A primer on finitary 2-representation theory

Or: \mathbb{N}_{0}-matrices, my love

Joint with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang
January 2019
(1) Philosophy: "Categorifying" classical representation theory

- Some classical results
- Some categorical results
(2) The decategorified story
- \mathbb{N}_{0}-representation theory
- How cell theory helps
(3) The categorified story
- Finitary 2 -representation theory
- How cell theory helps

Pioneers of representation theory.

Let A be a finite-dimensional algebra.
Frobenius $\sim 1895+$, Burnside $\sim 1900+$, Noether $\sim 1928+$. Representation theory is the usetir? study of algebra actions

$$
\mathcal{M}: \mathrm{A} \longrightarrow \mathcal{E} \operatorname{nd}(\mathrm{~V}), \quad " \mathcal{M}(\mathrm{a})=\text { a matrix in } \mathcal{E} \operatorname{nd}(\mathrm{v}) "
$$

with V being some vector space. (Called modules or representations.)

The "atoms" of such an action are called simple.
Maschke ~1899, Noether, Schreier $\boldsymbol{\sim}$ 1928. All modules are built out of simples ("Jordan-Hölder filtration").

Pioneers of representation theory.

Let A be a finite-dimensional algebra.
Frobenius $\sim 1895+$, Burnside $\sim 1900+$, Noether $\sim 1928+$. Representation theo A main goal of representation theory. ns

Classify simples.
$\mathcal{M}: \mathrm{A} \longrightarrow \mathcal{E} \operatorname{nd}(\mathrm{V})$,
with V being some vector space. (Called modules or representations.)

The "atoms" of such an action are called simple.
Maschke ~1899, Noether, Schreier $\boldsymbol{\sim}$ 1928. All modules are built out of simples ("Jordan-Hölder filtration").

Pioneers of representation theory.

Let A be a finite-dimensional algebra.
Frobenius $\sim 1895+$, Burnside $\sim 1900+$, Noether $\sim 1928+$.

Representation theory is tt | We want to have a |
| :---: |
| categorical version of this. | actions

$\mathcal{M}: \mathrm{A} \longrightarrow \mathcal{E} \mathrm{nd}(\mathrm{V})$.
I am going to explain what we can do at present.
with V being some vector space. (Called modules or representations.)

The "atoms" of such an action are called simple.
Maschke ~1899, Noether, Schreier $\boldsymbol{\sim}$ 1928. All modules are built out of simples ("Jordan-Hölder filtration").

Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type $\mathrm{I}_{2 n}$:

I should do the Hecke case, but I will keep it easy.

$$
\begin{gathered}
D_{2 n}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{n}=\underbrace{\ldots \text { sts }}_{n}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{n}=\overline{\mathrm{t}}_{n}\rangle, \\
\text { e.g. } \left.D_{8}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. A finite coreter gour is the symmetry group of a (semi)regular polyhedron, e.g. for I_{8} we have a 4-gon:

$$
\text { Idea (Coxeter } \sim 1934++ \text {). }
$$

Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type $\mathrm{I}_{2 n}$:

$$
\begin{gathered}
D_{2 n}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{n}=\underbrace{\ldots \text { sts }}_{n}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{n}=\bar{t}_{n}\rangle, \\
\text { e.g. } \left.D_{8}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. A finite coxter goup is the symmetry group of a (semi)regular polyhedron, e.g. for I_{8} we have a 4-gon:

$$
\text { Fix a flag } F \text {. Idea (Coxeter } \sim \text { 1934++). }
$$

Fact. The symmetries are given by exchanging flags.

Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type $\mathrm{I}_{2 n}$:

$$
\begin{gathered}
D_{2 n}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{n}=\underbrace{\ldots \text { sts }}_{n}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{n}=\bar{t}_{n}\rangle, \\
\text { e.g. } \left.D_{8}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. A finite corcer goup is the symmetry group of a (semi)regular polyhedron, e.g. for I_{8} we have a 4-gon:

$$
\text { Fix a flag } F \text {. }
$$

Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type $\mathrm{I}_{2 n}$:

$$
\begin{gathered}
D_{2 n}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{n}=\underbrace{\ldots \text { sts }}_{n}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{n}=\overline{\mathrm{t}}_{n}\rangle, \\
\text { e.g. } \left.D_{8}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. A finite corcer goup is the symmetry group of a (semi)regular polyhedron, e.g. for I_{8} we have a 4-gon:

$$
\text { Fix a flag } F \text {. }
$$

Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Fix a hyperplane H_{1} permuting the adjacent 1 -cells of F, etc.

Idea (Coxeter $\sim 1934+$).

Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type $\mathrm{I}_{2 n}$:

$$
\begin{gathered}
D_{2 n}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{n}=\underbrace{\ldots \text { sts }}_{n}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{n}=\overline{\mathrm{t}}_{n}\rangle, \\
\text { e.g. } \left.D_{8}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. A finite corcer goup is the symmetry group of a (semi)regular polyhedron, e.g. for I_{8} we have a 4-gon:

$$
\text { Fix a flag } F \text {. }
$$

Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Fix a hyperplane H_{1} permuting the adjacent 1-cells of F, etc.
Write a vertex i for each H_{i}.

Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type $\mathrm{I}_{2 n}$:

$$
\begin{gathered}
D_{2 n}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{n}=\underbrace{\ldots \mathrm{sts}}_{n}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{n}=\bar{t}_{n}\rangle, \\
\text { e.g. } \left.D_{8}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. A finite corcer goup is the symmetry group of a (semi)regular polyhedron, e.g. for I_{8} we have a 4-gon:

$$
\text { Fix a flag } F \text {. }
$$

Idea (Coxeter ~1934++).
Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Fix a hyperplane H_{1} permuting the adjacent 1 -cells of F, etc.
Write a vertex i for each H_{i}.
Connect i, j by an n-edge for H_{i}, H_{j} having angle $\cos (\pi / n)$.

This gives a generator-relation presentation.

Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type $\mathrm{I}_{2 n}$:

$$
\begin{gathered}
D_{2 n}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{n}=\underbrace{\ldots \text { sts }}_{n}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{n}=\bar{t}_{n}\rangle, \\
\text { e.g. } \left.D_{8}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. A finite corcer goup is the symmetry group of a (semi)regular polyhedron, e.g. for I_{8} we have a 4-gon:

To write down the elements use the Coxeter complex.

Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type $\mathrm{I}_{2 n}$:

$$
\begin{gathered}
D_{2 n}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{n}=\underbrace{\ldots \text { sts }}_{n}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{n}=\bar{t}_{n}\rangle, \\
\text { e.g. } \left.D_{8}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. A finite corcer goup is the symmetry group of a (semi)regular polyhedron, e.g. for I_{8} we have a 4-gon:

To write down the elements use the Coxeter complex.

Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type $\mathrm{I}_{2 n}$:

$$
\begin{gathered}
D_{2 n}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{n}=\underbrace{\ldots \text { sts }}_{n}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{n}=\bar{t}_{n}\rangle, \\
\text { e.g. } \left.D_{8}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. A finite corcer goup is the symmetry group of a (semi)regular polyhedron, e.g. for I_{8} we have a 4-gon:

To write down the elements use the Coxeter complex.

Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type $\mathrm{I}_{2 n}$:

$$
\begin{gathered}
D_{2 n}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{n}=\underbrace{\ldots \text { sts }}_{n}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{n}=\bar{t}_{n}\rangle, \\
\text { e.g. } \left.D_{8}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. A finite corcer goup is the symmetry group of a (semi)regular polyhedron, e.g. for I_{8} we have a 4-gon:

To write down the elements use the Coxeter complex.

Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type $\mathrm{I}_{2 n}$:

$$
\begin{gathered}
D_{2 n}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{n}=\underbrace{\ldots \text { sts }}_{n}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{n}=\bar{t}_{n}\rangle, \\
\text { e.g. } \left.D_{8}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. A finite corcer goup is the symmetry group of a (semi)regular polyhedron, e.g. for I_{8} we have a 4-gon:

To write down the elements use the Coxeter complex.

Dihedral representation theory on one slide.

One-dimensional modules. $\mathcal{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, \mathrm{s} \mapsto \lambda_{\mathrm{s}}, t \mapsto \lambda_{\mathrm{t}}$.

$e \equiv 0 \bmod 2$	$e \not \equiv 0 \bmod 2$
$\mathcal{M}_{-1,-1}, \mathcal{M}_{1,-1}, \mathcal{M}_{-1,1}, \mathcal{M}_{1,1}$	$\mathcal{M}_{-1,-1}, \mathcal{M}_{1,1}$

Two-dimensional modules. $\mathcal{M}_{z}, z \in \mathbb{C}, \mathrm{~s} \mapsto\left(\begin{array}{cc}1 & z \\ 0 & -1\end{array}\right)$, $\mathrm{t} \mapsto\left(\begin{array}{cc}-1 & 0 \\ \bar{z} & 1\end{array}\right)$.

$V(n)=\{2 \cos (\pi k / n-1) \mid k=1, \ldots, n-2\}$.

Dihedral representation theory on one slide.

One-dimensionsProposition (Lusztig?). The list of one- and two-dimensional $\mathrm{D}_{2 n}$-modules is a complete, irredundant list of simples. $\mathcal{M}_{-1,-1}, \mathcal{M}_{1,-1}, \mathcal{M}_{-1,1}, \mathcal{M}_{1,1}$
I learned this construction from Mackaay in 2017.

Two-dimensional modules. $\mathcal{M}_{z}, z \in \mathbb{C}, \mathrm{~s} \mapsto\left(\begin{array}{cc}1 & z \\ 0 & -1\end{array}\right)$, $\mathrm{t} \mapsto\left(\begin{array}{cc}-1 & 0 \\ \bar{z} & 1\end{array}\right)$.

$V(n)=\{2 \cos (\pi k / n-1) \mid k=1, \ldots, n-2\}$.

Dihedral representation theory on one slide.

One-dimensionoProposition (Lusztig?). The list of one- and two-dimensional $\mathrm{D}_{2 n}$-modules is a complete, irredundant list of simples. $\mathcal{M}_{-1,-1}, \mathcal{M}_{1,-1}, \mathcal{M}_{-1,1}, \mathcal{M}_{1,1}$
I learned this construction from Mackaay in 2017.

Two-dimensional modules. $\mathcal{M}_{z}, z \in \mathbb{C}, \mathrm{~s} \mapsto\left(\begin{array}{cc}1 & z \\ 0 & -1\end{array}\right)$, t $\mapsto\left(\begin{array}{cc}-1 & 0 \\ \bar{z} & 1\end{array}\right)$.

$V(n)=\{2 \cos (\pi k / n-1) \mid k=1, \ldots, n-2\}$.

Pioneers of 2-representation theory.

Let \mathscr{C} be a finitary 2-category.

> | Slogan (finitary). |
| :---: |
| Everything that could be finite is finite. |

Etingof-Ostrik, Chuang-Rouquier, many others $\mathbf{\sim} \mathbf{2 0 0 0 +}$. Higher representation theory is the useful? study of actions of 2-categories:

$$
\mathscr{M}: \mathscr{C} \longrightarrow \mathscr{E} \operatorname{nd}(\mathcal{V}), \quad " \mathscr{M}(\mathrm{~F})=\text { a functor in } \mathscr{E} \operatorname{nd}(\mathcal{V}) "
$$

with \mathcal{V} being some finitary category. (Called 2-modules or 2-representations.)

The "atoms" of such an action are called 2-simple.
Mazorchuk-Miemietz ~2014. All (suitable) 2-modules are built out of 2-simples ("weak 2-Jordan-Hölder filtration").

Pioneers of 2-representation theory.

Let \mathscr{C} be a finitary 2-category.
Etingof-Ostrik, Chuang-Rouquier, many others $\mathbf{\sim} \mathbf{2 0 0 0 +}$. Higher representation theory is the useful? study of actions of 2-categories:

$$
\mathscr{M}: \mathscr{C} \longrightarrow \mathscr{E} \operatorname{nd}(\mathcal{V}),
$$

with \mathcal{V} being some fi A main goal of 2-representation theory. representations.) Classify 2 -simples.

The "atoms" of such an action are called 2 -simple.
Mazorchuk-Miemietz ~2014. All (suitable) 2-modules are built out of 2-simples ("weak 2-Jordan-Hölder filtration").

Pioneers of 2-representation theorv
 Main examples to keep in mind.

representation theory is the useful? study of actions of 2-categories:

with | Example. $\mathscr{C}=\mathcal{R e p}$ |
| :---: |
| Features. Semisimple, finitely many 2-simples, |
| classification of 2-simples only known for $g=\mathrm{Sl}_{2}$, some guesses for general g. |
| Comments. The classification of 2-simples is related to Dynkin diagrams. |

The "atoms" of such an action are called 2-simple.
Example. $\mathscr{C}=$ Hecke category.

2-s | Features. Non-semisimple, not known whether there are finitely many 2-simples, |
| :---: |
| classification of 2-simples only known in special cases. |
| Comments. Hopefully, by the end of the year we have a classification |
| by reducing the problem to the above examples. |

2-modules of dihedral groups.

The dihedral group $\mathrm{D}_{2 n}$ of the regular n-gon has a Kazhdan-Lusztig (KL) basis.

$$
\text { Consider: } \quad \theta_{w}=\sum_{w^{\prime} \leq w} w^{\prime}, \quad \text { e.g. } \theta_{\mathrm{st}}=s t+s+t+1 .
$$

Motivation. The KL basis has some neat integral properties and exists for any Coxeter group. (It isn't as easy to write down, but exists.)

We want a categorical action. So we need:
\triangleright A category \mathcal{V} to act on.
\triangleright Endofunctors acting on \mathcal{V} for the (fixed!) KL basis.
\triangleright The relations of the KL basis have to be satisfied by the functors.
\triangleright A coherent choice of natural transformations. ($\mathscr{C}=$ Hecke category.)

2-modules of dihedral groups.

The dihedral	Theorem ~ 2016.	(KL) basis.
	Fixing the KL basis, there is a one-to-one correspondence	1.
Motivation.	$\left\{\right.$ (non-trivial) 2-simple $\mathrm{D}_{2 n}$-modules $\} / 2$-iso	ts for any
Coxeter grou	$\{$ bicolored ADE Dynkin diagrams with Coxeter number $n\}$.	
	Thus, its easy to write down a list .	

\triangleright A category \mathcal{V} to act on.
\triangleright Endofunctors acting on \mathcal{V} for the (fixed!) KL basis.
\triangleright The relations of the KL basis have to be satisfied by the functors.
\triangleright A coherent choice of natural transformations. ($\mathscr{C}=$ Hecke category.)

An algebra P with a fixed basis B^{P} with $1 \in \mathrm{~B}^{\mathrm{P}}$ is called a \mathbb{N}_{0}-algebra if

$$
x y \in \mathbb{N}_{0} \mathrm{~B}^{\mathrm{P}} \quad\left(\mathrm{x}, \mathrm{y} \in \mathrm{~B}^{\mathrm{P}}\right)
$$

A P-module M with a fixed basis B^{M} is called a \mathbb{N}_{0}-module if

$$
x m \in \mathbb{N}_{0} B^{M} \quad\left(x \in B^{P}, m \in B^{M}\right) .
$$

These are \mathbb{N}_{0}-equivalent if there is a \mathbb{N}_{0}-valued change of basis matrix.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence.

Example.

A
Group algebras of finite groups with basis given by group elements are \mathbb{N}_{0}-algebras.
The regular module is a \mathbb{N}_{0}-module.

A P-module M with a fixed basis B^{M} is called a \mathbb{N}_{0}-module if

$$
x m \in \mathbb{N}_{0} B^{M} \quad\left(x \in B^{P}, m \in B^{M}\right)
$$

These are \mathbb{N}_{0}-equivalent if there is a \mathbb{N}_{0}-valued change of basis matrix.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence.

Example.
Group algebras of finite groups with basis given by group elements are \mathbb{N}_{0}-algebras.
The regular module is a \mathbb{N}_{0}-module.

A P-mample.
These regular module of a group algebra decomposes over \mathbb{C} into simples.
However, this decomposition is almost never an \mathbb{N}_{0}-equivalence. (I will come back to this in a second.)

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence.

Example.

Group algebras of finite groups with basis given by group elements are \mathbb{N}_{0}-algebras.

The regular module is a \mathbb{N}_{0}-module.

A P-m These	Example. The regular module of a group algebra decomposes over \mathbb{C} into simples. However, this decomposition is almost never an \mathbb{N}_{0}-equivalence. (I will come back to this in a second.)
$\begin{aligned} & \text { Examy } \\ & \text { 2-cate } \end{aligned}$	Example. Hecke algebras of (finite) Coxeter groups with their KL basis are \mathbb{N}_{0}-algebras.

Clifford, Munn, Ponizovskiĩ $\sim 1942+$, Kazhdan-Lusztig $\sim 1979 . \mathrm{x} \leq_{L} \mathrm{y}$ if x appears in zy with non-zero coefficient for $\mathrm{z} \in \mathrm{B}^{\mathrm{P}} . \mathrm{x} \sim_{L} \mathrm{y}$ if $\mathrm{x} \leq_{L} \mathrm{y}$ and $\mathrm{y} \leq_{L} \mathrm{x}$. \sim_{L} partitions P into left cells L. Similarly for right R, two-sided cells J or \mathbb{N}_{0}-modules.

A \mathbb{N}_{0}-module M is transitive if all basis elements belong to the same \sim_{L} equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N}_{0}-module has a unique apex.
Hence, one can study them cell-wise.

Example. Transitive \mathbb{N}_{0}-modules arise naturally as the decategorification of simple 2-modules.

$$
\text { Question (} \mathbb{N}_{0} \text {-representation theory). Classify them! }
$$

$$
\text { Question (} \mathbb{N}_{0} \text {-representation theory). Classify them! }
$$

$$
\text { Question (} \mathbb{N}_{0} \text {-representation theory). Classify them! }
$$

| Example. |
| :---: | :---: |
| Group algebras with the group element basis have only one cell, G itself. |
| \mathbb{N} Transitive \mathbb{N}_{0}-modules are $\mathbb{C}[G / H]$ for $H \subset G$ subgroup/conjugacy. The apex is G. |

A \mathbb{N}_{0}-module M is transitive if all basis elements belong to the same \sim_{L} equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N}_{0}-module has a unique apex.
Hence, one can study them cell-wise.

Example. Transitive \mathbb{N}_{0}-modules arise naturally as the decategorification of simple 2-modules.

Example.

Group algebras with the group element basis have only one cell, G itself.
Transitive \mathbb{N}_{0}-modules are $\mathbb{C}[G / H]$ for $H \subset G$ subgroup/conjugacy. The apex is G.

Example. Transitive \mathbb{N}_{0}-modules arise naturally as the decategorification of simple 2-modules.

Example.

Group algebras with the group element basis have only one cell, G itself.
Transitive \mathbb{N}_{0}-modules are $\mathbb{C}[G / H]$ for $H \subset G$ subgroup/conjugacy. The apex is G.

A \mathbb{N}_{0}-mo equivalen Hence,	Example (Kazhdan-Lusztig ~1979). Hecke algebras for the symmetric group with KL basis have - cells coming from the Robinson-Schensted correspondence. The transitive \mathbb{N}_{0}-modules are the simples with apex given by elements for the same shape of Young tableaux

Example.

Take $G=\mathbb{Z} / 3 \mathbb{Z}$. Then G has three conjugacy classes and three associated simples. These are given by specifying a third root of unity. © (We do not like thesel)
G has two subgroups; $\{e\}$ and G.
The associated \mathbb{N}_{0}-modules are the regular and the trivial G-module.

Natural, and computable, examples of transitive \mathbb{N}_{0}-modules are the so-called cell modules which, in some sense, play the role of regular modules.

Fix a left cell L . Let $\mathrm{M}\left(\geq_{L}\right)$, respectively $\mathrm{M}\left(>_{\mathrm{L}}\right)$, be the \mathbb{N}_{0}-modules spanned by all $x \in B^{P}$ in the union $L^{\prime} \geq_{L} L$, respectively $L^{\prime}>_{L} L$.
We call $\mathrm{C}_{\mathrm{L}}=\mathrm{M}\left(\geq_{\mathrm{L}}\right) / \mathrm{M}\left(>_{\mathrm{L}}\right)$ the (left) cell module for L .
Fact. "Cell \Rightarrow transitive \mathbb{N}_{0}-module".
Empirical fact. In well-behaved cases "Cell \Leftrightarrow transitive \mathbb{N}_{0}-module", and classification of transitive \mathbb{N}_{0}-modules is fairly easy.

Question. Are there natural examples where "Cell ψ transitive \mathbb{N}_{0}-module"?

Example. Decategorifications of cell 2-modules are key examples of cell modules.

$$
\text { Fact. "Cell } \Rightarrow \text { transitive } \mathbb{N}_{0} \text {-module" }
$$

Empirical fact. In well-behaved cases "Cell \Leftrightarrow transitive \mathbb{N}_{0}-module", and classification of transitive \mathbb{N}_{0}-modules is fairly easy.

Question. Are there natural examples where "Cell ψ transitive \mathbb{N}_{0}-module"?

Example. Decategorifications of cell 2-modules are key examples of cell modules.

Example. Decategorifications of cell 2-modules are key examples of cell modules.

Example (dihedral case).

	cell	0	1
2			
	size	1	$2 n-2$
	sr	yes	no
	yes		

1 for n even:

$\frac{n}{2}$	$\frac{n-2}{2}$
$\frac{n-2}{2}$	$\frac{n}{2}$

1 for n odd:

$\frac{n-1}{2}$	$\frac{n-1}{2}$
$\frac{n-1}{2}$	$\frac{n-1}{2}$

In the dihedral case the DE-modules are not cell modules.

An additive, \mathbb{k}-linear, idempotent complete, Krull-Schmidt category \mathcal{C} is called finitary if it has only finitely many isomorphism classes of indecomposable objects and the morphism sets are finite-dimensional. A 2 -category \mathscr{C} with finitely many objects is finitary if its hom-categories are finitary, \circ_{h}-composition is additive and linear, and identity 1-morphisms are indecomposable.

A simple transitive 2 -module (2-simple) of \mathscr{C} is an additive, \mathbb{k}-linear 2 -functor

$$
\mathscr{M}: \mathscr{C} \rightarrow \mathscr{A}^{\mathrm{f}} \text { (= 2-cat of finitary cats) },
$$

such that there are no non-zero proper \mathscr{C}-stable ideals.
There is also the notion of 2-equivalence.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence.

A simple transitive 2 -module (2-simple) of \mathscr{C} is an additive, \mathbb{k}-linear 2 -functor

$$
\mathscr{M}: \mathscr{C} \rightarrow \mathscr{A}^{\mathrm{f}}(=2 \text {-cat of finitary cats })
$$

such that there are no non-zero proper \mathscr{C}-stable ideals.
There is also the notion of 2-equivalence.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence.

Mazorchuk-Miemietz ~ 2011.
Define cell theory similarly as for \mathbb{N}_{0}-algebras and -modules.
There 2 2-simple \Rightarrow transitive, and transitive 2-modules have a 2-simple quotient.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence.

Mazorchuk-Miemietz ~ 2011.
Define cell theory similarly as for \mathbb{N}_{0}-algebras and -modules.
There 2 2-simple \Rightarrow transitive, and transitive 2-modules have a 2-simple quotient.

An additive, \mathbb{k}-linear, idempotent complete, Krull-Schmidt category \mathcal{C} is called

finitary and the	Example. B-pMod (with B finite-dimensional) is a prototypical object of \mathscr{A}^{f}. A 2-module usually is given by endofunctors on B-pMod.	ly many
objects		tive and
ear, ar		

A simple transitive 2 -module (2-simple) of \mathscr{C} is an additive, \mathbb{k}-linear 2 -functor

$$
\mathscr{M}: \mathscr{C} \rightarrow \mathscr{A}^{\mathrm{f}} \text { (= 2-cat of finitary cats) }
$$

such that there are no non-zero proper \mathscr{C}-stable ideals.
There is also the notion of 2-equivalence.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence.

An additive, \mathbb{k}-linear, idempotent complete, Krull-Schmidt category \mathcal{C} is called

A simple transitive 2 -module (2-simple) of \mathscr{C} is an additive, \mathbb{k}-linear 2 -functor

Example.

G can be (naively) categorified using G-graded vector spaces $\mathcal{V e c}_{G} \in \mathscr{A}^{\mathrm{f}}$.
The ${ }^{2}$-simples are indexed by (conjugacy classes of) subgroups H and $\phi \in H^{2}\left(H, \mathbb{C}^{*}\right)$.
Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence.

An additive, \mathbb{k}-linear, idempotent complete, Krull-Schmidt category \mathcal{C} is called finitary if it has only finitely many isomorphism classes of indecomposable objects Example (Mazorchuk-Miemietz \& Soergel \& Khovanov-Mazorchuk-Stroppel \& ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories. (Coxeter=Weyl: "Indecomposable projective functors on \mathcal{O}_{0}.")

Symmetric group: the 2-simples are categorifications of the simples.
such that there are no non-zero proper \mathscr{C}-stable ideals.
There is also the notion of 2-equivalence.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence.

An additive, \mathbb{k}-linear, idempotent complete, Krull-Schmidt category \mathcal{C} is called finitary if it has only finitely many isomorphism classes of indecomposable objects Example (Mazorchuk-Miemietz \& Soergel \& Khovanov-Mazorchuk-Stroppel \& ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: "Indecomposable projective functors on \mathcal{O}_{0}.")
Symmetric group: the 2-simples are categorifications of the simples.
Example (Kildetoft-Ko-Mackaay-Mazorchuk-Miemietz-Zhang \& ...).
Quotients of Soergel bimodules $(+\mathrm{fc})$, e.g. small quotients, are finitary 2-categories.
Except for the small quotients $+\epsilon$ the classification is widely open.
2 -categories and 2-modules, and \mathbb{N}_{0}-equivalence comes trom 2-equivalence.

Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: "Indecomposable projective functors on \mathcal{O}_{0}.")
Symmetric group: the 2-simples are categorifications of the simples.
Example (Kildetoft-Ko-Mackaay-Mazorchuk-Miemietz-Zhang \& ...).
Quotients of Soergel bimodules $(+\mathrm{fc})$, e.g. small quotients, are finitary 2-categories.
Except for the small quotients $+\epsilon$ the classification is widely open.
2 -categories and 2-modules, and \mathbb{N}_{0}-equivalence comes trom 2-equivalence.

Example.

Fusion or modular categories are semisimple examples of finitary 2-categories. (Example. $\mathcal{R e p}_{q}^{\text {sesi }}(g)_{n}$.)
Their 2-modules play a prominent role in quantum algebra and topology.

An additive, \mathbb{k}-linear, idempotent complete, Krull-Schmidt category \mathcal{C} is called finitary if it has only finitely many isomorphism classes of indecomposable objects and the morphism sets are finite-dimensional. A 2-category \mathscr{C} with finitely many objects is finitary if its hom-categories are finitary, \circ_{h}-composition is additive and linear, and identity 1-morphisms are indecomposable.

A simpleOn the categorical level the impact of the choice of basis is evident: These are the indecomposable objects in some 2-category, and different bases are categorified by potentially non-equivalent 2-categories. There is So, of course, the 2-representation theory differs!
nnctor

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence.

An additive, \mathbb{k}-linear, idempotent complete, Krull-Schmidt category \mathcal{C} is called finitary if it has only finitely many isomorphism classes of indecomposable objects and the morphism sets are finite-dimensional. A 2-category \mathscr{C} with finitely many objects is finitary if its hom-categories are finitary, \circ_{h}-composition is additive and linear, and identity 1-morphisms are indecomposable.

A simple transitive 2 -module (2-simple) of \mathscr{C} is an additive, \mathbb{k}-linear 2 -functor

	Question ("2-representation theory").
such that there a There is also the	Classify all 2 -simples of a fixed finitary 2 -category.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories \quad This is the categorification of
'Classify all simples a fixed finite-dimensional algebra',
but much harder, e.g. it is unknown whether there are always only finitely many 2 -simples (probably not).

One can do even better than just reducing the theory to a fixed apex; one can reduce to the diagonal. Roughly:

For each two-sided cell J fix a left cell L and consider the diagonal cell $H=L \cup L^{*}$.
Green \sim 1951, Mackaay-Mazorchuk-Miemietz-Zhang $\boldsymbol{\sim}$ 2018. For any fiat 2-category \mathscr{C} there exists a fiat 2 -subcategory \mathscr{A} such that

$$
\begin{aligned}
& \left\{\begin{array}{c}
\text { 2-simples of } \mathscr{C} \\
\text { with apex J }
\end{array}\right\} \stackrel{\text { one-to-one }}{\longleftrightarrow}\left\{\begin{array}{c}
\text { 2-simples of } \mathscr{A} \\
\text { with apex H }
\end{array}\right\} \\
& \text { This redices the classification to the diagonal } \mathrm{H} .
\end{aligned}
$$

We that this will finally lead to a classification of 2-simples for Soergel bimodules using asymptotic Hecke algebras and categories. (At the moment this is widely open.)

Let A be a finite dimensional alsebra
Frobenius $\sim 1895++$ ，Burnside $\sim 1900++$ ．Noether $\sim 1928+$＋
Representation theory is the study of algebra actions
with V being some wector space．（Called modules or reprisentations．）
The＂atoms＂of such an action zee called simple．
Maschke～1899，Noether．Schreier \sim 192B．All modules are huilt out of
imples（＂Jordan－Hoider fltation＂）．

Dihedral groups as Coxeter groups．
The dihedral groups see of Coneter type 1_{2}
e．$D_{1}=(s, t) s^{2}-t^{2}-1$ ，tsts $\left.=w_{0}-\operatorname{stat}\right\}$
Example．A finite \quad is the symmetry group of a（semi）regula polyhedron，e．8．for 1 l we have a 4 －gon：

To write down the olemems sese the Coseter complex．

2－representation theory in a nutshell．

Dihedral representation theory on one sldde

```
Onedimensions Proposition (Lusztig?).
The lis⿱十⿴⿱冂一三小⿻丷木)
```



```
#
Two-dimensional modules. M
        Note trat this requive cmplox peamiturn
```



```
        M
V(n) - {2 cos(\pik/n-1)|k-1,\ldots.n-2).
```


(Robinson $\sim 1938 \&$)Schensted $\sim 1961 \&$ Kazhdan-Lusztig ~ 1979.
Elements of $5 n,(P Q)$ standard Young tableaux of the same shape Len

				Ape			
		${ }^{\text {a }}$	c	0.	＊．	0.	${ }^{3}$
	m	1	2	2	4	4	6
Exampl		2	2	2	t		－
	目	11	0	。	0	0	。
	The A －－moduls ret the simples．						

∞

Example（SAGE：Type B8）
Reducing from 46000 to 14500 to

rant
In particular，there is one mon－cell 2－simple．
In general，for Weyl groups the H cells are rather simple，and the associated 2symptotic Limit is group DBe．

There is still much to do．．

Let A be a finite dimensional algebra
Frobenius $\sim 1895++$ ，Burnside $\sim 1900++$ ．Noether $\sim 1928+$＋
Representation theory is the 0 study of algebra a actions

$$
M: \Lambda \rightarrow \varepsilon_{\mathrm{nd}(\mathrm{~V})} \quad \text { M[0)-a matrix in } \varepsilon_{\mathrm{ma}}
$$

with v being some vector space．（Called modules or reprisentations．）
The＂atoms＂of such an action zee called simple．
Maschke～1899，Noether．Schreier \sim 192B．All modules are huilt out of
imples（＂Jordan－Hoider fltation＂）．

Pionsecrs of 2 －representation theory－
Let \mathscr{C} be a finitary 2 －category． $\begin{gathered}\text { Slogan（Fnitary）．} \\ \text { Eviryling that could be finite is firine }\end{gathered}$
Etingof－Ostrik，Chuang－Rouquicr，many others $\sim 2000++$ ．Highe
representation theory is the useful？study of actions of 2 －categories．

with v being some finitary category．（Called 2－modules or 2 －representations．）
The＂atoms＂of such an action are called 2 －simple．
Mazorchuk－Miemietz \sim 2014．Af（ \sim ithlo 2 －modules 2erc built out
2.-simples ("wnall 2.Jordan-Halder fitration").

Dihedral groups as Coxeter groups．
The dihedral groups see of Coneter type 1_{2}

$$
D_{20}-(\mathrm{s}, \mathrm{v} \mid \mathrm{a}^{2}-t^{2}-1, \mathrm{I}_{\mathrm{n}}-\underbrace{\operatorname{sen}}_{n}-w_{0}-\underbrace{}_{0}, \tau_{n}) \text {, }
$$

e．$D_{1}=(s, t) s^{2}-t^{2}-1$ ，tsts $\left.=w_{0}-\operatorname{stat}\right\}$
Example．A finite \quad is the symmetry group of a（semi）regula polyhedron，e．8．for 1 l we have a 4 －gon：

To write down the olemems sese the Coseter complex．

2－representation theory in a nutshell．

Dihedral representation theory on one sldde

```
One-dimension= Proposition (Lusstig%).
The lis of one- and mo-dimensionul Dy,-modties
```



```
#Nearned Ihis costruction fram Mackayy in 2017.
Two-dimensional modules. M
        #Notut 1rat this rquire cmplax peammtern
        M
V(n)-{2\operatorname{cos}(\pik/n-1)|k-1,\ldots.n-2).
```


(Robinson -1938 \&) Schensted $\sim 1961 \&$ Kazhdan-Lustig ~ 1979.
Elements of $5 n,(P Q)$ standard Young tableaux of the same shape Len

				Ape			
		${ }^{\text {a }}$	c	0.	＊．	0.	${ }^{3}$
	m	1	2	2	4	4	6
Exampl		2	2	2	t		－
	目	11	0	。	0	0	。
	The A －－moduls ret the simples．						

∞

Example（SAGE：Type Bs）．

In general，for Weyl groups the H cells are rather simple，and the asscciated 2 asmptotic Imit is group lice．

Thanks for your attention！

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that could be most directly obtained by the consideration of groups of linear transformations.
WERY considerable advances in the theory of groups of finite order have been made since the appearance of the first edition of this book. In particular the theory of groups of linear substitutions has been the subject of numerous and important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that could be most directly obtained by the consideration of groups of linear transformations.
Nowadays representation theory is pervasive across mathematics, and beyond.
σ finite order bave been made since the appearance of the first edition of this book. In particular the theory of groups of linoor everotitutione hae hoon tho eubiont of numorone and But this wasn't clear at all when Frobenius started it.
given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).
samen Factor f abgesehen) einen relativen Charakter von 5, und um${ }^{5}$ elkehrt lässt sich jeder relative Charakter von $5, x_{0}, \cdots x_{k-1}$, auf eine oder mehrere Arten durch Hinzufügung passender Werthe $\chi_{k}, \cdots \chi_{k^{-1}}$ ${ }^{4} 4$ einem Charakter von 5) ergänzen.

$$
\text { § } 8 .
$$

Ich will nun die Theorie der Gruppencharaktere an einigen BeiSpielen erläutern. Die geraden Permutationen von 4 Symbolen bilden cine Gruppe 5 der Ordnung $h=12$. Ihre Elemente zerfallen in 4 Classen, die Elemente der Ordnung 2 bilden eine zweiseitige Classe (1), die der $O_{\text {rdnung }} 3$ zwei inverse Classen (2) und $(3)=\left(2^{\prime}\right)$. Sei ρ eine primitive Cubische Wurzel der Einheit.

$$
\text { Tetraeder. } h=12 .
$$

	$\chi^{(0)}$	$\chi^{(1)}$	$\chi^{(2)}$	$\chi^{(3)}$	h_{a}
χ_{0}	1	3	1	1	1
χ_{1}	1	-1	1	1	3
χ_{2}	1	0	ρ	ρ^{2}	4
χ_{3}	1	0	ρ^{2}	ρ	4

Figure: "Über Gruppencharaktere (characters of groups)" by Frobenius (1896). Bottom: first published character table.

Note the root of unity ρ !

Figure: The connected Coxeter diagrams of finite type. Their numbers ordered by dimension: $1, \infty, 3,5,3,4,4,4,3,3,3,3,3, \ldots$

Examples.

Type $A_{3} \longleftrightarrow$ tetrahedron $\longleftrightarrow \rightsquigarrow$ symmetric group S_{4}.
Type $B_{3} \longleftrightarrow \rightsquigarrow$ cube/octahedron $\rightsquigarrow>$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \longleftrightarrow$ dodecahedron/icosahedron $\leadsto \rightsquigarrow$ exceptional Coxeter group.
(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

The type A family

$$
n=2
$$

$$
n=3
$$

...

The type D family

$n=10$

The type E exceptions

The type A family

The KL basis elements for S_{3} with $s=(1,2), t=(2,3)$ and $s t s=w_{0}=t s t$ are:

$$
\begin{gathered}
\theta_{1}=1, \quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1, \quad \theta_{\mathrm{ts}}=\mathrm{ts}+\mathrm{s}+\mathrm{t}+1 \\
\theta_{\mathrm{st}}=\mathrm{st}+\mathrm{s}+\mathrm{t}+1, \quad \theta_{w_{0}}=w_{0}+\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1
\end{gathered}
$$

	1	s	t	ts	st	w_{0}
\square	1	1	1	1	1	1
\square	2	0	0	-1	-1	0
\square	1	-1	-1	1	1	-1

Figure: The character table of S_{3}.

The KL basis elements for S_{3} with $s=(1,2), t=(2,3)$ and $s t s=w_{0}=t s t$ are:

$$
\begin{gathered}
\theta_{1}=1, \quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1, \quad \theta_{\mathrm{ts}}=\mathrm{ts}+\mathrm{s}+\mathrm{t}+1, \\
\theta_{\mathrm{st}}=\mathrm{st}+\mathrm{s}+\mathrm{t}+1, \quad \theta_{w_{0}}=w_{0}+\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1 .
\end{gathered}
$$

	θ_{1}	θ_{s}	θ_{t}	θ_{ts}	θ_{st}	$\theta_{w_{0}}$
\square	1	2	2	4	4	6
\square	2	2	2	1	1	0
\square	1	0	0	0	0	0

Figure: The character table of S_{3}.

The KL basis elements for S_{3} with $s=(1,2), t=(2,3)$ and $s t s=w_{0}=t s t$ are:

$$
\begin{gathered}
\theta_{1}=1, \quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1, \quad \theta_{\mathrm{ts}}=\mathrm{ts}+\mathrm{s}+\mathrm{t}+1, \\
\theta_{\mathrm{st}}=\mathrm{st}+\mathrm{s}+\mathrm{t}+1, \quad \theta_{w_{0}}=w_{0}+\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1 .
\end{gathered}
$$

Figure: The character table of S_{3}.
(Robinson ~1938 \&)Schensted ~1961 \& Kazhdan-Lusztig ~1979. Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_{n} :

- $s \sim_{L} t$ if and only if $Q(s)=Q(t)$.
- $s \sim_{\mathrm{R}} t$ if and only if $P(s)=P(t)$.
- $s \sim_{\jmath} t$ if and only if $P(s)$ and $P(t)$ have the same shape.

Example ($n=3$).
$1 \mathrm{~m} \rightarrow 1223,112 \mid 3$
w_{0} ans $\frac{1}{\frac{1}{2}}, \frac{1}{\frac{1}{2}}$
(Robinson ~ 1938 \&)Schensted ~ 1961 \& Kazhdan-Lusztig ~ 1979. Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_{n} :

- $s \sim_{L} t$ if and only if $Q(s)=Q(t)$.
- $s \sim_{\mathrm{R}} t$ if and only if $P(s)=P(t)$.
- $s \sim_{\jmath} t$ if and only if $P(s)$ and $P(t)$ have the same shape.

Example ($n=3$).
Left cells

(Robinson ~ 1938 \&)Schensted ~ 1961 \& Kazhdan-Lusztig ~ 1979.
Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_{n} :

- $s \sim_{L} t$ if and only if $Q(s)=Q(t)$.
- $s \sim_{\mathrm{R}} t$ if and only if $P(s)=P(t)$.
- $s \sim_{\jmath} t$ if and only if $P(s)$ and $P(t)$ have the same shape.

Example ($n=3$).

$$
1 \text { uns } 112 \mid 3,[12] 3
$$

$$
\begin{aligned}
& S \longleftrightarrow \begin{array}{|l|l|l|}
\hline 1 & 3 \\
\hline 2 & & \left.\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline
\end{array}\right) \\
\hline
\end{array} \\
& \text { t } \rightsquigarrow \rightarrow \left\lvert\, \begin{array}{l|l|l|}
\hline 1 & 2 \\
3 & 1 & 2 \\
\hline
\end{array}\right.
\end{aligned}
$$

(Robinson ~ 1938 \&)Schensted ~ 1961 \& Kazhdan-Lusztig ~ 1979.
Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_{n} :

- $s \sim_{L} t$ if and only if $Q(s)=Q(t)$.
- $s \sim_{\mathrm{R}} t$ if and only if $P(s)=P(t)$.
- $s \sim_{\jmath} t$ if and only if $P(s)$ and $P(t)$ have the same shape.

Example ($n=3$).

(Robinson ~1938 \&)Schensted ~1961 \& Kazhdan-Lusztig ~1979. Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_{n} :

$\begin{aligned} & \triangleright \\ & \mathrm{S} \\ & > \\ & \mathrm{S} \\ & > \end{aligned} \sim$	Apexes:						
		θ_{1}	$\theta_{\text {s }}$	$\theta_{\text {t }}$	$\theta_{\text {ts }}$	$\theta_{\text {st }}$	$\theta_{w_{0}}$
Exampl	$\square \square$	1	2	2	4	4	6
	\square	2	2	2	1	1	0
	\boxminus	1	0	0	0	0	0

The \mathbb{N}_{0}-modules are the simples.

The regular $\mathbb{Z} / 3 \mathbb{Z}$-module is

Jordan decomposition over \mathbb{C} with $\zeta^{3}=1$ gives

However, Jordan decomposition over \mathbb{f}_{3} gives
and the regular module does not decompose.

Example $\left(G=\mathrm{D}_{8}\right)$. Here we have three different notions of "atoms".
Classical representation theory. The simples from before.

	$\mathcal{M}_{-1,-1}$	$\mathcal{M}_{1,-1}$	$\mathcal{M}_{\sqrt{2}}$	$\mathcal{M}_{-1,1}$	$\mathcal{M}_{1,1}$
atom	sign		rotation		trivial
rank	1	1	2	1	1

Group element basis. Subgroups and ranks of \mathbb{N}_{0}-modules.

subgroup	1	$\langle\mathrm{st}\rangle$	$\left\langle w_{0}\right\rangle$	$\left\langle w_{0}, s\right\rangle$	$\left\langle w_{0}\right.$, sts \rangle	G
atom	regular	$\mathcal{M}_{1,1} \oplus \mathcal{M}_{-1,-1}$	$\mathcal{M}_{\sqrt{2} \oplus \mathcal{M}_{\sqrt{2}}} \mathcal{M}_{1,1} \oplus \mathcal{M}_{1,-1}$	$\mathcal{M}_{1,1} \oplus \mathcal{M}_{-1,1}$	trivial	
rank	8	2	4	2	2	1

$K L$ basis. ADE diagrams and ranks of \mathbb{N}_{0}-modules.

	bottom cell	\longrightarrow	$\star \backsim \star$	top cell
atom	sign	$\mathcal{M}_{1,-1} \oplus \mathcal{M}_{\sqrt{2}}$	$\mathcal{M}_{-1,1} \oplus \mathcal{M}_{\sqrt{2}}$	trivial
rank	1	3	3	1

Example (SAGE). The symmetric group on 4 strands. Number of elements: 24. Number of cells: 5, named 0 (trivial) to 4 (top).

Cell order:

$$
0-1-2-3-4
$$

Size of the cells:

cell	0	1	2	3	4
size	1	9	4	9	1

Left cells are rows, right cells are columns.

Cell 1 is e.g.

$\left.$| s_{1} | $s_{2} s_{1}$ | $s_{3} s_{2} s_{1}$ |
| :---: | :---: | :---: |
| $s_{1} s_{2}$ | s_{2} | $s_{3} s_{2}$ |
| $s_{1} s_{2} s_{3}$ | $s_{2} s_{3}$ | s_{3} |$\xrightarrow{\text { number of elements }} \right\rvert\,$| 1 | 1 | 1 |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Such cells of square size are called strongly regular.

Example (SAGE). The symmetric group on 4 strands. Number of elements: 24. Number of cells: 5, named 0 (trivial) to 4 (top).

Fact.

Cell order:
Each left-right-intersection contains at least one element.
Size of the cens.
So strongly regular cells are as easy as possible.

cell	0	1	2	3	4
size	1	9	4	9	1

Cell 1 is e.g.

s_{1}	$s_{2} s_{1}$	$s_{3} s_{2} s_{1}$				
$s_{1} s_{2}$	s_{2}	$s_{3} s_{2}$				
$s_{1} s_{2} s_{3}$	$s_{2} s_{3}$	s_{3}	$\xrightarrow{\text { number of elements }}$	1	1	1
:---:	:---:	:---:				
1	1	1				
1	1	1				

Such cells of square size are called strongly regular.

Example (SAGE). The symmetric group on 4 strands. Number of elements: 24. Number of cells: 5, named 0 (trivial) to 4 (top). Fact.
Cell order:
"Cell \Leftrightarrow transitive \mathbb{N}_{0}-module" holds
\mathbb{N}_{0}-algebras with only strongly regular cells.
Size of the cells:

cell	0	1	2	3	4
size	1	9	4	9	1

Cell 1 is e.g.

s_{1}	$s_{2} s_{1}$	$s_{3} s_{2} s_{1}$				
$s_{1} s_{2}$	s_{2}	$s_{3} s_{2}$				
$s_{1} s_{2} s_{3}$	$s_{2} s_{3}$	s_{3}	$\xrightarrow{\text { number of elements }}$	1	1	1
:---:	:---:	:---:				
1	1	1				
1	1	1				

Such cells of square size are called strongly regular.

Example (SAGE). The symmetric group on 4 strands. Number of elements: 24. Number of cells: 5, named 0 (trivial) to 4 (top). Fact.
Cell order:
"Cell \Leftrightarrow transitive \mathbb{N}_{0}-module" holds \mathbb{N}_{0}-algebras with only strongly regular cells.
Size of the cells:

cell	0	1	2	3	4
size	1	9	4	9	1

Cell 1 is e.g.
Fact.

For the symmetric group all cells are strongly regular.

$s_{1} s_{2}$	s_{2}	$s_{3} s_{2}$				
$s_{1} s_{2} s_{3}$	$s_{2} s_{3}$	s_{3}		1	1	1

Such cells of square size are called strongly regular.

Example (SAGE). The symmetric group on 4 strands. Number of elements: 24. Number of cells: 5, named 0 (trivial) to 4 (top).

Such cells of square size are called strongly regular.

Example (SAGE). The Weyl group of type B_{6}. Number of elements: 46080. Number of cells: 26, named 0 (trivial) to 25 (top).

Cell order:

Size of the cells and whether the cells are strongly regular (sr):

cell	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	576	3150	650	342	62	1
sr	yes	no	no	yes	no	no	no	yes	no	no	yes	yes	no	no	yes	yes	no	no	yes	no	yes	no	no	no	no	yes

In general there will be plenty of non-cell modules which are transitive \mathbb{N}_{0}-modules.

Size of the cells and whether the cells are strongly regular (sr):

cell	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	576	3150	650	342	62	1
sr	yes	no	no	yes	no	no	no	yes	no	no	yes	yes	no	no	yes	yes	no	no	yes	no	yes	no	no	no	no	yes

In general there will be plenty of non-cell modules which are transitive \mathbb{N}_{0}-modules.

Example $(G=\mathbb{Z} / 2 \times \mathbb{Z} / 2)$.
Subgroups, Schur multipliers and 2-simples.

In particular, there are two categorifications of the trivial module, and the rank sequences read

$$
\text { decat: } 1,2,2,2,4, \quad \text { cat: } 1,1,2,2,2,4 .
$$

Example $(G=\mathbb{Z} / 2 \times \mathbb{Z} / 2)$.

Subgroups, Schur multipliers and 2-simples.

In particular, there are two categorifications of the trivial module, and the rank sequences read

$$
\text { decat: } 1,2,2,2,4, \quad \text { cat: } 1,1,2,2,2,4 .
$$

Example $(G=\mathbb{Z} / 2 \times \mathbb{Z} / 2)$.
Subgroups, Schur multipliers and 2-simples.

In particular, there are two categorifications of the trivial module, and the rank sequences read

$$
\text { decat: } 1,2,2,2,4, \quad \text { cat: } 1,1,2,2,2,4 .
$$

Example (Strongly regular cells).

For a strongly regular cell H consists only of one element:

$$
J=\begin{array}{|l|l|l}
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{array} \& L=\begin{array}{|c|c|c|}
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{array} \quad \& L^{*}=\begin{array}{|c|c|c|}
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{array} \quad \rightsquigarrow \quad H=\begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{array}
$$

and the associated 2-category \mathscr{A} is has only one indecomposable. Not surprisingly, such a 2-category has only one 2-simple.

In particular, this reduces the classification of a potentially complicated 2-category to another classification problem for a trivial 2-category.

Example (SAGE; Type B_{6}).

Reducing from 46080 to 14500 to 4 :

$J=$| $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}_{5,5}$ | $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| $\mathbf{1}_{20,5}$ | $\mathbf{1}_{20,5}$ | $\mathbf{4}_{20,20}$ | $\mathbf{2}_{20,25}$ | $\mathbf{2}_{20,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{4}_{25,25}$ | $\mathbf{1}_{25,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{1}_{25,25}$ | $\mathbf{4}_{25,25}$ |

$\leadsto \quad \mathbf{H}=$| $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}_{5,5}$ | $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| $\mathbf{1}_{20,5}$ | $\mathbf{1}_{20,5}$ | $\mathbf{4}_{20,20}$ | $\mathbf{2}_{20,25}$ | $\mathbf{2}_{20,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{4}_{25,25}$ | $\mathbf{1}_{25,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{1}_{25,25}$ | $\mathbf{4}_{25,25}$ |

$$
\mathscr{A}^{\prime \prime}=" \mathcal{V e c}_{\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}}, \quad \text { rank sequence: } 1,1,2,2,2,4 .
$$

In particular, there is one non-cell 2-simple.

In general, for Weyl groups the H cells are rather simple, and the associated asymptotic limit is group like.

