Generalizing zigzag algebras

Or: It's all about polynomials

Joint work with Michael Ehrig, Marco Mackaay, Volodymyr Mazorchuk and Vanessa Miemietz November 2018

Daniel Tubbenhaue	r
-------------------	---

$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

$$A_{3} = \underbrace{\begin{array}{ccc} 1 & 3 & 2 \\ \bullet & \bullet & \bullet \end{array}}_{\bullet} \xrightarrow{\bullet} A(A_{3}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{\bullet} \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

$$A_{3} = \underbrace{1 \qquad 3 \qquad 2}_{\bullet} \longrightarrow \qquad \mathbf{A}(A_{3}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \longrightarrow \qquad \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

$$U_{5}(X) = (X - 2\cos(\frac{\pi}{6}))(X - 2\cos(\frac{2\pi}{6}))X(X - 2\cos(\frac{4\pi}{6}))(X - 2\cos(\frac{5\pi}{6}))$$

$$D_{4} = \underbrace{1 \qquad 4}_{\bullet} \xrightarrow{\bullet} \qquad \mathbf{A}(D_{4}) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \longrightarrow \qquad \{2\cos(\frac{\pi}{6}), 0^{2}, 2\cos(\frac{5\pi}{6})\}$$

$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

$$A_{3} = \underbrace{1 \quad 3 \quad 2}_{\bullet} \longrightarrow A(A_{3}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \longrightarrow \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

$$U_{5}(X) = (X - 2\cos(\frac{\pi}{6}))(X - 2\cos(\frac{2\pi}{6}))X(X - 2\cos(\frac{4\pi}{6}))(X - 2\cos(\frac{5}{6})) \text{ for } e = 2$$

$$D_{4} = \underbrace{1 \quad 4}_{\bullet} \bigwedge A(D_{4}) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \longrightarrow \{2\cos(\frac{\pi}{6}), 0^{2}, 2\cos(\frac{5\pi}{6})\}$$

$$\int \text{ for } e = 4$$

Classification problem (CP). Classify all Γ such that $U_{e+1}(\mathbf{A}) = 0$.

A₃

1 The zigzag algebras

- Definition
- Some first properties

2 Algebraic properties of zigzag algebras

- The statements
- The proofs; well, kind of ...

3 The trihedral zigzag algebras

- Definition
- Some first properties

Zigzag algebras

Take the double graph $\Gamma_{\rightleftharpoons}$ of Γ and add two loops $\alpha_s = (\alpha_s)_i$ and $\alpha_t = (\alpha_t)_i$ per vertex. Take its path algebra $R(\Gamma_{\rightleftharpoons})$.

Let $Z_{\rightleftharpoons} = Z_{\rightleftharpoons}(\Gamma)$ be the quotient of $R(\Gamma_{\rightleftharpoons})$ by:

- (a) Boundedness. Any path involving three distinct vertices is zero.
- (b) The relations of the cohomology ring $H^*(SL(2)/B)$. $\alpha_s \circ \alpha_t = \alpha_t \circ \alpha_s$, $\alpha_s + \alpha_t = 0$ and $\alpha_s \circ \alpha_t = 0$.
- (c) Zigzag. $i \rightarrow j \rightarrow i = \alpha_s \alpha_t$ for i-j.

 Z_{\rightleftarrows} is the zigzag algebra associated to $\Gamma.$ It can be graded using the path length.

▶ Example

Not important for today: This definition only works for more than three vertices.

Zigzag algebras

Take the double graph $\Gamma \rightarrow \text{ of } \Gamma$ and add two loops $\alpha_{c} = (\alpha_{c})_{i}$ and $\alpha_{t} = (\alpha_{t})_{i}$ per verte $\mathbb{k}[\mathbf{x}]/(\mathbf{x}^{2})$ is isomorphic to $\mathbb{k}[\alpha_{s}, \alpha_{t}]/(\alpha_{s} + \alpha_{t}, \alpha_{s}\alpha_{t})$ by $\mathbf{x} \mapsto \alpha_{s} - \alpha_{t}$.

We prefer this formulation, with loops in degree 2. Why? You will see later. Let $Z_{abstructure}^{abstructure} = Z_{abstructure}^{abstructure}$ by.

- (a) Boundedness. Any path involving three distinct vertices is zero.
- (b) The relations of the cohomology ring $H^*(SL(2)/B)$. $\alpha_s \circ \alpha_t = \alpha_t \circ \alpha_s$, $\alpha_s + \alpha_t = 0$ and $\alpha_s \circ \alpha_t = 0$.

(c) Zigzag.
$$i \rightarrow j \rightarrow i = \alpha_s - \alpha_t$$
 for $i-j$.

 Z_{\rightleftarrows} is the zigzag algebra associated to $\Gamma.$ It can be graded using the path length.

Zigzag algebras

Take the double graph $\Gamma \rightarrow \text{ of } \Gamma$ and add two loops $\alpha_{\mathfrak{s}} = (\alpha_{\mathfrak{s}})_i$ and $\alpha_{\mathfrak{t}} = (\alpha_{\mathfrak{t}})_i$ per verte $\mathbb{k}[\mathbf{x}]/(\mathbf{x}^2)$ is isomorphic to $\mathbb{k}[\alpha_{\mathfrak{s}}, \alpha_{\mathfrak{t}}]/(\alpha_{\mathfrak{s}} + \alpha_{\mathfrak{t}}, \alpha_{\mathfrak{s}}\alpha_{\mathfrak{t}})$ by $\mathbf{x} \mapsto \alpha_{\mathfrak{s}} - \alpha_{\mathfrak{t}}$.

We prefer this formulation, with loops in degree 2. Why? You will see later. Let $Z_{\overrightarrow{z}}^{\rightarrow} = Z_{\overrightarrow{z}}^{\rightarrow}(r)$ be the quotient of $T_{z}(r, \overrightarrow{z})$ by.

- (a) **Boundedne** One can define a kind of quasi-hereditary cover $Z_{\vec{e}}^{\mathsf{C}}$ zero.
- (b) The relations of the constraints of the constr

(c) Zigzag.
$$i \rightarrow j \rightarrow i = \alpha_s - \alpha_t$$
 for $i-j$.

 $\mathrm{Z}_{\rightleftharpoons}$ is the zigzag algebra associated to $\Gamma.$ It can be graded using the path length.

Zigzag algebras in mathematics

Zigzag algebras are around for many years. Here are some examples:

- ► Wakamatsu & others ~1980++. Study of Artin algebras.
- ► Huerfano-Khovanov ~2000, Khovanov-Seidel ~2000 & others. Categorical braid group actions.
- ► Implicit in the literature <2000, Huerfano-Khovanov ~2000, Evseev-Kleshchev ~2016 & others. Finite groups in prime characteristic.
- ► Implicit in the literature <2000, Stroppel ~2003 & others. Versions of category O.</p>
- ► Implicit in the literature <2000, Qi-Sussan ~2013, Andersen ~2014 & others. Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.</p>
- **•** Too many people to fit on this slide. In various places in categorification.

Zigzag algebras in mathematics

Zigzag algebras are around for many years. Here are some examples:

- ► Wakamatsu & others ~1980++. Study of Artin algebras.
- Huerfano-Khovanov ~2000, Khovanov-Seidel ~2000 & others. Categorical braid grou Thus, it makes sense to ask for a generalization of zigzag algebras.
 Implicit in the litera Evseev-Kleshchev ~2016 & others. Finite groups in prime characteristic.
- ► Implicit in the literature <2000, Stroppel ~2003 & others. Versions of category O.</p>
- ► Implicit in the literature <2000, Qi-Sussan ~2013, Andersen ~2014 & others. Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.</p>
- **•** Too many people to fit on this slide. In various places in categorification.

Zigzag algebras in mathematics

Zigzag algebras are around for many years. Here are some examples:

- ► Wakamatsu & others ~1980++. Study of Artin algebras.
- Huerfano-Khovanov ~2000, Khovanov-Seidel ~2000 & others. Categorical braid grou Thus, it makes sense to ask for a generalization of zigzag algebras. That is what we are up for.
 - Evseev–Kleshchev ~2016 & others. Finite groups in prime characteristic.
- ► Implicit in the literature <2000, Stroppel ~2003 & others. Versions of category O.</p>
- Implici But first, let us understand the zigzag algebras combinatorially. ~2014 & others. Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- **Too many people to fit on this slide.** In various places in categorification.

$$\label{eq:qdim(Hom_{Z_{\rightleftharpoons i}}(i,j)) = \begin{cases} 2_q, & \text{if } i=j, \\ q, & \text{if } i-j, \\ 0, & \text{else}, \end{cases} \begin{cases} i, x_i \} \text{ is a basis,} \\ i \to j \} \text{ is a basis,} \end{cases}$$

where qdim() denotes the graded dimension, and $2_q = 1 + q^2$.

The (left) projectives and simples:

$$P_{\mathtt{i}} = \{\mathtt{i}, \mathtt{j} {\rightarrow} \mathtt{i}, \mathtt{x}_{\mathtt{i}} \mid \mathtt{i} {-} \mathtt{j}\} \quad \& \quad L_{\mathtt{i}} = \{\mathtt{i}\}$$

The Loewy picture:

$$P_{i} = j \rightarrow i \text{ (for } i - j\text{)}$$

$$x_{i}$$

$$\begin{array}{c} 1\\ P_{1}=2 \rightarrow 1\\ x_{1}\\ \\ \end{array} \\ n_{Z_{z^{2}}}(i,j)) = \begin{cases} 2_{q}, & \text{if } i=j, \\ q, & \text{if } i-j, \\ 0, & \text{else}, \end{cases} \\ \begin{array}{c} \{i \rightarrow j\} \text{ is a basis,} \\ i \rightarrow j\} \text{ is a basis,} \\ 0, & \text{else,} \end{cases} \\ \begin{array}{c} P_{2}=1 \rightarrow 2 \& 3 \rightarrow 2 \& 4 \rightarrow 2 \\ \\ x_{2}\\ \end{array} \\ \begin{array}{c} P_{2}=1 \rightarrow 2 \& 3 \rightarrow 2 \& 4 \rightarrow 2 \\ \\ x_{2}\\ \end{array} \\ \begin{array}{c} P_{2}=1 \rightarrow 2 \& 3 \rightarrow 2 \& 4 \rightarrow 2 \\ \\ x_{2}\\ \end{array} \\ \begin{array}{c} P_{1}=\{i,j \rightarrow 1 \\ \\ The \ Loe \end{array} \\ \begin{array}{c} A(D_{4})=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ \end{array} \\ \begin{array}{c} P_{1}=\{i,j \rightarrow 1 \\ \\ P_{1}=j \rightarrow i \ (for \ i-j) \\ \end{array} \\ \begin{array}{c} X_{1}\\ \end{array} \end{array} \\ \begin{array}{c} P_{1}=j \rightarrow i \ (for \ i-j) \\ \end{array} \\ \begin{array}{c} X_{1}\\ \end{array}$$

The Loewy picture:

i
$$P_i = j \rightarrow i \text{ (for } i-j)$$

 x_i

Theorem. Z_{\rightleftharpoons}^C is cellular if and only if Γ is a finite type A graph and $X = \emptyset$ or $X = \text{leaf.} Z_{\rightleftharpoons}^C$ is relative cellular if and only if Γ is a finite type A graph and $X = \emptyset$ or X = leaf; or Γ is an affine type A graph and $X = \emptyset$.

Theorem. $Z_{\overrightarrow{\leftarrow}}^{\mathsf{C}}$ is \checkmark quasi-hereditary if and only if Γ is a finite type A graph and X =leaf.

Theorem. $Z_{\rightleftharpoons}^{\mathsf{C}}$ is \triangleright Koszul if and only if Γ is not a type ADE graph and $X = \emptyset$.

Proof idea: Cellularity and quasi-hereditary

Main problem. It is not easy to show that an algebra is not cellular, since there are several choices involved which one could make.

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by hand.

Proof idea: Celiularity and quasi-nereditary

Main problem. It is not easy to show that an algebra is not cellular, since there are several choices involved which one could make.

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by hand.

Step 1. Kill the majority of cases.

Proof idea: Cellularity and guasi-hereditary

Numerical condition. The Cartan matrix C of a cellular algebra is positive definite.

Main problem. It is not easy to show that an algebra is not cellular, since there are several choices involved which one could make.

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by hand.

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by hand.

basically in the same way - I omit details.

Thus, for those cases, Z_{\rightleftharpoons} is not cellular.

Step 3. Treat the remaining case by hand.

Proof idea: koszulity

Main problem. Computing projective resolutions is hard.

Main idea 1. Get a numerical way to handle the projectives in some minimal projective resolution.

Main idea 2. Use a numerical condition to rule out the cases which are not Koszul.

Again, with vertex condition works similarly - I omit details.
Proof id Step 1. Writing down candidates of projective resolutions.

Main problem. Computing projective resolutions is hard.

Main idea 1. Get a numerical way to handle the projectives in some minimal projective resolution.

Main idea 2. Use a numerical condition to rule out the cases which are not Koszul.

Droof :	deer keenulitu	
	Step 1. Writing down candidates of projective resolutions.	
Main prol	Numerical condition. The projectives turning up in the e^{th}	
	step of a minimal projective resolution can be	
Main idea	read off from the columns of $U_e(\mathbf{A})$. Example	minimal
projective	resolution.	

Main idea 2. Use a numerical condition to rule out the cases which are not Koszul.

Droof id		_
FIOUI IU	Step 1. Writing down candidates of projective resolutions.	
	-	-
Main proble	Numerical condition. The projectives turning up in the e^{th}	
	step of a minimal projective resolution can be	
Main idea 1	read off from the columns of $U_e(\mathbf{A})$.	minimal
projective res	Observe that each map in this process is of degree 1.	

Main idea 2. Use a numerical condition to rule out the cases which are not Koszul.

Done.

Proof idea: koszulity

Main problem. Computing projective resolutions is hard.

Main idea 1 projective re	Neat consequence. A characterization of Dynkin diagrams.	minimal
	Γ is a finite type ADE graph	
Main idea 2	if and only if	are not
Koszul.	entries of $U_e(oldsymbol{A})$ do not grow when $e ightarrow\infty.$	
Again, with	Γ is an affine type ADE graph if and only if	
	entries of $U_e(oldsymbol{A})$ grow linearly when $e ightarrow\infty.$	
	Γ is neither finite nor affine type ADE graph if and only if	
	entries of $U_e(oldsymbol{A})$ grow exponentially when $e ightarrow\infty.$	

Admissible graphs

An unoriented, connected, simple graph Γ is called \mathfrak{sl}_3 -admissible if it is tricolored and each edge is contained in a 2-simplex.

Example. The generalized type gA_e graphs, where $e \in \mathbb{Z}_{\geq 0}$:

We color our vertices green $g = \{b, y\}$, orange $o = \{r, y\}$ and purple $p = \{b, r\}$.

It might be possible to relax these conditions, but we do not know for sure. In particular, the explicit coloring can be avoided for zigzag algebras.

Admissible graphs

An unoriented, connected, simple graph Γ is called \mathfrak{sl}_3 -admissible if it is tricolored and each edge is contained in a 2-simplex.

Example. The generalized type gA_e graphs, where $e \in \mathbb{Z}_{\geq 0}$:

We color our vertices green $g = \{b, y\}$, orange $o = \{r, y\}$ and purple $p = \{b, r\}$.

Trihedral zigzag algebras

Take the double graph $\Gamma_{\rightleftharpoons}$ of Γ and add three loops $\alpha_{b} = (\alpha_{b})_{i}$, $\alpha_{r} = (\alpha_{r})_{i}$ and $\alpha_{v} = (\alpha_{v})_{i}$ per vertex; choose on of them per vertex.

Let $T_{\rightleftharpoons} = T_{\rightleftharpoons}(\Gamma)$ be the quotient of $R(\Gamma_{\rightleftharpoons})$ by:

- (a) **Boundedness.** Paths involving vertices from two different 2-simplices are zero.
- (b) The relations of the cohomology ring $H^*(SL(3)/B)$. $\alpha_a \alpha_b = \alpha_b \alpha_a$ for $a, b \in \{b, r, y\}$, $\alpha_b + \alpha_r + \alpha_y = 0$, $\alpha_b \alpha_r + \alpha_b \alpha_y + \alpha_r \alpha_y = 0$ and $\alpha_b \alpha_r \alpha_y = 0$.
- (c) Sliding loops. $i \rightarrow j\alpha_i = -\alpha_j i \rightarrow j$, $i \rightarrow j\alpha_j = -\alpha_i i \rightarrow j$ and $i \rightarrow j\alpha_k = \alpha_k i \rightarrow j = 0$.
- (d) Zigzag. $i \rightarrow j \rightarrow i = \alpha_i \alpha_j$.
- (e) Zigzig equals zag times loop. $i \rightarrow j \rightarrow k = i \rightarrow k\alpha_i = -\alpha_k i \rightarrow k$.
- $\mathrm{T}_{\rightleftarrows}$ is the trihedral zigzag algebra associated to $\Gamma.$ Its graded by path length.

▶ Example

Same as for the zigzag algebra: This definition only works for more than two 2-simplices.

Trihedral zigzag algebras

Take the double graph $\Gamma_{\rightleftharpoons}$ of Γ and add three loops $\alpha_{b} = (\alpha_{b})_{i}$, $\alpha_{r} = (\alpha_{r})_{i}$ and $\alpha_{v} = (\alpha_{v})_{i}$ per vertex; choose on of them per vertex.

Let $T_{\rightleftharpoons} = T_{\rightleftharpoons}(\Gamma)$ be the quotient of $R(\Gamma_{\rightleftharpoons})$ by:

- (a) **Boundedness.** Paths involving vertices from two different 2-simplices are zero.
- (c) Sliding loops. $i \rightarrow j\alpha_i = -\alpha_j i \rightarrow j$, $i \rightarrow j\alpha_j = -\alpha_i i \rightarrow j$ and $i \rightarrow j\alpha_k = \alpha_k i \rightarrow j = 0$.
- (d) Zigzag. $i \rightarrow j \rightarrow i = \alpha_i \alpha_j$.
- (e) Zigzig equals zag times loop. $i \rightarrow j \rightarrow k = i \rightarrow k\alpha_i = -\alpha_k i \rightarrow k$.
- $\mathrm{T}_{\rightleftarrows}$ is the trihedral zigzag algebra associated to $\Gamma.$ Its graded by path length.

Trihedral zigzag algebras

Take the double graph $\Gamma_{\rightleftharpoons}$ of Γ and add three loops $\alpha_{b} = (\alpha_{b})_{i}$, $\alpha_{r} = (\alpha_{r})_{i}$ and $\alpha_{v} = (\alpha_{v})_{i}$ per vertex; choose on of them per vertex.

Generalizing zigzag algebras.

Let $T_{\overrightarrow{\leftarrow}} = T_{\overrightarrow{\leftarrow}}(\Gamma)$ be the quotient of $R(\Gamma_{\overrightarrow{\leftarrow}})$ by:

- (a) **Bou** "Boundedness" is a direct generalization, where 1-simplex'='edge. es are zero.
- (b) The relations of the "Flag" is a direct generalization. $a, b \in \{b, r, y\}, \alpha_b + \alpha_r + \alpha_y = 0, \alpha_b \alpha_r + \alpha_b \alpha_y + \alpha_r \alpha_y = 0 \text{ and } \alpha_b \alpha_r \alpha_y = 0.$
- (c) Sliding loops. $i \rightarrow j$ "Sliding loops" is a new relation. $i \rightarrow j \alpha_k = \alpha_k i \rightarrow j = 0$.
- (d) **Zigzag.** $i \rightarrow j \rightarrow j \rightarrow i = \alpha_i \alpha_j$ generalizes $i \rightarrow j \rightarrow i = \alpha_s \alpha_t$.
- (e) Zigzig equals zag times loop. $i \rightarrow j \rightarrow k = i \rightarrow k\alpha_i = -\alpha_k i \rightarrow k$.
- $T_{\rightleftarrows} \text{ is the trihed} \text{ "Zigzig equals zag times loop" is a new relation.} \text{ path length}.$

- ► Study of Artin algebras.
- ► Categorical braid group actions.
- ► Finite groups in prime characteristic.
- Versions of category \mathcal{O} .
- Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- ► In various places in categorification.

- ► Study of Artin algebras. ×
- ► Categorical braid group actions.
- ► Finite groups in prime characteristic.
- Versions of category \mathcal{O} .
- Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- ► In various places in categorification.

- ► Study of Artin algebras. ×
- ► Categorical braid group actions. ×
- ► Finite groups in prime characteristic.
- Versions of category \mathcal{O} .
- Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- ► In various places in categorification.

- ► Study of Artin algebras. ×
- ► Categorical braid group actions. ×
- ► Finite groups in prime characteristic. ?
- Versions of category \mathcal{O} .
- Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- ► In various places in categorification.

- ► Study of Artin algebras. ×
- ► Categorical braid group actions. ×
- ► Finite groups in prime characteristic. ?
- Versions of category \mathcal{O} . ?
- Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- ► In various places in categorification.

- ► Study of Artin algebras. ×
- ► Categorical braid group actions. ×
- ► Finite groups in prime characteristic. ?
- Versions of category \mathcal{O} . ? \checkmark
- Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- ► In various places in categorification.

- ► Study of Artin algebras. ×
- ► Categorical braid group actions. ×
- ► Finite groups in prime characteristic. ?
- Versions of category \mathcal{O} . ?
- Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- ▶ In various places in categorification. ✓

$$\label{eq:qdim} q \mathrm{dim}(\mathrm{Hom}_{\mathrm{Z}_{\rightleftharpoons i}}(\mathtt{i},\mathtt{j})) = \begin{cases} 3_q !, & \text{if } \mathtt{i} = \mathtt{j}, & \text{the usual cohomology basis,} \\ q^2 + q^4, & \text{if } \mathtt{i} - \mathtt{j}, & \{\mathtt{i} \! \rightarrow \! \mathtt{j}, \mathtt{i} \! \rightarrow \! \mathtt{j} \alpha_{\mathtt{a}} \} \text{ is a basis,} \\ 0, & \text{else,} & \emptyset \text{ is a basis.} \end{cases}$$

The volume elements are $x_i = \alpha_b^2 \alpha_r = -\alpha_r^2 \alpha_b = \text{etc.}$

The (left) projectives and simples:

$$P_{\mathtt{i}} = \left\{ \mathtt{i}, \alpha_{\mathtt{a}}, \alpha_{\mathtt{b}}, \alpha_{\mathtt{a}}^2, \alpha_{\mathtt{b}}^2, \mathtt{x}_{\mathtt{i}}, \mathtt{j} \! \rightarrow \! \mathtt{i} \alpha_{\mathtt{a}}, \mathtt{x}_{\mathtt{i}} \mid \mathtt{i} \! - \! \mathtt{j} \right\} \quad \& \quad L_{\mathtt{i}} = \{ \mathtt{i} \}$$

The Loewy picture:

$$\label{eq:dim} q \mathrm{dim}(\mathrm{Hom}_{Z_{\rightleftharpoons \updownarrow}}(\mathtt{i},\mathtt{j})) = \begin{cases} 3_q !, & \text{if } \mathtt{i} = \mathtt{j}, & \text{the usual cohomology basis,} \\ q^2 + q^4, & \text{if } \mathtt{i} - \mathtt{j}, & \{\mathtt{i} \! \rightarrow \! \mathtt{j}, \mathtt{i} \! \rightarrow \! \mathtt{j} \alpha_{\mathtt{a}} \} \text{ is a basis,} \\ 0, & \text{else,} & \emptyset \text{ is a basis.} \end{cases}$$

The volume elements are $x_i = \alpha_b^2 \alpha_r = -\alpha_r^2 \alpha_b = \text{etc.}$

$$\label{eq:dim} q \mathrm{dim}(\mathrm{Hom}_{Z_{\rightleftharpoons \updownarrow}}(\mathtt{i},\mathtt{j})) = \begin{cases} 3_q !, & \text{if } \mathtt{i} = \mathtt{j}, & \text{the usual cohomology basis,} \\ q^2 + q^4, & \text{if } \mathtt{i} - \mathtt{j}, & \{\mathtt{i} \! \rightarrow \! \mathtt{j}, \mathtt{i} \! \rightarrow \! \mathtt{j} \alpha_a\} \text{ is a basis,} \\ 0, & \text{else,} & \emptyset \text{ is a basis.} \end{cases}$$

$$\label{eq:dim} q \mathrm{dim}(\mathrm{Hom}_{Z_{\rightleftharpoons \updownarrow}}(\mathtt{i},\mathtt{j})) = \begin{cases} 3_q !, & \text{if } \mathtt{i} = \mathtt{j}, & \text{the usual cohomology basis,} \\ q^2 + q^4, & \text{if } \mathtt{i} - \mathtt{j}, & \{\mathtt{i} \! \rightarrow \! \mathtt{j}, \mathtt{i} \! \rightarrow \! \mathtt{j} \alpha_a\} \text{ is a basis,} \\ 0, & \text{else,} & \emptyset \text{ is a basis.} \end{cases}$$

The volume elements are $x_i = \alpha_b^2 \alpha_r = -\alpha_r^2 \alpha_b = \text{etc.}$

$$\begin{aligned} \text{qdim}(\text{Hom}_{Z_{\neq z}}(i,j)) &= \begin{cases} 3_q !, & \text{if } i = j, & \text{the usual cohomology basis,} \\ q^2 + q^4, & \text{if } i - j, & \{i \rightarrow j, i \rightarrow j \alpha_a\} \text{ is a basis,} \\ 0, & \text{else.} & \emptyset \text{ is a basis.} \end{cases} \end{aligned}$$

$$\begin{aligned} \text{The volum} \\ \text{The (left)} \end{aligned} \qquad \begin{aligned} \textbf{C}(\text{gA}_1) &= \begin{pmatrix} 3! & 2 & 2\\ 2 & 3! & 2\\ 2 & 2 & 3! \end{pmatrix} = 2 \cdot \begin{pmatrix} \begin{pmatrix} 3 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 3 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{pmatrix} \end{pmatrix} \end{aligned}$$

$$\begin{aligned} \text{P}_i &= \left\{i, \alpha_a, \alpha_b, \alpha_a^2, \alpha_b^2, x_i, j \rightarrow i, j \rightarrow i \alpha_a, x_i \mid i - j \right\} \quad \& \quad L_i = \{i\} \end{aligned}$$

The Loewy picture:

$$\begin{split} \mathbf{P}_{\mathbf{i}} &= \frac{\alpha_{\mathbf{a}}, \alpha_{\mathbf{b}}, \mathbf{j} \mathbf{i} \mathbf{i}}{\alpha_{\mathbf{a}}^{2}, \alpha_{\mathbf{b}}^{2}, \mathbf{j} \mathbf{i} \alpha_{\mathbf{a}}} \left(\text{for } \mathbf{i} - \mathbf{j} \right) \\ & \mathbf{x}_{\mathbf{i}} \end{split}$$

$$\begin{array}{l} \mbox{qdim}(\mbox{Hom}_{Z_{\pm 2}}(i,j)) = \begin{cases} 3_{q}!, & \mbox{if } i = j, & \mbox{the usual cohomology basis,} \\ q^{2} + q^{4}, & \mbox{if } i - j, & \{i \rightarrow j, i \rightarrow j \alpha_{a}\} \mbox{ is a basis,} \\ 0. & \mbox{else.} & \mbox{0 is a basis.} \end{cases} \\ \hline \mbox{The volum} \\ \hline \mbox{The (left)} \\ \hline \mbox{C}(gA_{1}) = \begin{pmatrix} 3! & 2 & 2 \\ 2 & 3! & 2 \\ 2 & 2 & 3! \end{pmatrix} = 2 \cdot \begin{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \end{pmatrix} \\ \hline \mbox{P}_{i} = \left\{ i, \alpha_{a}, \alpha_{b}, \alpha^{2} & \alpha^{2} & \mathbf{x}, i \rightarrow i \rightarrow i \alpha & \mathbf{x}, i = i \\ \hline \mbox{Fact. (Not hard to show.)} \\ \hline \mbox{The Loewy picture:} \\ \hline \mbox{P}_{i} = \begin{pmatrix} \alpha_{a}, \alpha_{b}, j \rightarrow i \\ \alpha_{a}^{2}, \alpha_{b}^{2}, j \rightarrow i \alpha_{a} \end{pmatrix} \\ \hline \mbox{P}_{i} = \begin{pmatrix} \alpha_{a}, \alpha_{b}, j \rightarrow i \\ \alpha_{a}^{2}, \alpha_{b}^{2}, j \rightarrow i \alpha_{a} \end{pmatrix} \\ \hline \mbox{Final conductions} \\ \hline \mbox{Final conduct$$

$$\begin{aligned} \operatorname{qdim}(\operatorname{Hom}_{Z_{\neq 2}}(i,j)) &= \begin{cases} 3_{q}!, & \text{if } i = j, \\ q^{2} + q^{4}, & \text{if } i - j, \\$$

Generalized Chebyshev polynomials

Observation. Let $L_{e\omega}$ be the e+1-dimensional irreducible representation of SL(2). We have the correspondence

$$L_1 \longleftrightarrow \mathsf{X} \& L_1^{\otimes k} \longleftrightarrow \mathsf{X}^k \& L_{e\omega} \longleftrightarrow U_e(\mathsf{X}).$$

Define a Chebyshev polynomial $U_e(X_\omega)$ associated to any semisimple algebraic group G by the correspondence

$$L_{\omega_i} \longleftrightarrow \mathsf{X}_i \quad \& \quad L_{\omega_i}^{\otimes k} \longleftrightarrow \mathsf{X}_i^k \quad \& \quad L_{e_1\omega_1 + \dots + e_r\omega_r} \longleftrightarrow U_e(\mathsf{X}_\omega)$$

where $L_{\omega_1}, \ldots, L_{\omega_r}$ are the fundamental representations of G, $e = e_1 + \cdots + e_r$ and $X_{\omega} = X_1, \ldots, X_r$.

Fact. The so-called multivariate Chebyshev polynomial $U_e(X_{\omega})$ comes up in the theory of orthogonal polynomials, and has roots and recurrence relations coming from the root datum of G only.

Generalized Chebyshev polynomials

Observation. Let $L_{e\omega}$ be the e+1-dimensional irreducible representation of SL(2). We have the correspondence

 $\begin{array}{c} \underline{L}_{1} \longleftrightarrow X & \underline{L}_{1}^{\otimes k} \longleftrightarrow X^{k} & \underline{L}_{a_{1}} \longleftrightarrow U_{a}(X), \\ \hline \mathbf{Example} & G = \mathrm{SL}(2). \end{array}$

The usual Chebyshev polynomial – you have seen this before.

Define a Chebyshev polynomial $U_e(X_{\omega})$ associated to any semisimple algebraic group G by the correspondence

$$L_{\omega_i} \longleftrightarrow X_i$$
 & $L_{\omega_i}^{\otimes k} \longleftrightarrow X_i^k$ & $L_{e_1\omega_1+\dots+e_r\omega_r} \longleftrightarrow U_e(X_\omega)$

where $L_{\omega_1}, \ldots, L_{\omega_r}$ are the fundamental representations of G, $e = e_1 + \cdots + e_r$ and $X_{\omega} = X_1, \ldots, X_r$.

Fact. The so-called multivariate Chebyshev polynomial $U_e(X_{\omega})$ comes up in the theory of orthogonal polynomials, and has roots and recurrence relations coming from the root datum of G only.

Generalized Chebyshev polynomials				
Observat	Example $G = SL(3)$.	of		
SL(2). W	the vector representation and its dual.			
	Moreover, we have irreducibles $L_{m,n}$ for all $m,n\in\mathbb{Z}_{\geq0}.$			
Define a	We have the following Chebyshev-like recursion relations	gebraic		
group G	$U_{m,n}(X,Y)=U_{n,m}(Y,X),$			
	$XU_{m,n}(X,Y) = U_{m+1,n}(X,Y) + U_{m-1,n+1}(X,Y) + U_{m,n-1}(X,Y),$ $XU_{m,n}(X,Y) = U_{m+1,n}(X,Y) + U_{m-1,n+1}(X,Y) + U_{m,n-1}(X,Y),$			
where L_{ω}	$V_{m,n}(X, Y) = V_{m,n+1}(X, Y) + V_{m+1,n-1}(X, Y) + V_{m-1,n}(X, Y),$	$\cdots + e_r$		
and $X_{\omega} =$	together with starting conditions for $e = 0, 1$. Example.			

Fact. The so-called The roots of these polynomial are very $\underbrace{\mathsf{Cute}}_{\mathcal{C}(\mathcal{C},\omega)}$ comes up in the theory of orthogonal polynomials, and has roots and recurrence relations coming from the root datum of G only.

Generalized Chebyshev polynomials

Observation. Let $L_{e\omega}$ be the e+1-dimensional irreducible representation of SL(2). We have the correspondence

$$L_1 \longleftrightarrow \mathsf{X} \& L_1^{\otimes k} \longleftrightarrow \mathsf{X}^k \& L_{e\omega} \longleftrightarrow U_e(\mathsf{X}).$$

The SL(3) Chebyshev polynomial plays the same role for the trihedral zigzag algebras as the Chebyshev polynomials do for the zigzag algebras.

$$L_{\omega_i} \longleftrightarrow X_i \& L_{\omega_i}^{\otimes k} \longleftrightarrow X_i^k \& L_{e_1\omega_1+\dots+e_r\omega_r} \longleftrightarrow U_e(X_\omega).$$

where $L_{\omega_1}, \ldots, L_{\omega_r}$ are the fundamental representations of G, $e = e_1 + \cdots + e_r$ and $X_{\omega} = X_1, \ldots, X_r$.

Fact. The so-called multivariate Chebyshev polynomial $U_e(X_{\omega})$ comes up in the theory of orthogonal polynomials, and has roots and recurrence relations coming from the root datum of G only.

Generalized Chebyshev polynomials

Observation. Let $L_{e\omega}$ be the e+1-dimensional irreducible representation of SL(2). We have the correspondence

$$L_1 \longleftrightarrow X$$
 & $L_1^{\otimes k} \longleftrightarrow X^k$ & $L_{e\omega} \longleftrightarrow U_e(X)$.

Fact. The so-called multivariate Chebyshev polynomial $U_e(X_{\omega})$ comes up in the theory of orthogonal polynomials, and has roots and recurrence relations coming from the root datum of *G* only.

 $U_2(X) = 1$, $U_1(X) = X$, $X U_{r+1}(X) = U_{r+2}(X) + U_r(X)$ $U_0(X) = 1$, $U_1(X) = 2X$, $2X U_{r+1}(X) = U_{r+2}(X) + U_r(X)$

Kronecker ~1857. Any complete set of conjugate algebraic integers in] -2,2[is a subset of $roots(U_{s+1}(X))$ for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

November 2018 2/15.

The case $\Gamma=A_n$ & $C=\{1\}.$

Example.

Secondaries starting startions

Augustar 2018 \$/15

The case $\Gamma = A_1 \triangleq C = 0$.

The case $\Gamma=A_{3}$ & $C=\emptyset,$ omitting loops

Figure: The roots of the SL(3) Chebyehev polynomials.

There is still much to do...

 $U_2(X) = 1$, $U_1(X) = X$, $X U_{r+1}(X) = U_{r+2}(X) + U_r(X)$ $U_0(X) = 1$, $U_1(X) = 2X$, $2X U_{r+1}(X) = U_{r+2}(X) + U_r(X)$

Kronecker ~1857. Any complete set of conjugate algebraic integers in] -2,2[is a subset of $roots(U_{s+1}(X))$ for some e.

Figure: The state of the Chebyshev polynomials (of the second kind):

November 2018 2/15.

The case $\Gamma=A_n$ & $C=\{1\}.$

Example.

Secondaries starting startions

Augustar 2018 \$/15

-

 $U_1(\boldsymbol{A}) = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$

The case $\Gamma = A_1 \triangleq C = 0$.

Thanks for your attention!
$U_0(X) = 1$, $U_1(X) = X$, $X U_{e+1}(X) = U_{e+2}(X) + U_e(X)$ $U_0(X) = 1$, $U_1(X) = 2X$, $2X U_{e+1}(X) = U_{e+2}(X) + U_e(X)$

Kronecker ~1857. Any complete set of conjugate algebraic integers in]-2, 2[is a subset of $roots(U_{e+1}(X))$ for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

The case $\Gamma = A_n \& C = \emptyset$.

living on the type An graph

The case $\Gamma = A_n \& C = \{1\}$.

 $C = \{1\}$

living on the type An graph

Definition (e.g. Cline–Parshall–Scott ${\sim}1988$). A finite-dimensional algebra $\rm R$ is called quasi-hereditary if there exists a chain of ideals

$$0 = \mathbf{J}_0 \subset \mathbf{J}_1 \subset \cdots \subset \mathbf{J}_{k-1} \subset \mathbf{J}_k = \mathbf{R},$$

for some $k \in \mathbb{Z}_{\geq 1}$, such that the quotient J_l/J_{l-1} is an hereditary ideal in R/J_{l-1} .

The point: Quasi-hereditary algebras have associated highest weight categories, i.e. they have simple, (co)standard Δ , indecomposable projective and tilting modules, all indexed by the same ordered set.

 $C = \{1\}$

 $\mathrm{J}_1=\Bbbk\{1,2{\rightarrow}1,1{\rightarrow}2,x_2\},\quad \mathrm{J}_2=\Bbbk\{2,3{\rightarrow}2,2{\rightarrow}3,x_3\}\oplus\mathrm{J}_1,\quad \mathrm{J}_3=\Bbbk\{3\}\oplus\mathrm{J}_1\oplus\mathrm{J}_2.$

$$C = (1); \det = 1 \qquad C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}; \det = 1 \qquad C = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix}; \det = 1$$

$$3 \qquad \& \qquad 2 \longleftrightarrow 3 \qquad \& \qquad 1 \bigstar 3 \qquad \qquad 1 & \qquad 1 &$$

 $C = \{1\}$

 $J_1=\Bbbk\{1,2 \not\rightarrow 1,1 \not\rightarrow 2,x_2\}, \quad J_2=\Bbbk\{2,3 \not\rightarrow 2,2 \not\rightarrow 3,x_3\}\oplus J_1, \quad J_3=\Bbbk\{3\}\oplus J_1\oplus J_2.$

•		
2		2
$P_2 = 1 \rightarrow 2 \& 3 \rightarrow 2$		$\Delta_2 = \frac{2}{2\sqrt{2}}$
x ₂	$= 1 \qquad \mathbf{C} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}; \text{ det } = 1 \qquad \mathbf{C} =$	<u> </u>

 $\mathrm{Z}_{
ightarrow}^{C}/\mathrm{J}_{0}$

 $C = \{1\}$

 $C = \{1\}$

▲ Back

 $C = \{1\}$

Note how nicely ordered 1 < 2 < 3the standards in projectives, and the simples in the standards are. This is one crucial numerical property of quasi-hereditary algebras. $\widetilde{\alpha_t}$ $\widetilde{\alpha_t}$

$$P_{1} = \frac{1}{2 \rightarrow 1}$$

$$P_{1} = \frac{L_{1}}{L_{2}}$$

$$P_{1} = \Delta_{1}$$

$$\Delta_{1} = \frac{1}{2 \rightarrow 1}$$

$$\Delta_{1} = \frac{L_{1}}{L_{2}}$$

$$\Delta_{1} = \frac{L_{1}}{L_{2}}$$

$$J_{1} = k\{1, 2 \rightarrow 1, 1 \rightarrow 2, x_{2}\},$$

$$J_{2} = k\{2, 3 \rightarrow 2, 2 \rightarrow 3, x_{3}\} \oplus J_{1},$$

$$J_{3} = k\{3\} \oplus J_{1} \oplus J_{2}.$$

$$P_{2} = 1 \rightarrow 2 \& 3 \rightarrow 2$$

$$x_{2}$$

$$I$$

$$P_{2} = L_{2} \& L_{3}$$

$$P_{2} = L_{1} \& L_{3}$$

$$L_{2}$$

$$P_{2} = \Delta_{2} = \Delta_{2}$$

$$\Delta_{2} = \frac{L_{2}}{L_{3}}$$

$$\Delta_{2} = \frac{L_{2}}{L_{3}}$$

$$P_{3} = 2 \rightarrow 3$$

$$x_{3}$$

$$P_{3} = 2 \rightarrow 3$$

$$x_{3}$$

$$P_{3} = L_{2}$$

$$\Delta_{3} = 3$$

$$L_{3}$$

$$Z_{2}^{C} / J_{0}$$

 $C = \{1\}$

Note how nicely ordered 1 < 2 < 3the standards in projectives, and the simples in the standards are. This is one crucial numerical property of quasi-hereditary algebras. α_{+} α_{+} The reciprocity: $J_1 = \Bbbk\{1, 2 \to 1 \ \ C = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = D^T D = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \{3\} \oplus J_1 \oplus J_2.$ **D** matrix encodes simples in standards. $C = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$; det = 1 C = (1); det = 1 $C = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}; det = 1$ $2 \underbrace{\longleftrightarrow}_{\Lambda}^{(j)} 3 & 1 \underbrace{\longleftrightarrow}_{\Lambda}^{(j)} 2 \underbrace{\longleftrightarrow}_{\Lambda}^{(j)}$ & 3 $Z_{\rightarrow}^{C}/J_{1}$ $Z_{\rightarrow}^{C}/J_{0}$ $Z^{C}_{\rightarrow}/J_{2}$

 $C = \{1\}$

A linear projective resolution of a graded module ${\rm M}$ of a positively graded algebra ${\rm R}$ is an exact sequence

$$\cdots \longrightarrow \mathsf{q}^2\mathrm{Q}_2 \longrightarrow \mathsf{q}\mathrm{Q}_1 \longrightarrow \mathrm{Q}_0 \longrightarrow \mathrm{M},$$

with graded projective R-modules $q^e Q_e$ generated in degree e.

Definition (e.g. Priddy \sim **1970).** A finite-dimensional, positively graded algebra R is called Koszul if its degree 0 part is semisimple and each simple R-module admits a linear projective resolution.

The point: Koszul algebras have projective resolutions of simples which are as easy as possible.

Kernel in the first step:
$$\Bbbk \{1 \rightarrow 0, 2 \rightarrow 0, x_0\}$$

 $Z_{\rightleftharpoons}^{C=\psi}(A_2) = 0$

Kernel in the first step:
$$\Bbbk\{1 \rightarrow 0, 2 \rightarrow 0, x_0\}$$

 $Z_{\rightleftharpoons}^{C=\emptyset}(A_2) = 0$
Kernel in the second step: $\Bbbk\{2 \rightarrow 1, x_1, 1 \rightarrow 2, x_2\}$ and $\Bbbk\{0 \rightarrow 1 - 0 \rightarrow 2\}$.

Kernel in the first step:
$$\Bbbk\{1 \rightarrow 0, 2 \rightarrow 0, x_0\}$$

 $Z_{\rightleftharpoons}^{\subseteq=\upsilon}(A_2) = 0$
Kernel in the second step: $\Bbbk\{2 \rightarrow 1, x_1, 1 \rightarrow 2, x_2\}$ and $\Bbbk\{0 \rightarrow 1 - 0 \rightarrow 2\}$.

Kernel in the third step: $\Bbbk \{0 \rightarrow 2, x_2, 0 \rightarrow 1, x_1\}$ and $\Bbbk \{1 \rightarrow 2 - 1 \rightarrow 0\}$ and $\Bbbk \{2 \rightarrow 0 + 2 \rightarrow 1\}$.

Kernel in the first step:
$$\Bbbk\{1 \rightarrow 0, 2 \rightarrow 0, x_0\}$$

 $Z_{\rightleftharpoons}^{C=\upsilon}(A_2) = 0$
Kernel in the second step: $\Bbbk\{2 \rightarrow 1, x_1, 1 \rightarrow 2, x_2\}$ and $\Bbbk\{0 \rightarrow 1 - 0 \rightarrow 2\}$.

Kernel in the third step: $k\{0\rightarrow 2, x_2, 0\rightarrow 1, x_1\}$ and $k\{1\rightarrow 2-1\rightarrow 0\}$ and $k\{2\rightarrow 0+2\rightarrow 1\}$.

▲ Back

$$A_3 = 1 - 2 - 3 \quad \rightsquigarrow \textbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

??
$$3 - 2 - 1$$
 $U_1(\mathbf{A}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

▲ Back

 $U_2(\boldsymbol{A}) = \left(egin{smallmatrix} 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{smallmatrix}
ight)$

$$U_3(\boldsymbol{A}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A_3 = 1 - 2 - 3 \quad \rightsquigarrow \textbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

??
$$3 - 2 - 1$$
 $U_1(\mathbf{A}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

The inverses of the graded Cartan determinants.

$$A_n: (1-q^2) \sum_{s=0}^{\infty} q^{(2n+2)s},$$
 gap $= 2n-1,$

$$\mathsf{D}_n, n ext{ even: } (1 - \mathsf{q}^2 \pm \dots + \mathsf{q}^{2n-4}) \sum_{s=0}^{\infty} (-1)^s (s+1) \mathsf{q}^{(2n-2)s}, \qquad \mathsf{gap} = 1,$$

D_n, n odd:
$$(1 - q^2 \pm \cdots - q^{2n-4}) \sum_{s=0}^{\infty} q^{(4n-4)s}$$
, gap = 2n - 1,

$$\mathsf{E}_6 \colon (1-\mathsf{q}^2+\mathsf{q}^4-\mathsf{q}^8+\mathsf{q}^{10}-\mathsf{q}^{12}) {\textstyle\sum_{s=0}^{\infty} \mathsf{q}^{24s}}, \qquad \qquad \mathsf{gap}=11,$$

$$\mathsf{E}_7 \colon (1-\mathsf{q}^2+\mathsf{q}^4) \sum_{s=0}^\infty {(-1)^s \mathsf{q}^{18s}}, \qquad \qquad \mathsf{gap}=13,$$

$$\mathsf{E}_8 \colon (1-\mathsf{q}^2+\mathsf{q}^4+\mathsf{q}^{10}-\mathsf{q}^{12}+\mathsf{q}^{14}) {\textstyle\sum_{s=0}^\infty {(-1)^s \mathsf{q}^{30s}}}, \qquad \mathsf{gap}=15.$$

Observing now that the cofactor matrix has entries which are polynomials of degree $\leq 2n - 2$, one is done. Type D_{2n} needs an extra argument along the same lines.

🖪 🖣 Back

Explicitly, for type A₃ we get

$$(1 - q^{2})(1 + q^{8} + q^{16} + q^{24} + ...) = 1 - q^{2} + q^{8} - q^{10} + q^{16} - q^{18} + q^{24} - q^{26} +$$

$$A^{*} = \begin{pmatrix} 1 + q^{2} + q^{4} & -q - q^{3} & q \\ -q - q^{3} & 1 + q^{2} + q^{4} & -q - q^{3} \\ q & -q - q^{3} & 1 + q^{2} + q^{4} \end{pmatrix}$$
Numerical resolutions are

$$1 - q + q^{2} - 0q^{3} + q^{4} - q^{5} + q^{6} - 0q^{7} \pm ...$$

$$1 - 2q + q^{2} - 0q^{3} + q^{4} - q^{5} + q^{6} - 0q^{7} \pm ...$$

The case $\Gamma = A_1$ & $C = \emptyset$.

The case $\Gamma = A_3 \& C = \emptyset$, omitting loops.

Example. The first few SL(3) Chebyshev polynomials:

$$\begin{array}{l} \begin{array}{c} e=0 \\ \\ U_{1,0}(X,Y)=X, \ U_{0,1}(X,Y)=Y, \\ \hline e=1 \\ \end{array} \\ \begin{array}{c} U_{2,0}(X,Y)=X^2-Y, \ U_{1,1}(X,Y)=XY-1, \ U_{0,2}(X,Y)=Y^2-X, \\ \\ U_{3,0}(X,Y)=X^3-2XY+1, \ U_{2,1}(X,Y)=X^2Y-Y^2-X, \\ \\ U_{1,2}(X,Y)=XY^2-X^2-Y, \ U_{0,3}(X,Y)=Y^3-2XY+1, \\ \end{array} \\ \begin{array}{c} e=3 \\ \\ U_{4,0}(X,Y)=X^4-3X^2Y+Y^2+2X, \ U_{3,1}(X,Y)=X^3Y-2XY^2-X^2+2Y, \\ \\ U_{2,2}(X,Y)=XY^2-X^3-Y^3, \\ \\ U_{1,3}(X,Y)=XY^3-2X^2Y-Y^2+2X, \ U_{0,4}(X,Y)=Y^4-3XY^2+X^2+2Y, \\ \end{array} \\ \begin{array}{c} e=4 \\ U_{5,0}(X,Y)=X^5-4X^3Y+3XY^2+3X^2-2Y, \ U_{4,1}(X,Y)=X^4Y-3X^2Y^2-X^3+Y^3+4XY-1, \\ \\ U_{1,4}(X,Y)=XY^4-3X^2Y^2-Y^3+X^3+4XY-1, \ U_{0,5}(X,Y)=Y^5-4XY^3+3X^2Y+3Y^2-2X. \\ \end{array}$$

One usually considers them for one level m + n = e + 1 together.

$$U_{m,n}(X,Y) = U_{n,m}(Y,X), \quad XU_{m,n}(X,Y) = U_{m+1,n}(X,Y) + U_{m-1,n+1}(X,Y) + U_{m,n-1}(X,Y), \quad YU_{m,n}(X,Y) = U_{m,n+1}(X,Y) + U_{m+1,n-1}(X,Y) + U_{m-1,n}(X,Y),$$

Koornwinder ~1973. For fixed level m + n = e + 1, the common roots of the Chebyshev polynomials are all in the discoid.

Figure: The roots of the SL(3) Chebyshev polynomials.

$$U_{m,n}(X,Y) = U_{n,m}(Y,X), XU_{m,n}(X,Y) = U_{m+1,n}(X,Y) + U_{m-1,n+1}(X,Y) + U_{m,n-1}$$

How does this generalize the interval $] - 2, 2[$ for the Chebyshev roots? [X,Y],

Koornwinder \sim **1973.** For fixed level m + n = e + 1, the common roots of the Chebyshev polynomials are all in the discoid.

Figure: The roots of the SL(3) Chebyshev polynomials.

