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1 Philosophy: “Categorifying” classical representation theory
Some classical results
Some categorical results

2 The decategorified story
N0-representation theory
How cell theory helps

3 The categorified story
Finitary 2-representation theory
How cell theory helps
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Pioneers of representation theory.

Let A be a finite-dimensional algebra.

Frobenius ∼1895++, Burnside ∼1900++, Noether ∼1928++.
Representation theory is the useful? study of algebra actions

M : A −→ End(V),

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple.

Maschke ∼1899, Noether, Schreier ∼1928. All modules are built out of
simples (“Jordan–Hölder filtration”).

“M(a) = a matrix in End(V)”

A main goal of representation theory.
Classify simples.

We want to have a
categorical version of this.

I am going to explain what we can do at present.
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Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type I2n:

D2n = 〈s, t | s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g. D8 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. A finite Coxeter group is the symmetry group of a (semi)regular
polyhedron, e.g. for I8 we have a 4-gon:

I should do the Hecke case,
but I will keep it easy.

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.
To write down the elements use the Coxeter complex.

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 4 / 13



Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type I2n:

D2n = 〈s, t | s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g. D8 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. A finite Coxeter group is the symmetry group of a (semi)regular
polyhedron, e.g. for I8 we have a 4-gon:

H

I should do the Hecke case,
but I will keep it easy.

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.
To write down the elements use the Coxeter complex.

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 4 / 13



Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type I2n:

D2n = 〈s, t | s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g. D8 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. A finite Coxeter group is the symmetry group of a (semi)regular
polyhedron, e.g. for I8 we have a 4-gon:

•

H

F

I should do the Hecke case,
but I will keep it easy.

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.
To write down the elements use the Coxeter complex.

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 4 / 13



Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type I2n:

D2n = 〈s, t | s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g. D8 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. A finite Coxeter group is the symmetry group of a (semi)regular
polyhedron, e.g. for I8 we have a 4-gon:

•

H

I should do the Hecke case,
but I will keep it easy.

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.
To write down the elements use the Coxeter complex.

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 4 / 13



Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type I2n:

D2n = 〈s, t | s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g. D8 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. A finite Coxeter group is the symmetry group of a (semi)regular
polyhedron, e.g. for I8 we have a 4-gon:

•

H F

I should do the Hecke case,
but I will keep it easy.

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.
To write down the elements use the Coxeter complex.

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 4 / 13



Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type I2n:

D2n = 〈s, t | s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g. D8 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. A finite Coxeter group is the symmetry group of a (semi)regular
polyhedron, e.g. for I8 we have a 4-gon:

•
cos(π/4)

4H F

I should do the Hecke case,
but I will keep it easy.

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

To write down the elements use the Coxeter complex.

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 4 / 13



Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type I2n:

D2n = 〈s, t | s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g. D8 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. A finite Coxeter group is the symmetry group of a (semi)regular
polyhedron, e.g. for I8 we have a 4-gon:

1

I should do the Hecke case,
but I will keep it easy.

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

To write down the elements use the Coxeter complex.

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 4 / 13



Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type I2n:

D2n = 〈s, t | s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g. D8 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. A finite Coxeter group is the symmetry group of a (semi)regular
polyhedron, e.g. for I8 we have a 4-gon:

1

t

s

I should do the Hecke case,
but I will keep it easy.

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

To write down the elements use the Coxeter complex.

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 4 / 13



Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type I2n:

D2n = 〈s, t | s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g. D8 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. A finite Coxeter group is the symmetry group of a (semi)regular
polyhedron, e.g. for I8 we have a 4-gon:

1

t

s

ts

st

I should do the Hecke case,
but I will keep it easy.

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

To write down the elements use the Coxeter complex.

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 4 / 13



Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type I2n:

D2n = 〈s, t | s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g. D8 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. A finite Coxeter group is the symmetry group of a (semi)regular
polyhedron, e.g. for I8 we have a 4-gon:

1

t

s

ts

st

tst

sts

I should do the Hecke case,
but I will keep it easy.

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

To write down the elements use the Coxeter complex.

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 4 / 13



Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type I2n:

D2n = 〈s, t | s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g. D8 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. A finite Coxeter group is the symmetry group of a (semi)regular
polyhedron, e.g. for I8 we have a 4-gon:

1

t

s

ts

st

tst

sts

w0

I should do the Hecke case,
but I will keep it easy.

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

To write down the elements use the Coxeter complex.

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 4 / 13



Dihedral representation theory on one slide.

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, s 7→ λs, t 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M-1,-1,M1,-1,M-1,1,M1,1 M-1,-1,M1,1

Two-dimensional modules. Mz , z ∈ C, s 7→
(
1 z
0 −1

)
, t 7→

(−1 0
z 1

)
.

n ≡ 0 mod 2 n 6≡ 0 mod 2

Mz , z ∈ V (n)−{0} Mz , z ∈ V (n)

V (n) = {2 cos(πk/n−1) | k = 1, . . . , n − 2}.

Proposition (Lusztig?).

The list of one- and two-dimensional D2n-modules
is a complete, irredundant list of simples.

I learned this construction from Mackaay in 2017.

Note that this requires complex parameters.
In particular, this does not work over Z.
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Pioneers of 2-representation theory.

Let C be a finitary 2-category.

Etingof–Ostrik, Chuang–Rouquier, many others ∼2000++. Higher
representation theory is the useful? study of actions of 2-categories:

M : C −→ End(V),

with V being some finitary category. (Called 2-modules or 2-representations.)

The “atoms” of such an action are called 2-simple.

Mazorchuk–Miemietz ∼2014. All (suitable) 2-modules are built out of
2-simples (“weak 2-Jordan–Hölder filtration”).

Slogan (finitary).
Everything that could be finite is finite.

“M (F) = a functor in End(V)”

A main goal of 2-representation theory.
Classify 2-simples.

Main examples to keep in mind.

Example. C = VecG or Rep(G).
Features. Semisimple, classification of 2-simples well-understood.

Comments. I will discuss the classification “in real time”.

Example. C = Repsesi
q (g)level n.

Features. Semisimple, finitely many 2-simples,
classification of 2-simples only known for g = Sl2, some guesses for general g .

Comments. The classification of 2-simples is related to Dynkin diagrams.

Example. C = Hecke category.
Features. Non-semisimple, not known whether there are finitely many 2-simples,

classification of 2-simples only known in special cases.
Comments. Hopefully, by the end of the year we have a classification

by reducing the problem to the above examples.
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2-modules of dihedral groups.

The dihedral group D2n of the regular n-gon has a Kazhdan–Lusztig (KL) basis.

Consider : θw =
∑

w ′≤w w ′, e.g. θst = st + s + t + 1.

Motivation. The KL basis has some neat integral properties and exists for any
Coxeter group. (It isn’t as easy to write down, but exists.)

We want a categorical action. So we need:

B A category V to act on.

B Endofunctors acting on V for the (fixed!) KL basis.

B The relations of the KL basis have to be satisfied by the functors.

B A coherent choice of natural transformations. (C = Hecke category.)

Theorem ∼2016.

Fixing the KL basis, there is a one-to-one correspondence

{(non-trivial) 2-simple D2n-modules}/2-iso
1:1←→

{bicolored ADE Dynkin diagrams with Coxeter number n}.

Thus, its easy to write down a list .
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An algebra P with a fixed basis BP with 1 ∈ BP is called a N0-algebra if

xy ∈ N0B
P (x, y ∈ BP).

A P-module M with a fixed basis BM is called a N0-module if

xm ∈ N0B
M (x ∈ BP,m ∈ BM).

These are N0-equivalent if there is a N0-valued change of basis matrix.

Example. N0-algebras and N0-modules arise naturally as the decategorification of
2-categories and 2-modules, and N0-equivalence comes from 2-equivalence.

Example.

Group algebras of finite groups with basis given by group elements are N0-algebras.

The regular module is a N0-module.

Example.

The regular module of a group algebra decomposes over C into simples.

However, this decomposition is almost never an N0-equivalence.
(I will come back to this in a second.)

Example.

Hecke algebras of (finite) Coxeter groups with
their KL basis are N0-algebras.

For the symmetric group a miracle happens: all simples are N0-modules.
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Clifford, Munn, Ponizovskĭı ∼1942++, Kazhdan–Lusztig ∼1979. x ≤L y if x
appears in zy with non-zero coefficient for z ∈ BP. x ∼L y if x ≤L y and y ≤L x.
∼L partitions P into left cells L. Similarly for right R, two-sided cells J or
N0-modules.

A N0-module M is transitive if all basis elements belong to the same ∼L

equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive N0-module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive N0-modules arise naturally as the decategorification of
simple 2-modules.

Philosophy.

Imagine a graph whose vertices are the x’s or the m’s.
v1 → v2 if v1 appears in zv2.

cells = connected components
transitive = one connected component

“The atoms of N0-representation theory”.

Question (N0-representation theory). Classify them!

Example.

Group algebras with the group element basis have only one cell, G itself.

Transitive N0-modules are C[G/H] for H ⊂ G subgroup/conjugacy. The apex is G .

Example (Kazhdan–Lusztig ∼1979).

Hecke algebras for the symmetric group with KL basis
have cells coming from the Robinson–Schensted correspondence.

The transitive N0-modules are the simples
with apex given by elements for the same shape of Young tableaux.

Example.

Take G = Z/3Z. Then G has three conjugacy classes and three associated simples.
These are given by specifying a third root of unity. (We do not like these!)

G has two subgroups; {e} and G .
The associated N0-modules are the regular and the trivial G -module.

Another example.
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Natural, and computable, examples of transitive N0-modules are the so-called cell
modules which, in some sense, play the role of regular modules.

Fix a left cell L. Let M(≥L), respectively M(>L), be the N0-modules spanned by
all x ∈ BP in the union L′ ≥L L, respectively L′ >L L.
We call CL = M(≥L)/M(>L) the (left) cell module for L.

Fact. “Cell ⇒ transitive N0-module”.

Empirical fact. In well-behaved cases “Cell ⇔ transitive N0-module”, and
classification of transitive N0-modules is fairly easy.

Question. Are there natural examples where “Cell 6⇐ transitive N0-module”?

Example. Decategorifications of cell 2-modules are key examples of cell modules.

Example.

C[G ] with the group element basis has only one cell module, the regular module.

However, the transitive N0-modules C[G/H] are cell modules for G/H if H / G .
So morally, “Cell ⇔ transitive N0-module”.

Example (Kazhdan–Lusztig ∼1979, Lusztig ∼1983++).

For Hecke algebras of the symmetric group with KL basis
“Cell ⇔ transitive N0-module”. Example .

In general, for Hecke algebras the cell modules are Lusztig’s
cell modules studied in connection with reductive groups in characteristic p.

Example (dihedral case).

Cells:

cell 0 1 2

size 1 2n−2 1

sr yes no yes

1 for n even:
n
2

n−2
2

n−2
2

n
2

1 for n odd:
n−1
2

n−1
2

n−1
2

n−1
2

In the dihedral case the DE-modules are not cell modules.
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An additive, k-linear, idempotent complete, Krull–Schmidt category C is called
finitary if it has only finitely many isomorphism classes of indecomposable objects
and the morphism sets are finite-dimensional. A 2-category C with finitely many
objects is finitary if its hom-categories are finitary, ◦h-composition is additive and
linear, and identity 1-morphisms are indecomposable.

A simple transitive 2-module (2-simple) of C is an additive, k-linear 2-functor

M : C →A f(= 2-cat of finitary cats),

such that there are no non-zero proper C -stable ideals.

There is also the notion of 2-equivalence.

Example. N0-algebras and N0-modules arise naturally as the decategorification of
2-categories and 2-modules, and N0-equivalence comes from 2-equivalence.

Mazorchuk–Miemietz ∼2014.

2-Simples ! simples (e.g. weak 2-Jordan–Hölder filtration),

but their decategorifications are transitive N0-modules and usually not simple.

Mazorchuk–Miemietz ∼2011.

Define cell theory similarly as for N0-algebras and -modules.

2-simple ⇒ transitive, and transitive 2-modules have a 2-simple quotient.

Chan–Mazorchuk ∼2016.

Every 2-simple has an associated apex not killing it.

Thus, we can again study them separately for different cells.

Example.

B-pMod (with B finite-dimensional) is a prototypical object of A f .

A 2-module usually is given by endofunctors on B-pMod.

Example.

G can be (naively) categorified using G -graded vector spaces VecG ∈A f .

The 2-simples are indexed by (conjugacy classes of) subgroups H and φ ∈ H2(H,C∗).

Example (Mazorchuk–Miemietz & Chuang–Rouquier & Khovanov–Lauda & ...).

2-Kac–Moody algebras (+fc) are finitary 2-categories.

Their 2-simples are categorifications of the simples.

Example (Mazorchuk–Miemietz & Soergel & Khovanov–Mazorchuk–Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: “Indecomposable projective functors on O0.”)

Symmetric group: the 2-simples are categorifications of the simples.

Example (Kildetoft–Ko–Mackaay–Mazorchuk–Miemietz–Zhang & ...).

Quotients of Soergel bimodules (+fc), e.g. small quotients, are finitary 2-categories.

Except for the small quotients+ε the classification is widely open.

Example.

Fusion or modular categories are semisimple examples
of finitary 2-categories. (Example. Repsesi

q (g)n.)
Their 2-modules play a prominent role in quantum algebra and topology.

On the categorical level the impact of the choice of basis is evident:

These are the indecomposable objects in some 2-category,
and different bases are categorified by

potentially non-equivalent 2-categories.

So, of course, the 2-representation theory differs!

Question (“2-representation theory”).

Classify all 2-simples of a fixed finitary 2-category.

This is the categorification of

‘Classify all simples a fixed finite-dimensional algebra’,

but much harder, e.g. it is unknown whether
there are always only finitely many 2-simples (probably not).
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but their decategorifications are transitive N0-modules and usually not simple.

Mazorchuk–Miemietz ∼2011.

Define cell theory similarly as for N0-algebras and -modules.

2-simple ⇒ transitive, and transitive 2-modules have a 2-simple quotient.

Chan–Mazorchuk ∼2016.

Every 2-simple has an associated apex not killing it.

Thus, we can again study them separately for different cells.

Example.

B-pMod (with B finite-dimensional) is a prototypical object of A f .

A 2-module usually is given by endofunctors on B-pMod.

Example.

G can be (naively) categorified using G -graded vector spaces VecG ∈A f .

The 2-simples are indexed by (conjugacy classes of) subgroups H and φ ∈ H2(H,C∗).

Example (Mazorchuk–Miemietz & Chuang–Rouquier & Khovanov–Lauda & ...).

2-Kac–Moody algebras (+fc) are finitary 2-categories.

Their 2-simples are categorifications of the simples.

Example (Mazorchuk–Miemietz & Soergel & Khovanov–Mazorchuk–Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: “Indecomposable projective functors on O0.”)

Symmetric group: the 2-simples are categorifications of the simples.

Example (Kildetoft–Ko–Mackaay–Mazorchuk–Miemietz–Zhang & ...).

Quotients of Soergel bimodules (+fc), e.g. small quotients, are finitary 2-categories.

Except for the small quotients+ε the classification is widely open.

Example.

Fusion or modular categories are semisimple examples
of finitary 2-categories. (Example. Repsesi

q (g)n.)
Their 2-modules play a prominent role in quantum algebra and topology.

On the categorical level the impact of the choice of basis is evident:

These are the indecomposable objects in some 2-category,
and different bases are categorified by

potentially non-equivalent 2-categories.

So, of course, the 2-representation theory differs!

Question (“2-representation theory”).

Classify all 2-simples of a fixed finitary 2-category.

This is the categorification of

‘Classify all simples a fixed finite-dimensional algebra’,

but much harder, e.g. it is unknown whether
there are always only finitely many 2-simples (probably not).

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 11 / 13



An additive, k-linear, idempotent complete, Krull–Schmidt category C is called
finitary if it has only finitely many isomorphism classes of indecomposable objects
and the morphism sets are finite-dimensional. A 2-category C with finitely many
objects is finitary if its hom-categories are finitary, ◦h-composition is additive and
linear, and identity 1-morphisms are indecomposable.

A simple transitive 2-module (2-simple) of C is an additive, k-linear 2-functor

M : C →A f(= 2-cat of finitary cats),

such that there are no non-zero proper C -stable ideals.

There is also the notion of 2-equivalence.

Example. N0-algebras and N0-modules arise naturally as the decategorification of
2-categories and 2-modules, and N0-equivalence comes from 2-equivalence.

Mazorchuk–Miemietz ∼2014.

2-Simples ! simples (e.g. weak 2-Jordan–Hölder filtration),
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Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: “Indecomposable projective functors on O0.”)

Symmetric group: the 2-simples are categorifications of the simples.

Example (Kildetoft–Ko–Mackaay–Mazorchuk–Miemietz–Zhang & ...).

Quotients of Soergel bimodules (+fc), e.g. small quotients, are finitary 2-categories.

Except for the small quotients+ε the classification is widely open.

Example.

Fusion or modular categories are semisimple examples
of finitary 2-categories. (Example. Repsesi

q (g)n.)
Their 2-modules play a prominent role in quantum algebra and topology.

On the categorical level the impact of the choice of basis is evident:

These are the indecomposable objects in some 2-category,
and different bases are categorified by

potentially non-equivalent 2-categories.

So, of course, the 2-representation theory differs!

Question (“2-representation theory”).

Classify all 2-simples of a fixed finitary 2-category.

This is the categorification of

‘Classify all simples a fixed finite-dimensional algebra’,

but much harder, e.g. it is unknown whether
there are always only finitely many 2-simples (probably not).
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Classify all 2-simples of a fixed finitary 2-category.

This is the categorification of

‘Classify all simples a fixed finite-dimensional algebra’,

but much harder, e.g. it is unknown whether
there are always only finitely many 2-simples (probably not).

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 11 / 13



One can do even better than just reducing the theory to a fixed apex; one can
reduce to the diagonal. Roughly:

For each two-sided cell J fix a left cell L and consider the diagonal cell H = L∪ L∗.

Green ∼1951, Mackaay–Mazorchuk–Miemietz–Zhang ∼2018. For any fiat
2-category C there exists a fiat 2-subcategory A such that

{
2-simples of C

with apex J

}
one-to-one←−−−−→

{
2-simples of A

with apex H

}

This reduces the classification to the diagonal H.

We hope that this will finally lead to a classification of 2-simples for Soergel
bimodules using asymptotic Hecke algebras and categories. (At the moment this
is widely open.)
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Pioneers of representation theory.

Let A be a finite-dimensional algebra.

Frobenius ∼1895++, Burnside ∼1900++, Noether ∼1928++.
Representation theory is the useful? study of algebra actions

M : A −→ End(V),

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple.

Maschke ∼1899, Noether, Schreier ∼1928. All modules are built out of
simples (“Jordan–Hölder filtration”).

“M(a) = a matrix in End(V)”

A main goal of representation theory.
Classify simples.

We want to have a
categorical version of this.

I am going to explain what we can do at present.

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 3 / 13

Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type I2n:

D2n = 〈s, t | s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g. D8 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. A finite Coxeter group is the symmetry group of a (semi)regular
polyhedron, e.g. for I8 we have a 4-gon:

1

t

s

ts

st

tst

sts

w0

I should do the Hecke case,
but I will keep it easy.

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

To write down the elements use the Coxeter complex.
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Dihedral representation theory on one slide.

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, s 7→ λs, t 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M-1,-1,M1,-1,M-1,1,M1,1 M-1,-1,M1,1

Two-dimensional modules. Mz , z ∈ C, s 7→
(

1 z
0 −1

)
, t 7→

(−1 0
z 1

)
.

n ≡ 0 mod 2 n 6≡ 0 mod 2

Mz , z ∈ V (n)−{0} Mz , z ∈ V (n)

V (n) = {2 cos(πk/n−1) | k = 1, . . . , n − 2}.

Proposition (Lusztig?).

The list of one- and two-dimensional D2n-modules
is a complete, irredundant list of simples.

I learned this construction from Mackaay in 2017.

Note that this requires complex parameters.
In particular, this does not work over Z.
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Pioneers of 2-representation theory.

Let C be a finitary 2-category.

Etingof–Ostrik, Chuang–Rouquier, many others ∼2000++. Higher
representation theory is the useful? study of actions of 2-categories:

M : C −→ End(V),

with V being some finitary category. (Called 2-modules or 2-representations.)

The “atoms” of such an action are called 2-simple.

Mazorchuk–Miemietz ∼2014. All (suitable) 2-modules are built out of
2-simples (“weak 2-Jordan–Hölder filtration”).

Slogan (finitary).
Everything that could be finite is finite.

“M (F) = a functor in End(V)”

A main goal of 2-representation theory.
Classify 2-simples.

Main examples to keep in mind.

Example. C = VecG or Rep(G).
Features. Semisimple, classification of 2-simples well-understood.

Comments. I will discuss the classification “in real time”.

Example. C = Repsesi
q (g)level n.

Features. Semisimple, finitely many 2-simples,
classification of 2-simples only known for g = Sl2, some guesses for general g .

Comments. The classification of 2-simples is related to Dynkin diagrams.

Example. C = Hecke category.
Features. Non-semisimple, not known whether there are finitely many 2-simples,

classification of 2-simples only known in special cases.
Comments. Hopefully, by the end of the year we have a classification

by reducing the problem to the above examples.
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Back

This is an unexpected ADE classification,
and these have appeared in Sergei’s talk!?!

Fun, and of course related (quantum Satake):
Repsesi

q (SL2)n (semisimplified at level n)
has, up to forgetting bicoloring, the same classification of 2-simples.

There is a similar story for all types,
e.g. Repsesi

q (SL3)n (semisimplified at level n)
relates to some “trihedral algebra”.

(Robinson ∼1938 & )Schensted ∼1961 & Kazhdan–Lusztig ∼1979.

Elements of Sn
1:1←→ (P,Q) standard Young tableaux of the same shape. Left,

right and two-sided cells of Sn:

I s ∼L t if and only if Q(s) = Q(t).

I s ∼R t if and only if P(s) = P(t).

I s ∼J t if and only if P(s) and P(t) have the same shape.

Example (n = 3).

Left cellsRight cells
Two-sided cells

Apexes:

θ1 θs θt θts θst θw0

1 2 2 4 4 6

2 2 2 1 1 0

1 0 0 0 0 0

The N0-modules are the simples.

Back

Example (SAGE). The Weyl group of type B6. Number of elements: 46080.
Number of cells: 26, named 0 (trivial) to 25 (top).

Cell order:

5 7 10 13 15 18 21

0 1 2 4 6 8 9 12 16 17 19 22 23 24 25

3 11 14 20

Size of the cells and whether the cells are strongly regular (sr):

cell 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

size 1 62 342 576 650 3150 350 1600 2432 3402 900 2025 14500 600 2025 900 3402 2432 1600 350 576 3150 650 342 62 1

sr yes no no yes no no no yes no no yes yes no no yes yes no no yes no yes no no no no yes

In general there will be plenty of non-cell modules which are transitive N0-modules.

Back

Example (cell 12).

Cell 12 is a bit scary:

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25

So this cell has at least five cell modules attached to it (look at the rows),
but maybe even more.

2-representation theory in a nutshell.

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorical module

categorifies

categorifies

categorifies

categorifies

categorifies

Example (SAGE; Type B6).

Reducing from 46080 to 14500 to 4:

J =

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25

 H =

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25

A “=”VecZ/2Z×Z/2Z, rank sequence: 1, 1, 2, 2, 2, 4.

In particular, there is one non-cell 2-simple.

In general, for Weyl groups the H cells are rather simple, and the associated
asymptotic limit is group like.

Back

There is still much to do...

Thanks for your attention!
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Mazorchuk–Miemietz ∼2014. All (suitable) 2-modules are built out of
2-simples (“weak 2-Jordan–Hölder filtration”).

Slogan (finitary).
Everything that could be finite is finite.

“M (F) = a functor in End(V)”

A main goal of 2-representation theory.
Classify 2-simples.

Main examples to keep in mind.

Example. C = VecG or Rep(G).
Features. Semisimple, classification of 2-simples well-understood.

Comments. I will discuss the classification “in real time”.

Example. C = Repsesi
q (g)level n.

Features. Semisimple, finitely many 2-simples,
classification of 2-simples only known for g = Sl2, some guesses for general g .
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Example. C = Hecke category.
Features. Non-semisimple, not known whether there are finitely many 2-simples,
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Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).
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Further

Nowadays representation theory is pervasive across mathematics, and beyond.

But this wasn’t clear at all when Frobenius started it.



Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).
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Nowadays representation theory is pervasive across mathematics, and beyond.

But this wasn’t clear at all when Frobenius started it.



Figure: “Über Gruppencharaktere (characters of groups)” by Frobenius (1896). Bottom:
first published character table.

Note the root of unity ρ!
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Figure: The connected Coxeter diagrams of finite type. Their numbers ordered by
dimension: 1,∞, 3, 5, 3, 4, 4, 4, 3, 3, 3, 3, 3, . . . .

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Back

https://en.wikipedia.org/wiki/Coxeter_group


The type A family
n = 2

H

F

n = 3

H F

n = 4

H F H

F H F

n = 5

H F H F

n = 6

H F H F H

F H F H F
. . .

The type D family
n = 6

H F
H

H

F H
F

F

n = 8

F H F
H

H

H F H
F

F

n = 10

H F H F
H

H

F H F H
F

F

n = 12

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
n = 12

H F H F H
F

F H F H F
H

n = 18

H F H F H F
F

F H F H F H
H

n = 30

H F H F H F H
F

F H F H F H F
H

Back

This is an unexpected ADE classification,
and these have appeared in Sergei’s talk!?!

Fun, and of course related (quantum Satake):
Repsesi

q (SL2)n (semisimplified at level n)
has, up to forgetting bicoloring, the same classification of 2-simples.

There is a similar story for all types,
e.g. Repsesi

q (SL3)n (semisimplified at level n)
relates to some “trihedral algebra”.
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Fun, and of course related (quantum Satake):
Repsesi

q (SL2)n (semisimplified at level n)
has, up to forgetting bicoloring, the same classification of 2-simples.

There is a similar story for all types,
e.g. Repsesi

q (SL3)n (semisimplified at level n)
relates to some “trihedral algebra”.



The KL basis elements for S3 with s = (1, 2), t = (2, 3) and sts = w0 = tst are:

θ1 = 1, θs = s + 1, θt = t + 1, θts = ts + s + t + 1,

θst = st + s + t + 1, θw0 = w0 + ts + st + s + t + 1.

1 s t ts st w0

1 1 1 1 1 1

2 0 0 −1 −1 0

1 −1 −1 1 1 −1

Figure: The character table of S3.

Remark.

This non-negativity of the KL basis
is true for all symmetric groups,

but not for most other Coxeter groups (cf. dihedral case).
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(Robinson ∼1938 & )Schensted ∼1961 & Kazhdan–Lusztig ∼1979.

Elements of Sn
1:1←→ (P,Q) standard Young tableaux of the same shape. Left,

right and two-sided cells of Sn:

I s ∼L t if and only if Q(s) = Q(t).

I s ∼R t if and only if P(s) = P(t).

I s ∼J t if and only if P(s) and P(t) have the same shape.

Example (n = 3).

1! 1 2 3 , 1 2 3

s! 1 3
2 , 1 3

2 ts! 1 2
3 , 1 3

2

t! 1 2
3 , 1 2

3 st! 1 3
2 , 1 2

3

w0!
1
2
3
,

1
2
3

Left cellsRight cells
Two-sided cells

Apexes:

θ1 θs θt θts θst θw0

1 2 2 4 4 6

2 2 2 1 1 0

1 0 0 0 0 0

The N0-modules are the simples.
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The regular Z/3Z-module is

0!
(

1 0 0
0 1 0
0 0 1

)
& 1!

(
0 0 1
1 0 0
0 1 0

)
& 2!

(
0 1 0
0 0 1
1 0 0

)

Jordan decomposition over C with ζ3 = 1 gives

0!
(

1 0 0
0 1 0
0 0 1

)
& 1!

(
1 0 0
0 ζ 0

0 0 ζ−1

)
& 2!

(
1 0 0
0 ζ−1 0
0 0 ζ

)

However, Jordan decomposition over f3 gives

0!
(

1 0 0
0 1 0
0 0 1

)
& 1!

(
1 1 0
0 1 1
0 0 1

)
& 2!

(
1 1 0
0 1 1
0 0 1

)

and the regular module does not decompose.
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Example (G = D8). Here we have three different notions of “atoms”.

Classical representation theory. The simples from before.

M-1,-1 M1,-1 M√2 M-1,1 M1,1

atom sign rotation trivial
rank 1 1 2 1 1

Group element basis. Subgroups and ranks of N0-modules.

subgroup 1 〈st〉 〈w0〉 〈w0, s〉 〈w0, sts〉 G
atom regular M1,1⊕M-1,-1 M√2⊕M√2 M1,1⊕M1,-1 M1,1⊕M-1,1 trivial
rank 8 2 4 2 2 1

KL basis. ADE diagrams and ranks of N0-modules.

bottom cell H F H F H F top cell

atom sign M1,-1⊕M√2 M-1,1⊕M√2 trivial
rank 1 3 3 1
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Example (SAGE). The symmetric group on 4 strands. Number of elements: 24.
Number of cells: 5, named 0 (trivial) to 4 (top).

Cell order:
0 1 2 3 4

Size of the cells:
cell 0 1 2 3 4

size 1 9 4 9 1

Cell 1 is e.g.
s1 s2s1 s3s2s1

s1s2 s2 s3s2

s1s2s3 s2s3 s3

number of elements−−−−−−−−−−−→
1 1 1

1 1 1

1 1 1

Such cells of square size are called strongly regular.

Back

Further example

Left cells are rows,
right cells are columns.

Fact.

Each left-right-intersection contains at least one element.
So strongly regular cells are as easy as possible.

Fact.

“Cell ⇔ transitive N0-module” holds
N0-algebras with only strongly regular cells.

Fact.

For the symmetric group all cells are strongly regular.

Example. There are three rows with three elements,
so three cells modules of dimension three.

All of them are N0-equivalent and here is one of them:

s1 !

1 1 0
0 0 0
0 1 1

 and s2 !

0 0 0
1 1 0
0 0 1

 and s3 !

0 0 0
0 0 0
0 1 0
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Example (SAGE). The Weyl group of type B6. Number of elements: 46080.
Number of cells: 26, named 0 (trivial) to 25 (top).

Cell order:

5 7 10 13 15 18 21

0 1 2 4 6 8 9 12 16 17 19 22 23 24 25

3 11 14 20

Size of the cells and whether the cells are strongly regular (sr):

cell 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

size 1 62 342 576 650 3150 350 1600 2432 3402 900 2025 14500 600 2025 900 3402 2432 1600 350 576 3150 650 342 62 1

sr yes no no yes no no no yes no no yes yes no no yes yes no no yes no yes no no no no yes

In general there will be plenty of non-cell modules which are transitive N0-modules.
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Example (cell 12).

Cell 12 is a bit scary:

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25

So this cell has at least five cell modules attached to it (look at the rows),
but maybe even more.
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Example (G = Z/2×Z/2).

Subgroups, Schur multipliers and 2-simples.

Z/2Z×Z/2Z

〈(1, 0)〉 〈(1, 1)〉 〈(0, 1)〉

{e}
In particular, there are two categorifications of the trivial module, and the rank
sequences read

decat: 1, 2, 2, 2, 4, cat: 1, 1, 2, 2, 2, 4.
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{e}

{+1,−1}

{e} {e} {e}

{e}

Vec+1
1 ,Vec−11

VecZ/2Z VecZ/2Z VecZ/2Z

VecG
In particular, there are two categorifications of the trivial module, and the rank
sequences read

decat: 1, 2, 2, 2, 4, cat: 1, 1, 2, 2, 2, 4.
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Example (Strongly regular cells).

For a strongly regular cell H consists only of one element:

J =
1 1 1

1 1 1

1 1 1

& L =
1 1 1

1 1 1

1 1 1

& L∗ =
1 1 1

1 1 1

1 1 1

 H =
1 1 1

1 1 1

1 1 1

and the associated 2-category A is has only one indecomposable. Not
surprisingly, such a 2-category has only one 2-simple.

In particular, this reduces the classification of a potentially complicated 2-category
to another classification problem for a trivial 2-category.
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Example (SAGE; Type B6).

Reducing from 46080 to 14500 to 4:

J =

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25

 H =

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25

A “=”VecZ/2Z×Z/2Z, rank sequence: 1, 1, 2, 2, 2, 4.

In particular, there is one non-cell 2-simple.

In general, for Weyl groups the H cells are rather simple, and the associated
asymptotic limit is group like.
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