in } \mathscr{A} \mathrm{ut}(\mathcal{V}) "
$$

with \mathcal{V} being some \mathbb{C}-linear category. (Called 2-modules or 2-representations.)
The "atoms" of such an action are called 2-simple.
Mazorchuk-Miemietz ~2014. All (suitable) 2-modules are built out of 2-simples ("weak 2-Jordan-Hölder filtration").

Pioneers of 2-representation theory

Let \mathscr{C} be a finitary 2-category.
Chuang-Rouquier \& many others $\boldsymbol{\sim} \mathbf{2 0 0 4 + +}$. Higher representation theory is the

$$
\mathscr{M}: \mathscr{C} \longrightarrow \mathscr{E} \operatorname{nd}(\mathcal{V}),
$$

with \mathcal{V} being some \mathbb{C}-linear category. (Called 2-modules or 2-representations.)

The "atoms" of such an action are called 2-simple.
Mazorchuk-Miemietz ~2014. All (suitable) 2-modules are built out of 2-simples ("weak 2-Jordan-Hölder filtration").

> | The three goals of 2-representation theory. |
| :---: |
| Improve the theory itself. |
| Discuss examples. |
| Find applications. |

"Lifting" classical representation theory

\triangleright All G-modules are built out of simples.
\triangleright The character of a simple G-module is an invariant.
\triangleright There is an injection

$$
\begin{gathered}
\text { \{simple G-modules }\} / \text { iso } \\
\hookrightarrow \\
\{\text { conjugacy classes in G\}, }
\end{gathered}
$$

which is $1: 1$ in the semisimple case.
\triangleright All simples can be constructed intrinsically using the regular G-module.

> Goal 1. Improve the theory itself.

"Lifting" classical representation theory

\triangleright All (suitable) 2-modules are built out of 2-simples.
\triangleright The character of a $\left\{\begin{array}{c}\text { Note that we have a very particular notion } \\ \text { what a "suitable" } 2 \text {-module is. }\end{array}\right.$
\triangleright There is an injection

$$
\begin{gathered}
\text { \{simple G-modules\}/iso } \\
\text { \{conjugacy classes in } \mathrm{G}\}
\end{gathered}
$$

which is $1: 1$ in the semisimple case.
\triangleright All simples can be constructed intrinsically using the regular G-module.

Goal 1. Improve the theory itself.

"Lifting" classical representation theory

\triangleright All (suitable) 2-modules are built out of 2-simples.
\triangleright The decategorified actions (a.k.a. matrices) of the $\mathrm{M}(\mathrm{F})$'s are invariants.
\triangleright There is an injection $\begin{gathered}\text { What characters were for Frobenius } \\ \text { are these matrices for us. }\end{gathered}$
\{simple G-modules\}/iso
\hookrightarrow
\{conjugacy classes in G\},
which is $1: 1$ in the semisimple case.
\triangleright All simples can be constructed intrinsically using the regular G-module.

Goal 1. Improve the theory itself.

"Lifting" classical representation theory

\triangleright All (suitable) 2-modules are built out of 2-simples.
\triangleright The decategorified actions (a.k.a. matrices) of the $M(F)$'s are invariants.
\triangleright There is an injection
$\{2$-simples of $\mathscr{C}\} /$ equi.

There are some technicalities.
\{certain (co)algebra 1-morphisms\}/"2-Morita equi.",
which is $1: 1$ in well-behaved cases.
\triangleright All simples can be constructed intrinsically using the regular G-module.

Goal 1. Improve the theory itself.

"Lifting" classical representation theory

\triangleright All (suitable) 2-modules are built out of 2-simples.
\triangleright The decategorified actions (a.k.a. matrices) of the $\mathrm{M}(\mathrm{F})$'s are invariants.
\triangleright There is an injection
$\{2$-simples of $\mathscr{C}\} /$ equi.
\{certain (co)algebra 1-morphisms\}/"2-Morita equi.",
which is $1: 1$ in well-behaved cases.
\triangleright There exists principal 2-modules lifting the regular module.
Even in well-behaved cases there are 2 -simples which do not arise in this way.

> | These turned out to be very interesting, |
| :---: |
| since their importance is only visible via categorification. |

Goal 1. Improve the theory itself.

2-modules of dihedral groups

Consider: $\quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1$.
(Motivation. The Kazhdan-Lusztig basis has some neat integral properties.)
These elements generate $\mathbb{C}\left[\mathrm{D}_{2 n}\right]$ and their relations are fully understood:

$$
\theta_{\mathrm{s}} \theta_{\mathrm{s}}=2 \theta_{\mathrm{s}}, \quad \theta_{\mathrm{t}} \theta_{\mathrm{t}}=2 \theta_{\mathrm{t}}, \quad \text { a relation for } \underbrace{\ldots \text { sts }}_{n}=\underbrace{\ldots \text { tst }}_{n} .
$$

We want a categorical action. So we need:
\triangleright A category \mathcal{V} to act on.
\triangleright Endofunctors Θ_{s} and Θ_{t} acting on \mathcal{V}.
\triangleright The relations of θ_{s} and θ_{t} have to be satisfied by the functors.
\triangleright A coherent choice of natural transformations. (Skipped today.)

2-modules of dihedral groups

Consider: $\quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1$.

\triangleright A category \mathcal{V} to act on.
\triangleright Endofunctors Θ_{s} and Goal 2. Discuss examples.
\triangleright The relations of θ_{s} and θ_{t} have to be satisfied by the functors.
\triangleright A coherent choice of natural transformations. (Skipped today.)

Slogan. Representation theory is group theory in vector spaces.

$$
\text { symmerise of n-gons } \subset \text { Aut }\left(\mathbb{R}^{2}\right)
$$

Some theorems in classical representation theory

> D. All G-modules are built cout of simples.

The character of a simple C -module is an invariant.
D. There is an injection

$$
\begin{gathered}
\text { \{simple G-modules)/[so } \\
\text { (conjugary classes in G]. }
\end{gathered}
$$

which is $1: 1$ in the semisimple case
. All simples can be constructed intrinsically using the regular C-module

2-representation theory in a nutshell

Dihedral representation theory on one slide

$$
\begin{array}{c:c}
\quad \ldots \ldots=0 \bmod 2 & e \neq 0 \bmod 2 \\
\hdashline M_{-1,-1}, M_{2,-2}, M_{-21}, M_{1, t} & M_{-2,-1}, M_{1,1}
\end{array}
$$

Two-dimensional modules. $M_{x, z} \in \mathrm{C}, \mathrm{a} \mapsto\left(\begin{array}{c}1 \\ 0 \\ 0\end{array} \mathrm{z}\right), \tau \mapsto\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)$.

$$
\begin{array}{c:c}
n=0 \bmod 2 & n \neq 0 \bmod 2 \\
\hdashline M_{s, z} \in V(n)-\{0] & M_{s}, z \in V(n)
\end{array}
$$

$V(n)-\{2 \cos (\pi k / n-1) \mid k-1, \ldots, n-2)$

"Lifting" classical representation theory

D. All (aitable) 2 -modules ze built out of 2 -simples.

- The decategrifiod actions (2.k.a. matrices) of the $\mathrm{M}(\mathrm{F})$'s are invariants. There is an injection

$$
\text { (2-simples of } \subset 1 / \text { equi. }
$$

(certain (∞)algebra 1 -morphisms)/ "2-Mcrita equiu."
which is $1: 1$ in well-behaved cases
-. There exists principal 2 -modules lifting the regular module Even in well-behawed cases there are 2 -simples which do not aise in this way

These turned out to be very intersting
since their importance is only wisible via categorifcation.

Goal 1. Impowe tro theory italt

Note the noot of unity ρ pl
\cdots
Categorification in a nutshell

There is still much to do...

Slogan. Representation theory is group theory in vector spaces.

$$
\text { symmerise of n-gons } \subset \text { Aut }\left(\mathbb{R}^{2}\right)
$$

Some theorems in classical representation theory

All G-modules are built out of simples.

. The charater of a simple G -module is an invariant.
D. There is an injection

$$
\begin{aligned}
& \text { [simple G-modules\}//iso } \\
& \text { (conjugacy classe in } \mathrm{G} \text {]. }
\end{aligned}
$$

which is $1: 1$ in the semisimple case.
All simples can be constructed intrinsically using the regular C-module

2-representation theory in a nutshell

Dihedral representation theory on one slide

$$
\begin{array}{c:c}
\quad \ldots \ldots=0 \bmod 2 & e \neq 0 \bmod 2 \\
\hdashline M_{-1,-1}, M_{2,-2}, M_{-21}, M_{1, t} & M_{-2,-1}, M_{1,1}
\end{array}
$$

Two-dimensional modules. $M_{x, z} \in \mathrm{C}, \mathrm{a} \mapsto\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \tau \mapsto\binom{-1}{z^{2}}$.

$$
\begin{array}{c:c}
n=0 \bmod 2 & n \neq 0 \bmod 2 \\
\hdashline M_{s, z} \in V(n)-\{0] & M_{s}, z \in V(n)
\end{array}
$$

$V(n)-\{2 \cos (\pi k / n-1) \mid k-1, \ldots, n-2)$

"Lifting" classical representation theory

D. All (aitable) 2 -modules ze built out of 2 -simples.

- The decategrerified actions (2.k.i. matrices) of the $\mathrm{M}(\mathrm{F})$'s are invariants b. There is an injection

$$
\text { (2 } 2 \text { smples of } 6 \text { [}\} \text { /equi. }
$$

[certain (∞)algebera 1 -morphisms]/ ' 2 -Morita equis."
Which is $1: 1$ in mell-behawed cases.
5. There exists prinipal 2 -modules lifting the regular module Even in well-behaved cases there are 2 -simples which do not arise in this way

These turned out to be very intersting
since their importance is only wisible via categorifcation.

Goal 1. Impowe tro theory italt

Figure: 'Ubir Guppencharaktere (i.e charaturs of groups)' by Froberius (1896) Botem: fist putidhhed charateter table

Note the noot of unity pl
\cdots
Categorification in a nutshell

Thanks for your attention!

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that could be most directly obtained by the consideration of groups of linear transformations.

V
ERY considerable advances in the theory of groups of finite order have been made since the appearance of the first edition of this book. In particular the theory of groups of linear substitutions has been the subject of numerous and important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that
Nowadays representation theory is pervasive across mathematics, and beyond.
TERY considerable advances in the theory of groups of But this wasn't clear at all when Frobenius started it.
of linear substitutions has been the subject of numerous and important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).
samen Factor f abgesehen) einen relativen Charakter von 5, und umSekehrt lässt sich jeder relative Charakter von $5, x_{0}, \cdots x_{k-1}$, auf eine ${ }^{0}$ der mehrere Arten durch Hinzufügung passender Werthe $\chi_{k}, \cdots \chi_{k^{\prime}-1}$ ${ }^{4}$ einem Charakter von 5 ' ergänzen.

§ 8.

Ich will nun die Theorie der Gruppencharaktere an einigen BeiSielen erläutern. Die geraden Permutationen von 4 Symbolen bilden cine Gruppe 5 der Ordnung $h=12$. Ihre Elemente zerfallen in 4 Classen, die Elemente der Ordnung 2 bilden eine zweiseitige Classe (1), die der Ordnung 3 zwei inverse Classen (2) und $(3)=\left(2^{\prime}\right)$. Sei p eine primitive Cubische Wurzel der Einheit.

Tetraeder. $h=12$.

	$\chi^{(0)}$	$\chi^{(1)}$	$\chi^{(2)}$	$\chi^{(3)}$	h_{α}
χ_{0}	1	3	1	1	1
χ_{1}	1	-1	1	1	3
χ_{2}	1	0	ρ	ρ^{2}	4
χ_{3}	1	0	ρ^{2}	ρ	4

Figure: "Über Gruppencharaktere (i.e. characters of groups)" by Frobenius (1896). Bottom: first published character table.

Note the root of unity ρ !

Example. Prototypical braids in $\mathbb{R}^{2} \times[0,1]$ are

These form a(n infinite) group.

Theorem (Artin ~ 1925). The braid group $B(A)$ is an algebraic model of the group of braids in $\mathbb{R}^{2} \times[0,1]$.

Example. Prototypical braids in $\mathbb{R}^{2} \times[0,1]$ are

Proof (idea).
The generators b_{i} correspond to the simple braid swapping the i and the $i+1$ strands

$$
b_{i} \mapsto>
$$

The relations boil down to

which gives a surjection.
Checking injectivity of this map is work.

Example. Prototypical braids in $\mathbb{R}^{2} \times[0,1]$ are

Example. Prototypical braids in $\mathbb{R}^{2} \times[0,1]$ are

Example.

Here is a finite-dimensional module of $B(A)$ for three strands:
$\mathrm{B}(\mathrm{A}) \rightarrow \mathcal{A u t}\left((\mathbb{C}(q, t))^{3}\right), \quad b_{1} \mapsto\left(\begin{array}{ccc}-q^{2} t & 0 & q^{2}-q \\ 0 & 0 & q \\ 0 & 1 & 1-q\end{array}\right) \quad \& b_{2} \mapsto\left(\begin{array}{ccc}0 & q & 0 \\ 1 & 1-q & 0 \\ 0 & t\left(q^{2}-q\right) & -q^{2} t\end{array}\right)$
Theorem (Lawrence ~1990, Bigelow \& Kramer ~2002).
These form a This works in general for $\mathrm{B}(\mathrm{A})$ and the modules are faithful. (Two braids are the same iff their matrices are the same.)
Theorem (Artin ~ 1925). The braid group $B(A)$ is an algebraic model of the group of braids in $\mathbb{R}^{2} \times[0,1]$.

Example. Prototypical braids in $\mathbb{R}^{2} \times[0,1]$ are

Example.

Here is a finite-dimensional module of $B(A)$ for three strands:
$\mathrm{B}(\mathrm{A}) \rightarrow \mathcal{A u t}\left((\mathbb{C}(q, t))^{3}\right), \quad b_{1} \mapsto\left(\begin{array}{ccc}-q^{2} t & 0 & q^{2}-q \\ 0 & 0 & q \\ 0 & 1 & 1-q\end{array}\right) \quad \& \quad b_{2} \mapsto\left(\begin{array}{ccc}0 & q & 0 \\ 1 & 1-q & 0 \\ 0 & t\left(q^{2}-q\right) & -q^{2} t\end{array}\right)$
Theorem (Lawrence ~1990, Bigelow \& Kramer ~2002).
These form a This works in general for $\mathrm{B}(\mathrm{A})$ and the modules are faithful. (Two braids are the same iff their matrices are the same.)
Theorem (Artin ~1925). The braid group $B(A)$ is an algebraic model of the group of braids in $\mathbb{R}^{2} \times[0,1]$.
However, for general Artin-Tits braid groups basically all questions are widely open.

Khovanov \& others $\boldsymbol{\sim} 1999+$. Knot homologies are instances of 2-representation theory. Low-dim. topology \& Math. Physics

Khovanov-Seidel \& others ~2000++. Faithful 2-modules of braid groups.
Low-dim. topology \& Symplectic geometry

Chuang-Rouquier ~2004. Proof of the Broué conjecture using 2-representation theory. p-RT of finite groups \& Geometry \& Combinatorics

Elias-Williamson ~2012. Proof of the Kazhdan-Lusztig conjecture using ideas from 2-representation theory. Combinatorics \& RT \& Geometry

Riche-Williamson $\boldsymbol{\sim}$ 2015. Tilting characters using 2-representation theory. p-RT of reductive groups \& Geometry

Many more...

Khovanov \& others $\boldsymbol{\sim} 1999+$. Knot homologies are instances of 2-representation theory. Low-dim. topology \& Math. Physics

Khovanov-Seidel \& othergoal 3. Find application.
Low-dim. topology \& Symplectic geometry

Chuang-Rou	Functoriality of Khovanov-Rozansky's invariants ~ 2017 (This was conjectured from about 10 years, but seemed infeasible to prove, and has some impact on 4-dim. topology.) The main ingredient? 2-representation theory.	representation
theory. p-RT		
Elias-William from 2-represe		re using ideas
Riche-Williar		on theory.
p-RT of redu		
Many more..		

Construct a D_{∞}-module V associated to a bipartite graph G :

$$
\begin{array}{cc}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}} & =\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{array}
$$

Construct a D_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathrm{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a D_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathrm{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{llllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & \theta_{\mathrm{t}} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a D_{∞}-module V associated to a bipartite graph G :

$$
\begin{aligned}
& \text { V }=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}} \\
& \theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lll|ll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

Construct a D_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a D_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathrm{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a D_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a D_{∞}-module V associated to a bipartite graph G :

$$
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}}
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{l|l|lll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

Construct a D_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a D_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll|l}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a D_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a D_{∞}-module V associated to a bipartite graph G :

$$
\mathrm{v}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathrm{C}}
$$

Lemma. For certain values of n these are \mathbb{N}_{0}-valued $\mathbb{C}\left[\mathrm{D}_{2 n}\right]$-modules.

Lemma. All \mathbb{N}_{0}-valued $\mathbb{C}\left[\mathrm{D}_{2 n}\right]$-module arise in this way.

Lemma. All 2-modules decategorify to such \mathbb{N}_{0}-valued $\mathbb{C}\left[\mathrm{D}_{2 n}\right]$-module.

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

Construct a D_{∞}-module V associated to a bipartite graph G :

$$
\mathrm{v}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathrm{C}}
$$

$$
\begin{gathered}
\text { Categorification. } \\
\begin{array}{c}
\text { Category } \rightsquigarrow \mathcal{V}=\mathrm{Z} \text {-Mod, } \\
\mathrm{Z} \text { quiver algebra with underlying graph } G . \\
\text { Endofunctors } \rightsquigarrow \text { tensoring with Z-bimodules. } \\
\text { Lemma. These satisfy the relations of } \mathbb{C}\left[D_{2 n}\right] .
\end{array} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

The type A family
$n=2$
∇
$n=3$
$n=4$
\longrightarrow
$n=5$

The type D family

The type E exceptions

The type A family

$$
n=6
$$

The type D family

Note that this is also completely different than the decategorified story:
The number of 2 -simples is at most three, but they grow in dimension when n grows.

