All I know about Artin-Tits groups

Or: Why type A is so much easier...

(Page 283 from Gauß' handwritten notes, volume seven, ≤ 1830).

Joint with David Rose

April 2019

Let Γ be a Coxeter graph.

Artin ~ 1925, Tits $\mathbf{\sim 1 9 6 1 +}$. The Artin-Tits group and its Coxeter group quotient are given by generators-relations:

Artin-Tits groups generalize classical braid groups, Coxeter groups polyhedron groups.

My failure. What I would like to understand, but I do not.

Artin-Tits groups come in four main flavors.
Question: Why are these special? What happens in general type?

My failure. What I would like to understand, but I do not.

Artin-Tits groups come in four main flavors.
Question: Why are these special? What happens in general type?

> Maybe some categorical considerations help?
> In particular, what can Artin-Tits groups tell you about flavor two?

Let Γ be a Coxeter graph. The following commuting diagram exists in any type:

$$
\begin{array}{cc}
\mathrm{AT}(\Gamma) & \\
\llbracket-\mathbb{Q} & \mathrm{AT}(\Gamma) \\
\mathcal{K}^{b}\left(\mathscr{S}^{\mathbf{q}}(\Gamma)\right) \xrightarrow{\text { decat. }} & \mathcal{H}^{\mathbf{q}}(\Gamma) \\
\downarrow & \\
\mathcal{K}^{b}\left(\mathscr{Z}^{\mathbf{a}}(\Gamma)\right) \\
& \\
\text { decat. } & \mathcal{B}^{\mathbf{q}}(\Gamma)
\end{array}
$$

Question. How does this help to study Artin-Tits groups?
Here (killing idempotents for the last row):

- Hecke algebra $\mathcal{H}^{\mathbf{q}}(\Gamma)$, homotopy category of Soergel bimodules $\mathcal{K}^{b}\left(\mathscr{S}^{\mathbf{q}}(\Gamma)\right)$.
- Hecke action [_], Rouquier complex 【-】.
- Burau representation $\mathcal{B}^{\mathrm{q}}(\Gamma)$, homotopy category of representations of zigzag algebras $\mathcal{K}^{b}\left(\mathscr{Z}^{a}(\Gamma)\right)$.

$\mathrm{AT}(\Gamma)=\mathrm{AT}(\Gamma)$

Faithfulness?

The Hecke action is known to be faithful in very few cases, e.g. for Γ of rank 1,2 . But there is "no way" to prove this in general.

Example (seems to work). Hecke distinguishes the braids where Burau failed:

```
O-
sage: R.<q> = LaurentPolynomialRing(ZZ)
sage: H = IwahoriHeckeAlgebra('A5', q, -q^-1)
sage: T=H.T();
sage: Psi2 = T[4]^(-1) * T[5]^(2) * T[2]**T[1]^(
sage: psi2 =T[4]^(-1)* T[5]^(2)**T[2]* *[1]^(-2)
sage:PS11 =T[1]^(-1)*T[2]*T[5]*T[4]^(-1)
sage: Psi2 = T[1]^(2) * T[2]^(-1) * T[5]^(-2) * T[4]
sage: W1 = Psil * T[3] * psil
sage: W2 = Psil * T[3] * psiz
sage: W1 = Psil * T[3]^(-1) * psil
sage: W2 = Psi2 * T[3]^(-1) * psi2
sage: W1 * W2 * W1 * W2
evaluate
WARNING: Output truncated
full_output.txt
\(-\left(q^{\wedge}-21-10^{*} q^{\wedge}-19+50^{*} q^{\wedge}-17-168^{*} q^{\wedge}-15+428^{*} q^{\wedge}-13-882^{*} q^{\wedge}-11+1531^{*} q^{\wedge}-9-2303^{*} q \backslash\right.\)
\(\left.-7+3067^{*} q^{\wedge}-5-3676^{*} q^{\wedge}-3+4012^{*} q^{\wedge}-1-4012^{*} q^{2}+3676 * q^{\wedge} 3-3067^{*} q^{\wedge} 5+2303^{*} q^{\wedge} 7-1531\right)\) \(\left.q^{\wedge} 9+882^{*} q^{\wedge} 11-428^{*} q^{\wedge} 13+168^{*} q^{\wedge} 15-50^{*} q^{\wedge} 17+10 * q^{\wedge} 19-q^{\wedge} 21\right)^{*} T[1,2,3,4,5,1,2,3, \backslash\)
``` \(4,1,2,3,1,2,11+\)
वाघटागवड \(\pi\left(z^{2}(1)\right)\).

\section*{Faithfulness?}

Rouquier's action is known to be faithful in quite a few cases: finite type (Khovanov-Seidel, Brav-Thomas), affine type A (Gadbled-Thiel-Wagner), affine type C (handlebody). There might be hope to prove this in general.

Example (the whole point). Zigzag already distinguishes braids:
- Burau representation \(\mathcal{B}^{\mathrm{q}}(\Gamma)\), homotopy category of representations of zigzag algebras \(\mathcal{K}^{b}\left(\mathscr{Z}^{q}(\Gamma)\right)\).

\section*{Theorem (handlebody faithfulness).}

For all \(g, n\), Rouquier's action \(\llbracket-\rrbracket\) gives rise to a family of faithful actions
\[
\frac{\mathscr{B r}(g, n) \curvearrowright \mathcal{K}^{b}\left(\mathscr{S}^{\mathbf{a}}(\Gamma)\right), \mathscr{Q} \mapsto \llbracket \mathscr{Q} \rrbracket_{\mathrm{M}} .}{\mathcal{K}^{b}\left(\mathscr{Z}^{\mathrm{q}}(\Gamma)\right) \stackrel{\text { decat. }}{\downarrow} \mathcal{B}^{\mathrm{q}}(\Gamma)}
\]

Rouquier \(\sim\) 2004. The 2-braid group \(\mathcal{A T}(\Gamma)\) is \(\operatorname{im}(\llbracket-\rrbracket) \subset \mathcal{K}^{b}\left(\mathscr{S}_{\mathrm{s}}^{\mathbf{q}}(\Gamma)\right)\).
If you have a configuration space picture for \(\mathrm{AT}(\Gamma)\) one can define the category of braid cobordisms \(\mathscr{B}_{\text {cob }}(\Gamma)\) in four space.
Fact (well-known?). For \(\Gamma\) of type \(A, B=C\) or affine type \(C\) we have
\[
\mathcal{A T}(\Gamma)=\operatorname{inv}\left(\mathscr{B}_{\mathrm{cob}}(\Gamma)\right) .
\]

Corollary (strictness). We have a categorical action
\[
\operatorname{inv}\left(\mathscr{B}_{\operatorname{cob}}(g, n)\right) \curvearrowright \mathcal{K}^{b}\left(\mathscr{S}^{\mathbf{q}}(\Gamma)\right), \mathscr{b}^{\circ} \mapsto \llbracket \mathscr{\theta}^{4} \rrbracket, \mathscr{b}_{\mathrm{cob}} \mapsto \llbracket \mathscr{b}_{\mathrm{cob}} \rrbracket .
\]

Question (functoriality). Can we lift \(\llbracket-\rrbracket\) to a categorical action
\[
\mathscr{B}_{\operatorname{cob}}(g, n) \curvearrowright \mathcal{K}^{b}\left(\mathscr{S}^{\mathrm{q}}(\Gamma)\right) ?
\]

Rouquier ~2004. The 2-braid group \(\mathcal{A T}(\Gamma)\) is \(\operatorname{im}(\mathbb{\Pi} \mathbb{\Pi}) \subset \mathcal{K}^{b}\left(\mathscr{S}^{q}(\Gamma)\right)\).

\section*{Example (type A).}

\&

Invertible ones encode isotopies, non-invertible ones "more interesting" topology.
Question (functoriality). Can we lift \(\llbracket-\rrbracket\) to a categorical action
\[
\mathscr{B}_{\operatorname{cob}}(g, n) \curvearrowright \mathcal{K}^{b}\left(\mathscr{S}^{\mathrm{q}}(\Gamma)\right) ?
\]

Rouquier ~2004. The 2-braid group \(\mathcal{A T}(\Gamma)\) is \(\operatorname{im}(\mathbb{\Pi} \mathbb{\Pi}) \subset \mathcal{K}^{b}\left(\mathscr{S}^{q}(\Gamma)\right)\).

\section*{Example (type A).}

Braid cobordisms are movies of braids. E.g. some generators are

Invertible ones encode isotopies, non-invertible ones "more interesting" topology.

\section*{Question (functoriality). Can we lift \(\llbracket-\rrbracket\) to a categorical action}

\section*{Theorem (well-known?).}

The Rouquier complex is functorial in types
\(A, B=C\) and affine \(C\).

Rouquier \(\sim\) 2004. The 2-braid group \(\mathcal{A} \mathcal{T}(\Gamma)\) is \(\operatorname{im}(\llbracket-\rrbracket) \subset \mathcal{K}^{b}\left(\mathscr{S}_{\mathrm{s}}^{\mathbf{q}}(\Gamma)\right)\).

If you have a configuration space picture for \(A T(\Gamma)\) one can define the category of braid Theorem (handlebody functoriality).

Fact For all \(g, n\), Rouquier's action \(\llbracket-\rrbracket\) gives rise to a family of functorial actions
\[
\text { Coro } \begin{gathered}
\mathscr{B}_{\mathrm{cob}}(g, n) \curvearrowright \mathcal{K}^{b}\left(\mathscr{S}^{\mathbf{q}}(\Gamma)\right), \mathfrak{b} \mapsto \llbracket \mathfrak{G} \rrbracket_{\mathrm{M}}, \mathfrak{b}_{\mathrm{cob}} \mapsto \llbracket \mathfrak{b}_{\mathrm{cob}} \rrbracket_{\mathrm{M}} . \\
\left(\mathscr{B}_{\mathrm{cob}}(g, n) \text { is the 2-category of handlebody braid cobordisms. }\right) \\
\operatorname{inv}\left(\mathscr{B}_{\mathrm{cob}}(g, n)\right) \curvearrowright \mathcal{K}^{b}\left(\mathscr{S}^{\mathrm{q}}(\Gamma)\right), \mathfrak{b} \mapsto \llbracket \mathfrak{C} \rrbracket, \mathfrak{b}_{\mathrm{cob}} \mapsto \llbracket \mathfrak{b}_{\mathrm{cob}} \rrbracket .
\end{gathered}
\]

Question (functoriality). Can we lift \(\llbracket-\rrbracket\) to a categorical action
\[
\mathscr{B}_{\mathrm{cob}}(g, n) \curvearrowright \mathcal{K}^{b}\left(\mathscr{S}^{\mathrm{a}}(\Gamma)\right) ?
\]

\section*{Rouquier \(\sim\) 2004. The 2-braid group \(\mathcal{A} \mathcal{T}(\Gamma)\) is \(\operatorname{im}(\llbracket-\rrbracket) \subset \mathcal{K}^{b}\left(\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\Gamma)\right)\).}

If you have a configuration space picture for \(A T(\Gamma)\) one can define the category of braid Theorem (handlebody functoriality).

Fact For all \(g, n\), Rouquier's action \(\llbracket-\rrbracket\) gives rise to a family of functorial actions
\[
\mathscr{B}_{\mathrm{cob}}(g, n) \curvearrowright \mathcal{K}^{b}\left(\mathscr{S}^{\mathrm{a}}(\Gamma)\right), \mathfrak{b}^{\circ} \mapsto \llbracket \ell \rrbracket_{\mathrm{M}}, \boldsymbol{b}_{\mathrm{cob}} \mapsto \llbracket b_{\mathrm{cob}} \rrbracket_{\mathrm{M}} .
\]

Coro
```

(\mathscr{B}

```
\[
\operatorname{inv}\left(\mathscr{B}_{\mathrm{cob}}(g, n)\right) \curvearrowright \mathcal{K}^{b}\left(\mathscr{S}^{\mathrm{q}}(\Gamma)\right), \mathscr{b} \mapsto \llbracket \mathscr{C} \rrbracket, \mathscr{Q}_{\mathrm{cob}} \mapsto \llbracket \mathscr{Q}_{\mathrm{cob}} \rrbracket .
\]

\section*{Question (functoriality)}
Final observation.
In all (non-trivial) cases I know action
"faithful \(\Leftrightarrow\) functorial".
Is there a general statement?

\(\infty\)

```

···....t. \#....

```

```

.n.<<京..........

```


Type \(\mathrm{H}_{1}\). dodecahedron/icosahedron on- exceptional Coxeter group.
For \(\mathrm{I}_{2}(4)\) we have a 4 -gon:
 For \(L_{2}(4)\) we have a 4 -gon
Fix a flag \(F\).
 Idea (Coneter \(\sim 1934++\)).

Let \(\operatorname{Br}(g, n)\) be the group defined \(z\) follows

Generators. Braid and twist generators

Relations. Reidemeister braid restions, type C redations and special relations, eg

Lawrence \(\sim 1989\), Krammer \(\sim 2000\), Bigelow \(\sim 2000\) (Cohen-Wales \(\sim 2000, ~\)
Digre \(\sim 2000\). Let \(\Gamma\) be of finite type. There evists a fathtul action of ATVT) Digne \(\sim 2000)\). Let \(T\) be of finite type. There evists a fiathful action of \(A T(T)\)
on a finite-dimensional wector space.

Upshot: One can ask a computer program questions about braids!

\section*{There is still much to do...}

\(\infty\)

```

···... \&.f \#%..

```

```

.n.<<京..........

```


Let \(\operatorname{Br}(\rho, n)\) be the group defined \(\approx\) follows

Generators. Braid and twist generators

Relations. Reidemeister braid restions, type C reations and special relations, eg Digne \(\sim 2000\)), Let . Digne \(\sim 2000)\). Let \(\Gamma\) be of finite type. There evists a faithful artion of \(A T(T)\)
on a finite-dimensional wector space.

Upshot: One can ask a computer program questions about braids!

Thanks for your attention!

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

\section*{Examples.}

Type \(\mathrm{A}_{3} \longleftrightarrow \leadsto\) tetrahedron \(\leadsto \leadsto\) symmetric group \(S_{4}\).
Type \(\mathrm{B}_{3} \longleftrightarrow \nrightarrow\) cube/octahedron \(\rightsquigarrow \rightsquigarrow\) Weyl group \((\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}\).
Type \(\mathrm{H}_{3} \longleftrightarrow \leadsto\) dodecahedron/icosahedron \(\longleftrightarrow \rightsquigarrow\) exceptional Coxeter group.
For \(\mathrm{I}_{2}(4)\) we have a 4 -gon:
\[
\text { Idea (Coxeter } \sim 1934++ \text {). }
\]

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

\section*{Examples.}

Type \(\mathrm{A}_{3} \nVdash \leadsto\) tetrghadun. The symmetries are given by exchanging flags.

Type \(\mathrm{H}_{3} \longleftrightarrow \leadsto\) dodecahedron/icosahedron \(\longleftrightarrow \rightsquigarrow\) exceptional Coxeter group.
For \(\mathrm{I}_{2}(4)\) we have a 4 -gon:
Fix a flag \(F\).
\[
\text { Idea (Coxeter } \sim 1934++ \text {). }
\]

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

\section*{Examples.}

Type \(\mathrm{A}_{3} \longleftrightarrow \leadsto\) tetrahedron \(\leadsto \leadsto\) symmetric group \(S_{4}\).
Type \(\mathrm{B}_{3} \longleftrightarrow \nrightarrow\) cube/octahedron \(\rightsquigarrow \rightsquigarrow\) Weyl group \((\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}\).
Type \(\mathrm{H}_{3} \leadsto>\) dodecahedron/icosahedron \(\leadsto \rightsquigarrow\) exceptional Coxeter group.
For \(\mathrm{I}_{2}(4)\) we have a 4-gon:
\[
\text { Fix a flag } F \text {. }
\]

Idea (Coxeter ~1934++).
Fix a hyperplane \(H_{0}\) permuting the adjacent 0 -cells of \(F\).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

\section*{Examples.}

Type \(\mathrm{A}_{3} \longleftrightarrow \leadsto\) tetrahedron \(\leadsto \leadsto\) symmetric group \(S_{4}\).
Type \(\mathrm{B}_{3} \longleftrightarrow \nrightarrow\) cube/octahedron \(\rightsquigarrow \rightsquigarrow\) Weyl group \((\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}\).
Type \(\mathrm{H}_{3} \leadsto>\) dodecahedron/icosahedron \(\leadsto \rightsquigarrow\) exceptional Coxeter group.
For \(\mathrm{I}_{2}(4)\) we have a 4 -gon:
\[
\text { Fix a flag } F \text {. }
\]

Fix a hyperplane \(H_{0}\) permuting the adjacent 0 -cells of \(F\).

Fix a hyperplane \(H_{1}\) permuting the adjacent 1-cells of \(F\), etc.
Idea (Coxeter ~1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

\section*{Examples.}

Type \(\mathrm{A}_{3} \longleftrightarrow \rightsquigarrow\) tetrahedron \(\leadsto \leadsto\) symmetric group \(S_{4}\).
Type \(\mathrm{B}_{3} \longleftrightarrow \nrightarrow\) cube/octahedron \(\rightsquigarrow \rightsquigarrow\) Weyl group \((\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}\).
Type \(\mathrm{H}_{3} \leadsto>\) dodecahedron/icosahedron \(\leadsto \rightsquigarrow\) exceptional Coxeter group.
For \(\mathrm{I}_{2}(4)\) we have a 4-gon:
\[
\text { Fix a flag } F \text {. }
\]

Fix a hyperplane \(H_{0}\) permuting the adjacent 0 -cells of \(F\).

Fix a hyperplane \(H_{1}\) permuting the adjacent 1-cells of \(F\), etc.
Write a vertex \(i\) for each \(H_{i}\).
Idea (Coxeter ~1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)
Examples. This gives a generator-relation presentation.
Type \(A_{3} \leadsto \rightsquigarrow\) tetrahedron \(k \neq\) symmetric group \(S_{4}\).
Type \(B_{3} \leadsto m\) And the braid relation measures the angle between hyperplanes.
Type \(\mathrm{H}_{3} \longleftrightarrow \leadsto\) dodecahedron/icosahedron \(\longleftrightarrow \rightsquigarrow\) exceptional Coxeter group. For \(\mathrm{I}_{2}(4)\) we have a 4-gon:

\section*{Fix a flag \(F\).}

Fix a hyperplane \(H_{0}\) permuting the adjacent 0 -cells of \(F\).

Fix a hyperplane \(H_{1}\) permuting the adjacent 1-cells of \(F\), etc.
Write a vertex \(i\) for each \(H_{i}\).
Idea (Coxeter ~1934++).

Connect \(i, j\) by an \(n\)-edge for \(H_{i}, H_{j}\) having angle \(\cos (\pi / n)\).

Lawrence ~1989, Krammer ~2000, Bigelow ~2000 (Cohen-Wales ~2000, Digne \(\mathbf{\sim} \mathbf{2 0 0 0}\)). Let \(\Gamma\) be of finite type. There exists a faithful action of \(\operatorname{AT}(\Gamma)\) on a finite-dimensional vector space.

Upshot: One can ask a computer program questions about braids!

Figure: SAGE in action: The Burau (TL) action is not faithful, the LKB is.

Lawrence ~1989, Krammer ~2000, Bigelow ~2000 (Cohen-Wales ~2000, Digne \(\mathbf{\sim} \mathbf{2 0 0 0}\)). Let \(\Gamma\) be of finite type. There exists a faithful action of \(\mathrm{AT}(\Gamma)\) on a finite-dimensional vector space.

\section*{Proof?}

Uses root combinatorics of ADE diagrams and the fact that each \(\operatorname{AT}(\Gamma)\) of finite type can be embedded in types ADE.

Example. Type B "unfolds" into type A:

\(a_{0} \mapsto|\quad| \quad \mid \quad\) and \(a_{1} \mapsto \mid\)
But there is also a different way, discussed later.
Figure: SAGE in action: The Burau (TL) action is not faithful, the LKB is.

Lawrence ~1989, Krammer ~2000, Bigelow ~2000 (Cohen-Wales ~2000, Digne ~2000). Let \(\Gamma\) be of finite type. There exists a faithful action of \(\mathrm{AT}(\Gamma)\) on a Example. In the dihedral case these (un)foldings correspond to bicolorings:

Upsh

Fact.
This gives \(\mathrm{AT}\left(\mathrm{I}_{2}(n)\right) \hookrightarrow \mathrm{AT}(\Gamma)\)
\(\Leftrightarrow\)
\(\Gamma=\) ADE for \(n=\) Coxeter number.

Figure: SAGE in action: The Burau (TL) action is not faithful, the LKB is.

Lawrence ~1989, Krammer ~2000, Bigelow ~2000 (Cohen-Wales ~2000, Digne ~2000). Let \(\Gamma\) be of finite type. There exists a faithful action of \(\mathrm{AT}(\Gamma)\)
on a Example. In the dihedral case these (un)foldings correspond to bicolorings:
Upsh

Fact.
This gives \(\mathrm{AT}\left(\mathrm{I}_{2}(n)\right) \hookrightarrow \mathrm{AT}(\Gamma)\)
\(\Leftrightarrow\)
\(\Gamma=\) ADE for \(n=\) Coxeter number.

Example (SAGE; \(n=9\)). LKB says it is true:

Figure: SAGE in action: The Burau (TL) action is not faithful, the LKB is.

Crisp-Paris \(\boldsymbol{\sim} \mathbf{2 0 0 0}\) (Tits conjecture). For all \(m>1\), the subgroup \(\left\langle\theta_{i}^{m}\right\rangle \subset \mathrm{AT}(\Gamma)\) is free (up to "obvious commutation").

In finite type this is a consequence of LKB; in type \(A\) it is clear:

no relation
This should have told me something: I will come back to this later.

\section*{Proof?}

Cr
Essentially: Relate the problem to the mapping class \(\mathscr{M}(\Sigma)\) group of a surface \(\Sigma\), which acts on \(\pi_{1}(\Sigma\), boundary) via Dehn twist.
Then \(\left\langle\mathfrak{e}_{i}^{m}\right\rangle \hookrightarrow \operatorname{AT}(\Gamma) \rightarrow \mathscr{M}(\Sigma) \curvearrowright \pi_{1}(\Sigma\), boundary) acts faithfully.
Example. The surface \(\Sigma\) is built from \(\Gamma\) by gluing annuli \(A n_{i}\) :

Dehn twist along the orchid curve:

Recall. Right-angled means \(m_{i j} \in\{2, \infty\}\).
Fact (well-known?). Let \(\Gamma\) be of right-angled type. There exists a faithful action of \(\mathrm{AT}(\Gamma)\) on a finite-dimensional \(\mathbb{R}\)-vector space.

Example. \(\Gamma=I_{2}(\infty)\), the infinite dihedral group.
\[
\infty \prod_{I_{2}(\infty)} \rightsquigarrow \infty \prod_{\Gamma^{\prime}}^{\infty}
\]

Define a map
\[
\mathrm{AT}(\Gamma) \rightarrow \mathrm{W}\left(\Gamma^{\prime}\right), s \mapsto s s, t \mapsto t t .
\]

Crazy fact: This is an embedding, and actually
\[
\mathrm{W}\left(\Gamma^{\prime}\right) \cong \mathrm{AT}(\Gamma) \rtimes(\mathbb{Z} / 2 \mathbb{Z})^{2} .
\]

Thus, via Tits' reflection representation, it follows that \(\mathrm{AT}(\Gamma)\) is linear.

Recall. Right-angled means \(m_{i j} \in\{2, \infty\}\).
Fact (well-known?). Let \(\Gamma\) be of right-angled type. There exists a faithful action of \(\mathrm{AT}(\Gamma)\) on a fi

Example. \(\Gamma=1\).
This works in general:
For each right-angled \(\Gamma\) there exists a \(\Gamma^{\prime}\) such that
\[
\mathrm{W}\left(\Gamma^{\prime}\right) \cong \mathrm{AT}(\Gamma) \rtimes(\mathbb{Z} / 2 \mathbb{Z})^{i} .
\]

\section*{Corollary.}

Tits' reflection representation gives a faithful action
Define a map on a finite-dimensional \(\mathbb{R}\)-vector space.
\(\mathrm{AT}(\Gamma) \rightarrow \mathrm{W}\left(\mathrm{I}^{\prime \prime}\right), s \mapsto s s, t \mapsto t t\).
Crazy fact: This \(\begin{gathered}\text { This is the only case where I know that } \\ \text { the Artin-Tits group embeds into a Coxeter group. }\end{gathered}\)
\[
\mathrm{W}\left(\Gamma^{\prime}\right) \cong \mathrm{AT}(\Gamma) \rtimes(\mathbb{Z} / 2 \mathbb{Z})^{2}
\]

Thus, via Tits' reflection representation, it follows that \(A T(\Gamma)\) is linear.

Let \(\operatorname{Br}(g, n)\) be the group defined as follows.

Generators. Braid and twist generators

Relations. Reidemeister braid relations, type C relations and special relations, e.g.
Involves three players and inverses!

\(b_{1} t_{2} b_{1} t_{2}=t_{2} b_{1} t_{2} b_{1}\)
\(\left(t_{1} t_{2} t_{1}^{-1}\right) t_{3}=t_{3}\left(t_{1} t_{2} t_{1}^{-1}\right)\)

Let \(\operatorname{Br}(g, n)\) be the group defined as follows.

Let \(\operatorname{Br}(g, n)\) be the group defined as follows.

Let \(\operatorname{Br}(g, n)\) be the group defined as follows.

Generators. Braid and twist generators

The group \(\mathscr{B} \mathrm{r}(g, n)\) of braid in a \(g\)-times punctures disk \(\mathscr{D}_{g}^{2} \times[0,1]\) :

Two types of braidings, the usual ones and "winding around cores", e.g.

\section*{The group \(\mathscr{B r}(g, n)\) of braid in a \(g\)-times punctures disk \(\mathscr{D}_{g}^{2} \times[0,1]\) :}

\section*{The group \(\mathscr{B r}(g, n)\) of braid in a \(g\)-times punctures disk \(\mathscr{D}_{g}^{2} \times[0,1]\) :}

Twgtvnes of braidines the usual ones and "winding around cores" \& o Note.

For the proof it is crucial that \(\mathscr{D}_{g}^{2}\) and the boundary points of the braids \(\bullet\) are only defined up to isotopy, e.g.

This is useful to define \(\mathscr{B} \mathrm{r}(g, \infty)\).

The Alexander closure on \(\mathscr{B r}(g, \infty)\) is given by merging core strands at infinity.

This is different from the classical Alexander closure.

This is different from the classical Alexander closure.

\(\cos (\pi / 3)\) on a line:
\[
\text { type } \mathrm{A}_{n-1}: 1-2-\ldots-\mathrm{n}-2-\mathrm{n}-1
\]

The classical case. Consider the map

braid rel.:

Artin \(\sim\) 1925. This gives an isomorphism of groups \(\operatorname{AT}\left(\mathrm{A}_{n-1}\right) \stackrel{\cong}{\leftrightarrows} \mathscr{B r}(0, n)\).
\(\cos (\pi / 4)\) on a line:
\[
\text { type } C_{n}: 0 \xlongequal{4} 1-2-\ldots-n-1-n
\]

The semi-classical case. Consider the map

braid rel.:

Brieskorn \(\sim 1973\). This gives an isomorphism of groups \(\operatorname{AT}\left(\mathrm{C}_{n}\right) \xrightarrow{\cong} \mathscr{B} \mathrm{r}(1, n)\).
\(\cos (\pi / 4)\) twice on a line:
\[
\text { type } \tilde{\mathrm{C}}_{n}: 0^{1} \xlongequal[=]{=} 1-2-\ldots-\mathrm{n}-1-\mathrm{n} \xlongequal{4} 0^{2}
\]

Affine adds genus. Consider the map

Allcock \(\sim 1999\). This gives an isomorphism of groups \(\operatorname{AT}\left(\tilde{\mathrm{C}}_{n}\right) \xrightarrow{\cong} \mathscr{B} \mathrm{r}(2, n)\).

Allcock \(\sim\) 1999. This gives an isomorphism of groups \(\operatorname{AT}\left(\tilde{\mathrm{C}}_{n}\right) \stackrel{\cong}{\leftrightarrows} \mathscr{B r}(2, n)\).

This case is strange - it only arises under conjugation:
\(\cos (\pi / 4)\) twice

Affine adds g

By a miracle, one can avoid the special relation

Currently, not much seems to be known, but I think the same story works. Allcock \(\sim 1999\). This gives an isomorphism of groups \(\operatorname{AT}\left(\tilde{\mathrm{C}}_{n}\right) \xrightarrow{\cong} \mathscr{B} \mathrm{r}(2, n)\).

This case is strange - it only arises under conjugation:
\(\cos (\pi / 4)\) twice Affine adds ge

By a miracle, one can avoid the special relation

This relation
involves three players and inverses. Bad!

Currently, not much seems to be known, but I think the same story works.

In some sense this can not work; remember Tits conjecture.
\(\cos (\pi / 4)\) twice on a line:

\section*{Currently known (to the best of my knowledge).}

\(\cos (\pi / 4)\) twice on a line:
```

