Generalizing zigzag algebras

Or: It's all about polynomials

Joint work with Michael Ehrig, Marco Mackaay, Volodymyr Mazorchuk and Vanessa Miemietz November 2018

Let $\boldsymbol{A}=\boldsymbol{A}(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ. Let $U_{e+1}(X)$ be the Chebsinev polynomial .

Classification problem (CP). Classify all Γ such that $U_{e+1}(\boldsymbol{A})=0$.

Let $\boldsymbol{A}=\boldsymbol{A}(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ. Let $U_{e+1}(X)$ be the Chederser poymomial .

Classification problem (CP). Classify all Γ such that $U_{e+1}(\boldsymbol{A})=0$.

$$
\begin{aligned}
& U_{3}(X)=\left(X-2 \cos \left(\frac{\pi}{4}\right)\right) X\left(X-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
& A_{3}=\stackrel{1}{\bullet} \quad 3 \quad 2 \sim A\left(A_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \longrightarrow \quad\left\{2 \cos \left(\frac{\pi}{4}\right), 0,2 \cos \left(\frac{3 \pi}{4}\right)\right\}
\end{aligned}
$$

Let $\boldsymbol{A}=\boldsymbol{A}(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ. Let $U_{e+1}(X)$ be the Chersinev poynnomial .

Classification problem (CP). Classify all Γ such that $U_{e+1}(\boldsymbol{A})=0$.

$$
\begin{gathered}
U_{3}(X)=\left(X-2 \cos \left(\frac{\pi}{4}\right)\right) X\left(X-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
A_{3}= \\
U_{5}(X)=\left(X-2 \cos \left(\frac{\pi}{6}\right)\right)\left(X-2 \cos \left(\frac{2 \pi}{6}\right)\right) X\left(X-2 \cos \left(\frac{4 \pi}{6}\right)\right)\left(X-2 \cos \left(\frac{5 \pi}{6}\right)\right) \\
D_{4}= \\
L_{3}
\end{gathered}
$$

Let $\boldsymbol{A}=\boldsymbol{A}(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ. Let $U_{e+1}(X)$ be the Chersinev poynnomial .

Classification problem (CP). Classify all Γ such that $U_{e+1}(\boldsymbol{A})=0$.

$$
\begin{aligned}
& U_{3}(X)=\left(X-2 \cos \left(\frac{\pi}{4}\right)\right) X\left(X-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
& A_{3}=\stackrel{1}{\bullet} \quad 3 \quad 2 \rightarrow \quad A\left(A_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \longrightarrow \longrightarrow \quad\left\{2 \cos \left(\frac{\pi}{4}\right), 0,2 \cos \left(\frac{3 \pi}{4}\right)\right\} \\
& U_{5}(X)=\left(X-2 \cos \left(\frac{\pi}{6}\right)\right)\left(X-2 \cos \left(\frac{2 \pi}{6}\right)\right) X\left(X-2 \cos \left(\frac{4 \pi}{6}\right)\right)\left(X-2 \cos \left(\frac{5}{6}\right) \text { for } e=2\right. \\
& D_{4}=\int_{3}^{1} \rightarrow A\left(D_{4}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \longrightarrow \quad\left\{2 \cos \left(\frac{\pi}{6}\right), 0^{2}, 2 \cos \left(\frac{5 \pi}{6}\right)\right\}
\end{aligned}
$$

Let $\boldsymbol{A}=\boldsymbol{A}(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ. Let $U_{e+1}(X)$ be the Chersitev poynnomial .

Classification problem (CP). Classify all Γ such that $U_{e+1}(\boldsymbol{A})=0$.

$$
U_{3}(X)=\left(X-2 \cos \left(\frac{\pi}{4}\right)\right) X\left(X-2 \cos \left(\frac{3 \pi}{4}\right)\right)
$$

$A_{3}=1$	Fact. $U_{e+1}(\boldsymbol{A})$ has negative entries for some e if and only if \boldsymbol{A} is of type ADE.
$\begin{array}{r} U_{5}(X)=(X \\ \quad 0^{2} \end{array}$	This is a much stronger statement and the only $\operatorname{oos}\left(\frac{5 \pi}{6}\right)$) proof I know uses categorification.
	$\longrightarrow A\left(D_{4}\right)=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right) \longrightarrow \sim\left\{2 \cos \left(\frac{\pi}{6}\right), 0^{2}, 2 \cos \left(\frac{5 \pi}{6}\right)\right\}$

(1) The zigzag algebras

- Definition
- Some first properties
(2) Algebraic properties of zigzag algebras
- The statements
- The proofs; well, kind of...
(3) The trihedral zigzag algebras
- Definition
- Some first properties

Zigzag algebras

Take the double graph $\Gamma_{\rightleftarrows}$ of Γ and add two loops $\alpha_{\mathrm{s}}=\left(\alpha_{\mathrm{s}}\right)_{\mathrm{i}}$ and $\alpha_{\mathrm{t}}=\left(\alpha_{\mathrm{t}}\right)_{\mathrm{i}}$ per vertex. Take its path algebra $\mathrm{R}\left(\Gamma_{\rightleftarrows}\right)$.

Let $\mathrm{Z}_{\rightleftarrows}=\mathrm{Z}_{\rightleftarrows}(\Gamma)$ be the quotient of $\mathrm{R}\left(\Gamma_{\rightleftarrows}\right)$ by:
(a) Boundedness. Any path involving three distinct vertices is zero.
(b) The relations of the cohomology ring $\mathrm{H}^{*}(\mathrm{SL}(2) / \mathrm{B}) . \alpha_{\mathrm{s}} \circ \alpha_{\mathrm{t}}=\alpha_{\mathrm{t}} \circ \alpha_{\mathrm{s}}$, $\alpha_{\mathrm{s}}+\alpha_{\mathrm{t}}=0$ and $\alpha_{\mathrm{s}} \circ \alpha_{\mathrm{t}}=0$.
(c) Zigzag. $\mathbf{i} \rightarrow \mathbf{j} \rightarrow \mathbf{i}=\alpha_{\mathrm{s}}-\alpha_{\mathrm{t}}$ for $\mathbf{i}-\mathbf{j}$.
$\mathrm{Z}_{\rightleftarrows}$ is the zigzag algebra associated to Γ. It can be graded using the path length.

[^0]
Zigzag algebras

Take the double graph $\Gamma \rightarrow$ of Γ and add two loons $\alpha_{c}=\left(\alpha_{c}\right)_{i}$ and $\alpha_{+}=\left(\alpha_{+}\right)_{i}$ per verte $\mathbb{k}[\mathrm{x}] /\left(\mathrm{x}^{2}\right)$ is isomorphic to $\mathbb{k}\left[\alpha_{\mathrm{s}}, \alpha_{\mathrm{t}}\right] /\left(\alpha_{\mathrm{s}}+\alpha_{\mathrm{t}}, \alpha_{\mathrm{s}} \alpha_{\mathrm{t}}\right)$ by $\mathrm{x} \mapsto \alpha_{\mathrm{s}}-\alpha_{\mathrm{t}}$.

Let We prefer this formulation, with loops in degree 2. Why? You will see later.
(a) Boundedness. Any path involving three distinct vertices is zero.
(b) The relations of the cohomology ring $\mathrm{H}^{*}(\mathrm{SL}(2) / \mathrm{B}) . \alpha_{\mathrm{s}} \circ \alpha_{\mathrm{t}}=\alpha_{\mathrm{t}} \circ \alpha_{\mathrm{s}}$, $\alpha_{\mathrm{s}}+\alpha_{\mathrm{t}}=0$ and $\alpha_{\mathrm{s}} \circ \alpha_{\mathrm{t}}=0$.
(c) Zigzag. $\mathbf{i} \rightarrow \mathbf{j} \rightarrow \mathbf{i}=\alpha_{\mathrm{s}}-\alpha_{\mathrm{t}}$ for $\mathbf{i}-\mathbf{j}$.
$\mathrm{Z}_{\rightleftarrows}$ is the zigzag algebra associated to Γ. It can be graded using the path length.

Zigzag algebras

Take the double graph $\Gamma \rightarrow$ of Γ and add two looss $\alpha_{c}=\left(\alpha_{c}\right)_{i}$ and $\alpha_{+}=\left(\alpha_{+}\right)_{i}$ per verte $\mathbb{k}[\mathrm{x}] /\left(\mathrm{x}^{2}\right)$ is isomorphic to $\mathbb{k}\left[\alpha_{\mathrm{s}}, \alpha_{\mathrm{t}}\right] /\left(\alpha_{\mathrm{s}}+\alpha_{\mathrm{t}}, \alpha_{\mathrm{s}} \alpha_{\mathrm{t}}\right)$ by $\mathrm{x} \mapsto \alpha_{\mathrm{s}}-\alpha_{\mathrm{t}}$.

We prefer this formulation, with loops in degree 2. Why? You will see later.

(a) Boundedn $\widehat{\text { One can define a kind of quasi-hereditary cover } \mathrm{Z}} \mathrm{C}$ zero.
(b) The relatid.by killing x_{i} at a fixed set of vertices C . $\quad . \quad \alpha_{\mathrm{t}}=\alpha_{\mathrm{t}} \circ \alpha_{\mathrm{s}}$, $\alpha_{\mathrm{s}}+\alpha_{\mathrm{t}}=0$ and $\alpha_{\mathrm{s}} \circ \alpha_{\mathrm{t}}=0$.
(c) Zigzag. $\mathbf{i} \rightarrow \mathbf{j} \rightarrow \mathbf{i}=\alpha_{\mathrm{s}}-\alpha_{\mathrm{t}}$ for $\mathbf{i}-\mathbf{j}$.
$\mathrm{Z}_{\rightleftarrows}$ is the zigzag algebra associated to Γ. It can be graded using the path length.

Zigzag algebras in mathematics

Zigzag algebras are around for many years. Here are some examples:

- Wakamatsu \& others $\boldsymbol{\sim} \mathbf{1 9 8 0 + +}$. Study of Artin algebras.
- Huerfano-Khovanov ~2000, Khovanov-Seidel ~2000 \& others. Categorical braid group actions.
- Implicit in the literature <2000, Huerfano-Khovanov ~2000, Evseev-Kleshchev ~2016 \& others. Finite groups in prime characteristic.
- Implicit in the literature $<\mathbf{2 0 0 0}$, Stroppel $\boldsymbol{\sim} \mathbf{2 0 0 3}$ \& others. Versions of category \mathcal{O}.
- Implicit in the literature < 2000, Qi-Sussan ~2013, Andersen ~2014 \& others. Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- Too many people to fit on this slide. In various places in categorification.

Zigzag algebras in mathematics

Zigzag algebras are around for many years. Here are some examples:

- Wakamatsu \& others $\boldsymbol{\sim} \mathbf{1 9 8 0 + +}$. Study of Artin algebras.
- Huerfano-Khovanov ~2000, Khovanov-Seidel ~2000 \& others. Categorical braid gro Thus, it makes sense to ask for a generalization of zigzag algebras.
- Implicit in the litera That is what we are up for. anov ~ 2000, Evseev-Kleshchev $\sim 2010 \&$ others. Finite groups in prime characteristic.
- Implicit in the literature $<\mathbf{2 0 0 0}$, Stroppel $\boldsymbol{\sim} \mathbf{2 0 0 3}$ \& others. Versions of category \mathcal{O}.
- Implicit in the literature < 2000, Qi-Sussan ~2013, Andersen ~2014 \& others. Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- Too many people to fit on this slide. In various places in categorification.

Zigzag algebras in mathematics

Zigzag algebras are around for many years. Here are some examples:

- Wakamatsu \& others $\boldsymbol{\sim} \mathbf{1 9 8 0 + +}$. Study of Artin algebras.
- Huerfano-Khovanov ~2000, Khovanov-Seidel ~2000 \& others. Categorical braid gro Thus, it makes sense to ask for a generalization of zigzag algebras.
- Implicit in the literd That is what we are up for. ${ }^{2}$ nov ~ 2000, Evseev-Kleshchev $\sim 2010 \&$ others. Finite groups in prime characteristic.
- Implicit in the literature $<\mathbf{2 0 0 0}$, Stroppel $\boldsymbol{\sim} \mathbf{2 0 0 3}$ \& others. Versions of category \mathcal{O}.
- Implici But first, let us understand the zigzag algebras combinatorially. 2014 \& others. Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- Too many people to fit on this slide. In various places in categorification.

The Cartan matrix

$$
\operatorname{qdim}\left(\operatorname{Hom}_{Z_{\rightleftarrows}}(i, j)\right)=\left\{\begin{array}{clc}
2_{q}, & \text { if } i=j, & \left\{i, x_{i}\right\} \text { is a basis, } \\
q, & \text { if } i-j, & \{i \rightarrow j\} \text { is a basis, } \\
0, & \text { else, } & \emptyset \text { is a basis, }
\end{array}\right.
$$

where $q \operatorname{dim}\left(_\right)$denotes the graded dimension, and $2_{q}=1+q^{2}$.
The (left) projectives and simples:

$$
P_{i}=\left\{i, j \rightarrow i, x_{i} \mid i-j\right\} \quad \& \quad L_{i}=\{i\}
$$

The Loewy picture:

$$
P_{i}=\underset{j_{i} \rightarrow i}{i}(\text { for } i-j)
$$

The Cartan matrix

$$
\operatorname{qdim}\left(\operatorname{Hom}_{Z_{\rightleftarrows}}(i, j)\right)=\left\{\begin{array}{rlr}
2_{\mathrm{q}}, & \text { if } i=j, & \left\{i, x_{i}\right\} \text { is a basis, } \\
q, & \text { if } i-j, & \{i \rightarrow j\} \text { is a basis, } \\
0, & \text { else, } & \emptyset \text { is a basis, }
\end{array}\right.
$$

where $q \operatorname{dim}\left(_\right)$denotes the grade Example. nd $2_{q}=1+q^{2}$.

The Loewy picture:

$$
\begin{aligned}
& P_{i}=\{i, j \rightarrow \underbrace{3}_{t} \underbrace{2}_{\text {type } D_{4}} \underbrace{}_{i} \\
& P_{j \rightarrow i}(\text { for } i-j)
\end{aligned}
$$

$$
\mathrm{x}_{\mathrm{i}}
$$

The Cartan matrix

The Cartan matrix

The Cartan matrix

(Ra, if $i=j, \quad\left\{i, x_{i}\right\}$ is a basis,
where qdi $C\left(\mathrm{D}_{4}\right)=\left(\begin{array}{llll}2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 2\end{array}\right)=\left(\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)+\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$

$$
P_{i}=\left\{i, j \rightarrow i, x_{i} \mid i-j\right\} \quad \& \quad L_{i}=\{i\}
$$

The Loews picture:

$$
P_{i}=\underset{\substack{i \\ x_{i}}}{\substack{i \\ \text { for } i-j}}
$$

The Cartan matrix

$\left(2_{a}, \quad\right.$ if $i=j, \quad\left\{i, x_{i}\right\}$ is a basis,
where qdi $C\left(\mathrm{D}_{4}\right)=\left(\begin{array}{llll}2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 2\end{array}\right)=\left(\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)+\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$
$\mathrm{P}_{\mathrm{i}} \begin{gathered}\text { Fact. (Not hard to show. }) \\ \text { The Partan matrix } \boldsymbol{C}=\boldsymbol{C}\left(\mathrm{Z}_{\rightleftarrows}\right)\end{gathered}$ is $\{\mathrm{i}\}$
$\boldsymbol{C}=2 \boldsymbol{I}+\boldsymbol{A}$.

$$
\begin{gathered}
P_{i}=j \rightarrow i(\text { for } i-j) \\
x_{i}
\end{gathered}
$$

The Cartan matrix

$\left\{2_{\mathrm{a}}, \quad\right.$ if $\mathrm{i}=j, \quad\left\{i, x_{i}\right\}$ is a basis,
where qdi $C\left(\mathrm{D}_{4}\right)=\left(\begin{array}{llll}2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 2\end{array}\right)=\left(\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)+\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$

Fact. (Not hard to show.)
The graded Carton matrix $\boldsymbol{C}=\boldsymbol{C}\left(\mathrm{Z}_{\rightleftarrows}\right)$ is

$$
\boldsymbol{C}=2_{\mathrm{q}} \boldsymbol{I}+\mathrm{q} \boldsymbol{A} .
$$

Algebraic properties of zigzag algebras

Theorem. $\mathrm{Z}_{\rightleftarrows}^{C}$ is cellular if and only if Γ is a finite type A graph and $X=\emptyset$ or $\mathrm{X}=$ leaf. $\mathrm{Z} \underset{\rightleftarrows}{\mathrm{C}}$ is relative cellular if and only if Γ is a finite type A graph and $\mathrm{X}=\emptyset$ or $\mathrm{X}=$ leaf; or Γ is an affine type A graph and $\mathrm{X}=\emptyset$.

Theorem. $\mathrm{Z} \underset{\rightleftarrows}{\mathrm{C}}$ is quasitherditan if and only if Γ is a finite type A graph and $X=$ leaf.

Theorem. $\mathrm{Z} \stackrel{C}{\rightleftarrows}$ is Koszil) if and only if Γ is not a type ADE graph and $\mathrm{X}=\emptyset$.

Proof idea: Cellularity and quasi-hereditary

Main problem. It is not easy to show that an algebra is not cellular, since there are several choices involved which one could make.

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by hand.

The cases of relative cellularity, quasi-hereditary and with vertex condition work basically in the same way - I omit details.

12
 Proof idea: Cellularity and quast-nereditary

Main problem. It is not easy to show that an algebra is not cellular, since there are several choices involved which one could make.

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by hand.

The cases of relative cellularity, quasi-hereditary and with vertex condition work basically in the same way - I omit details.

1
 Proof idea: Celluaritv ana duasा-nereditarv

Numerical condition. The Cartan matrix \boldsymbol{C} of a cellular algebra is positive definite.
Main problem. It is not easy to show that an algebra is not cellular, since there are several choices involved which one could make.

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by hand.

The cases of relative cellularity, quasi-hereditary and with vertex condition work basically in the same way - I omit details.

Step 1. Kill the majority of cases.

Proof idea: Celmaritv ana ouasi-nereditarv
Numerical condition. The Cartan matrix \boldsymbol{C} of a cellular algebra is positive definite.
 Smith's (CP): The graphs with positive definite $2 I+\boldsymbol{A}$ are the $A D E$ graphs.

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by hand.

The cases of relative cellularity, quasi-hereditary and with vertex condition work basically in the same way - I omit details.

O S Stop 1. Kill the majoity of casese

Proof idea: Celmaritv and auasi-nereditarv
Numerical condition. The Cartan matrix C of a cellular algebra is positive definite.
nhoin nonblom $1+$ is not Smith's (CP): The graphs with positive definite $2 \boldsymbol{I}+\boldsymbol{A}$ are the ADE graphs.


```
Thus, for non-type-ADE cases, \(\mathrm{Z}_{\rightleftarrows}\) is not cellular.
```

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by hand.

The cases of relative cellularity, quasi-hereditary and with vertex condition work basically in the same way - I omit details.

$0 \quad$ Stip 1. Kill the miagitit of cases

Proof idea: Celmaritv and auasi-nereditarv
Numerical condition. The Cartan matrix C of a cellular algebra is positive definite.
 Smith's (CP): The graphs with positive definite $2 I+\boldsymbol{A}$ are the ADE graphs.


```
Thus, for non-type-ADE cases, \(\mathrm{Z}_{\rightleftarrows}\) is not cellular.
```

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by Step 2. Kill the remaining infinite families.

The cases of relative cellularity, quasi-hereditary and with vertex condition work basically in the same way - I omit details.

Proof idea: Cellularitv and auasi-nereditarv
Numerical condition. The Cartan matrix \boldsymbol{C} of a cellular algebra is positive definite.
 Smith's (CP): The graphs with positive definite $2 \boldsymbol{I}+\boldsymbol{A}$ are the ADE graphs.


```
Thus, for non-type-ADE cases, \(\mathrm{Z}_{\rightleftarrows}\) is not cellular.
```

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by Step 2. Kill the remaining infinite families.

Numerical condition. The Cartan matrix C of a cellular algebra satisfies $\boldsymbol{C}=\boldsymbol{D}^{\mathrm{T}} \boldsymbol{D}$.
basically in the same way - I omit details.

Proof idea: Celmaritv and auasi-nereditarv
Numerical condition. The Cartan matrix \boldsymbol{C} of a cellular algebra is positive definite.
 Smith's (CP): The graphs with positive definite $2 \boldsymbol{I}+\boldsymbol{A}$ are the ADE graphs.


```
Thus, for non-type-ADE cases, \(\mathrm{Z}_{\rightleftarrows}\) is not cellular.
```

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by Step 2. Kill the remaining infinite families.

Numerical condition. The Cartan matrix C of a cellular algebra satisfies $\boldsymbol{C}=\boldsymbol{D}^{\mathrm{T}} \boldsymbol{D}$. basically in the Easy check: This does not work for type DE graphs.

 Proof idea: Celmaritv ana वuast-nereditarv

Numerical condition. The Cartan matrix C of a cellular algebra is positive definite.
 Smith's (CP): The graphs with positive definite $2 \boldsymbol{I}+\boldsymbol{A}$ are the ADE graphs.

$$
\text { Thus, for non-type-ADE cases, } \mathrm{Z}_{\rightleftarrows} \text { is not cellular. }
$$

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by

> Step 2. Kill the remaining infinite families.

Numerical condition. The Cartan matrix C of a cellular algebra satisfies $\boldsymbol{C}=\boldsymbol{D}^{\mathrm{T}} \boldsymbol{D}$. basically in the Easy check: This does not work for type DE graphs.

Thus, for those cases, $\mathrm{Z}_{\rightleftarrows}$ is not cellular.

1
 Proof idea: Cellularitv and auasi-nereditarv

Numerical condition. The Cartan matrix \boldsymbol{C} of a cellular algebra is positive definite.
 Smith's (CP): The graphs with positive definite $2 \boldsymbol{I}+\boldsymbol{A}$ are the ADE graphs.

$$
\text { Thus, for non-type-ADE cases, } \mathrm{Z}_{\rightleftarrows} \text { is not cellular. }
$$

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by Step 2. Kill the remaining infinite families.

Numerical condition. The Cartan matrix \boldsymbol{C} of a cellular algebra satisfies $\boldsymbol{C}=\boldsymbol{D}^{\mathrm{T}} \boldsymbol{D}$. basically in the Easy check: This does not work for type DE graphs.

Thus, for those cases, $\mathrm{Z}_{\rightleftarrows}$ is not cellular.

Step 3. Treat the remaining case by hand.

1

 Proof idea: Celluaritv and auasi-nereditarv

 Proof idea: Celluaritv and auasi-nereditarv}

Numerical condition. The Cartan matrix \boldsymbol{C} of a cellular algebra is positive definite.
 Smith's (CP): The graphs with positive definite $2 I+\boldsymbol{A}$ are the ADE graphs.

$$
\text { Thus, for non-type-ADE cases, } \mathrm{Z}_{\rightleftarrows} \text { is not cellular. }
$$

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by

> Step 2. Kill the remaining infinite families.

Numerical condition. The Cartan matrix C of a cellular algebra satisfies $\boldsymbol{C}=\boldsymbol{D}^{\mathrm{T}} \boldsymbol{D}$. basically in the Easy check: This does not work for type DE graphs.

Thus, for those cases, $\mathrm{Z}_{\rightleftarrows}$ is not cellular.

Step 3. Treat the remaining case by hand.

$$
\text { is the only remaining case, for which } \mathrm{Z}_{\rightleftarrows} \text { is a 12-dimensional algebra. }
$$

1
 Proof idea: Cellularitv and auasा-nereditarv

Numerical condition. The Cartan matrix \boldsymbol{C} of a cellular algebra is positive definite.
 Smith's (CP): The graphs with positive definite $2 I+\boldsymbol{A}$ are the ADE graphs.

$$
\text { Thus, for non-type-ADE cases, } \mathrm{Z}_{\rightleftarrows} \text { is not cellular. }
$$

Main idea. Use the numerical conditions to rule out most cases; treat the remaining cases by

Step 2. Kill the remaining infinite families.
Numerical condition. The Cartan matrix \boldsymbol{C} of a cellular algebra satisfies $\boldsymbol{C}=\boldsymbol{D}^{\mathrm{T}} \boldsymbol{D}$. basically in the Easy check: This does not work for type DE graphs.

Thus, for those cases, $\mathrm{Z}_{\rightleftarrows}$ is not cellular.

Step 3. Treat the remaining case by hand.

Done.

Proof idea: koszulity

Main problem. Computing projective resolutions is hard.

Main idea 1. Get a numerical way to handle the projectives in some minimal projective resolution.

Main idea 2. Use a numerical condition to rule out the cases which are not Koszul.

Again, with vertex condition works similarly - I omit details.

Proof idŜen 1 Step 1. Writing down candidates of projective resolutions.

Main problem. Computing projective resolutions is hard.

Main idea 1. Get a numerical way to handle the projectives in some minimal projective resolution.

Main idea 2. Use a numerical condition to rule out the cases which are not Koszul.

Again, with vertex condition works similarly - I omit details.

Proof idfar Step 1. Writing down candidates of projective resolutions.

| Main proble | Numerical condition. The projectives turning up in the $e^{\text {th }}$
 step of a minimal projective resolution can be
 read off from the columns of $U_{e}(\boldsymbol{A})$. |
| :--- | :--- | :--- |
| Main ideample | minimal |
| projective resolution. | |

Main idea 2. Use a numerical condition to rule out the cases which are not Koszul.

Again, with vertex condition works similarly - I omit details.

Proof id Step 1. Writing down candidates of projective resolutions.

Main proble	Numerical condition. The projectives turning up in the $e^{\text {th }}$ step of a minimal projective resolution can be read off from the columns of $U_{e}(A)$.	minimal
Main idea 1		
projective r	Observe that each map in this process is of degree 1.	

Main idea 2. Use a numerical condition to rule out the cases which are not Koszul.

Again, with vertex condition works similarly - I omit details.

Proof id 5 Step 1. Writing down candidates of projective resolutions.

\mathbf{M} Smith's (CP) : The non-type-ADE graphs give Koszul algebras.
Koszul.

Again, with vertex condition works similarly - I omit details.

Proof id Soe 1. Writing down candidates of projective resolutions.

Main proble	Numerical condition. The projectives turning up in the $e^{\text {th }}$ step of a minimal projective resolution can be read off from the columns of $U_{e}(\boldsymbol{A})$.	minimal
Main idea 1		
projective re	Observe that each map in this process is of degree 1.	

Mmith's (CP) : The non-type-ADE graphs give Koszul algebras.

Koszul. Step 2. Kill the type ADE graphs.
Again, with vertex condition works similarly - I omit details.

Proof idf Step 1. Writing down candidates of projective resolutions.

Main probl Numerical condition. The projectives turning up in the $e^{\text {th }}$ step of a minimal projective resolution can be
Main idea 1 read off from the columns of $U_{e}(\boldsymbol{A})$. Esample minimal
projective resol Observe that each map in this process is of degree 1.
MSmith's (CP) : The non-type-ADE graphs give Koszul algebras.
Koszul.
Step 2. Kill the type ADE graphs.
Again, with $\underset{\text { Numerical condition. The matrix } \operatorname{det}^{-1} \dot{\boldsymbol{A}^{*}} \text { has column sums }}{\text {. }}$

$$
\sum_{i}(-1)^{i} a_{i} q^{i} \text { with } a_{i} \in \mathbb{Z}_{>0} .
$$

Proof id Step 1. Writing down candidates of projective resolutions.

Main proble Numerical condition. The projectives turning up in the $e^{\text {th }}$ step of a minimal projective resolution can be
Main idea $1 \quad$ read off from the columns of $U_{e}(\boldsymbol{A})$. P Example \quad minimal
projective resol Observe that each map in this process is of degree 1.
\mathbf{M} Smith's (CP) : The non-type-ADE graphs give Koszul algebras.
Koszul. Step 2. Kill the type ADE graphs.

Again, with \quad Numerical condition. The matrix $\operatorname{det}^{-1} \boldsymbol{A}^{*}$ has column sums

$$
\sum_{i}(-1)^{i} a_{i} q^{i} \text { with } a_{i} \in \mathbb{Z}_{>0}
$$

Easy calculation: The graded Cartan determinants for type ADE graphs.

Proof id Step 1. Writing down candidates of projective resolutions.

Main proble Numerical condition. The projectives turning up in the $e^{\text {th }}$ step of a minimal projective resolution can be
Main idea $1 \quad$ read off from the columns of $U_{e}(\boldsymbol{A})$. P Example \quad minimal
projective resol Observe that each map in this process is of degree 1.
\mathbf{M} Smith's (CP) : The non-type-ADE graphs give Koszul algebras.
Koszul. Step 2. Kill the type ADE graphs.

Again, with \quad Numerical condition. The matrix $\operatorname{det}^{-1} \boldsymbol{A}^{*}$ has column sums

$$
\sum_{i}(-1)^{i} a_{i} q^{i} \text { with } a_{i} \in \mathbb{Z}_{>0}
$$

Easy calculation: The graded Cartan determinants for type ADE graphs.
It turns out that they can not satisfy the numerical condition.

Proof id Step 1. Writing down candidates of projective resolutions.

Main proble Numerical condition. The projectives turning up in the $e^{\text {th }}$ step of a minimal projective resolution can be
Main idea $1 \quad$ read off from the columns of $U_{e}(\boldsymbol{A})$. P Example \quad minimal
projective resol Observe that each map in this process is of degree 1.
\mathbf{M} Smith's (CP) : The non-type-ADE graphs give Koszul algebras.

Koszul. Step 2. Kill the type ADE graphs.

Again, with \quad Numerical condition. The matrix $\operatorname{det}^{-1} \boldsymbol{A}^{*}$ has column sums

$$
\sum_{i}(-1)^{i} a_{i} q^{i} \text { with } a_{i} \in \mathbb{Z}_{>0}
$$

Easy calculation: The graded Cartan determinants for type ADE graphs.
It turns out that they can not satisfy the numerical condition.

Done.

Proof idea: koszulity

Main problem. Computing projective resolutions is hard.

Admissible graphs

An unoriented, connected, simple graph Γ is called $\mathfrak{s l}_{3}$-admissible if it is tricolored and each edge is contained in a 2 -simplex.

Example. The generalized type gA_{e} graphs, where $e \in \mathbb{Z}_{\geq 0}$:

We color our vertices green $g=\{b, y\}$, orange $o=\{r, y\}$ and purple $p=\{b, r\}$.

> It might be possible to relax these conditions, but we do not know for sure.

In particular, the explicit coloring can be avoided for zigzag algebras.

Admissible graphs

An unoriented, connected, simple graph Γ is called $\mathfrak{s l}_{3}$-admissible if it is tricolored and each edge is contained in a 2 -simplex.

Example. The generalized type gA_{e} graphs, where $e \in \mathbb{Z}_{\geq 0}$:

We color our vertices green $g=\{b, y\}$, orange $\circ=\{r, y\}$ and purple $p=\{b, r\}$.

Trihedral zigzag algebras

Take the double graph $\Gamma_{\rightleftarrows}$ of Γ and add three loops $\alpha_{\mathrm{b}}=\left(\alpha_{\mathrm{b}}\right)_{\mathrm{i}}, \alpha_{\mathrm{r}}=\left(\alpha_{\mathrm{r}}\right)_{\mathrm{i}}$ and $\alpha_{y}=\left(\alpha_{y}\right)_{i}$ per vertex; choose on of them per vertex.

Let $\mathrm{T}_{\rightleftarrows}=\mathrm{T}_{\rightleftarrows}(\Gamma)$ be the quotient of $\mathrm{R}\left(\Gamma_{\rightleftarrows}\right)$ by:
(a) Boundedness. Paths involving vertices from two different 2-simplices are zero.
(b) The relations of the cohomology ring $\mathrm{H}^{*}(\operatorname{SL}(3) / \mathrm{B}) . \alpha_{\mathrm{a}} \alpha_{\mathrm{b}}=\alpha_{\mathrm{b}} \alpha_{\mathrm{a}}$ for $a, b \in\{\mathrm{~b}, \mathrm{r}, \mathrm{y}\}, \alpha_{\mathrm{b}}+\alpha_{\mathrm{r}}+\alpha_{\mathrm{y}}=0, \alpha_{\mathrm{b}} \alpha_{\mathrm{r}}+\alpha_{\mathrm{b}} \alpha_{\mathrm{y}}+\alpha_{\mathrm{r}} \alpha_{\mathrm{y}}=0$ and $\alpha_{\mathrm{b}} \alpha_{\mathrm{r}} \alpha_{\mathrm{y}}=0$.
(c) Sliding loops. $i \rightarrow j \alpha_{i}=-\alpha_{j} i \rightarrow j, i \rightarrow j \alpha_{j}=-\alpha_{i} i \rightarrow j$ and $\mathrm{i} \rightarrow \mathrm{j} \alpha_{\mathrm{k}}=\alpha_{\mathrm{k}} \mathrm{i} \rightarrow \mathrm{j}=0$.
(d) Zigzag. $\mathbf{i} \rightarrow \mathrm{j} \rightarrow \mathrm{i}=\alpha_{\mathrm{i}} \alpha_{\mathrm{j}}$.
(e) Zigzig equals zag times loop. $\mathrm{i} \rightarrow \mathrm{j} \rightarrow \mathrm{k}=\mathrm{i} \rightarrow \mathrm{k} \alpha_{\mathrm{i}}=-\alpha_{\mathrm{k}} \mathrm{i} \rightarrow \mathrm{k}$.
$\mathrm{T}_{\rightleftarrows}$ is the trihedral zigzag algebra associated to Γ. Its graded by path length.

Trihedral zigzag algebras

Take the double graph $\Gamma_{\rightleftarrows}$ of Γ and add three loops $\alpha_{\mathrm{b}}=\left(\alpha_{\mathrm{b}}\right)_{\mathrm{i}}, \alpha_{\mathrm{r}}=\left(\alpha_{\mathrm{r}}\right)_{\mathrm{i}}$ and $\alpha_{y}=\left(\alpha_{y}\right)_{i}$ per vertex; choose on of them per vertex.

Let $\mathrm{T}_{\rightleftarrows}=\mathrm{T}_{\rightleftarrows}(\Gamma)$ be the quotient of $\mathrm{R}\left(\Gamma_{\rightleftarrows}\right)$ by:
(a) Boundedness. Paths involving vertices from two different 2 -simplices are zero.

(c) Sliding loops. $\mathrm{i} \rightarrow \mathrm{j} \alpha_{\mathrm{i}}=-\alpha_{\mathrm{j}} \mathrm{i} \rightarrow \mathrm{j}, \mathrm{i} \rightarrow \mathrm{j} \alpha_{\mathrm{j}}=-\alpha_{\mathrm{i}} \mathrm{i} \rightarrow \mathrm{j}$ and

$$
\mathrm{i} \rightarrow \mathrm{j} \alpha_{\mathrm{k}}=\alpha_{\mathrm{k}} \mathrm{i} \rightarrow \mathrm{j}=0 .
$$

(d) Zigzag. $\mathbf{i} \rightarrow \mathrm{j} \rightarrow \mathrm{i}=\alpha_{\mathrm{i}} \alpha_{\mathrm{j}}$.
(e) Zigzig equals zag times loop. $\mathrm{i} \rightarrow \mathrm{j} \rightarrow \mathrm{k}=\mathrm{i} \rightarrow \mathrm{k} \alpha_{\mathrm{i}}=-\alpha_{\mathrm{k}} \mathrm{i} \rightarrow \mathrm{k}$.
$\mathrm{T}_{\rightleftarrows}$ is the trihedral zigzag algebra associated to Γ. Its graded by path length.

Trihedral zigzag algebras

Take the double graph $\Gamma_{\rightleftarrows}$ of Γ and add three loops $\alpha_{b}=\left(\alpha_{b}\right)_{i}, \alpha_{r}=\left(\alpha_{r}\right)_{i}$ and $\alpha_{y}=\left(\alpha_{y}\right)_{i}$ per vertex; choose on of them per vertex.

Generalizing zigzag algebras.

Let $\mathrm{T}_{\rightleftarrows}=\mathrm{T}_{\rightleftarrows}(\Gamma)$ be the quotient of $\mathrm{R}\left(\Gamma_{\rightleftarrows}\right)$ by:
(a) Bou "Boundedness" is a direct generalization, where $\frac{1-c r}{1-\text { simplex' }=\text { 'edge. }}$. ${ }^{\text {en }}$. zero.
(b) The relations of \mathbf{t} "Flag" is a direct generalization. ${ }^{\text {P }}$ (B). $\alpha_{\mathrm{a}} \alpha_{\mathrm{b}}=\alpha_{\mathrm{b}} \alpha_{\mathrm{a}}$ for $a, b \in\{\mathrm{~b}, \mathrm{r}, \mathrm{y}\}, \alpha_{\mathrm{b}}+\alpha_{\mathrm{r}}+\alpha_{\mathrm{y}}=0, \alpha_{\mathrm{b}} \alpha_{\mathrm{r}}+\alpha_{\mathrm{b}} \alpha_{\mathrm{y}}+\alpha_{\mathrm{r}} \alpha_{\mathrm{y}}=0$ and $\alpha_{\mathrm{b}} \alpha_{\mathrm{r}} \alpha_{\mathrm{y}}=0$.
(c) Sliding loops. $i \rightarrow j$ "Sliding loops" is a new relation. ${ }^{\text {. }}$ and

$$
i \rightarrow j \alpha_{\mathrm{k}}=\alpha_{\mathrm{k}} \mathrm{i} \rightarrow \mathrm{j}=\mathrm{C}
$$

(d) Zigzag. $i \rightarrow j \rightarrow i \rightarrow j \rightarrow i=\alpha_{i} \alpha_{\mathrm{j}}$ generalizes $\mathrm{i} \rightarrow \mathrm{j} \rightarrow \mathrm{i}=\alpha_{\mathrm{s}}-\alpha_{\mathrm{t}}$.
(e) Zigzig equals zag times loop. $\mathrm{i} \rightarrow \mathrm{j} \rightarrow \mathrm{k}=\mathrm{i} \rightarrow \mathrm{k} \alpha_{\mathrm{i}}=-\alpha_{\mathrm{k}} \mathrm{i} \rightarrow \mathrm{k}$.
$\mathrm{T}_{\rightleftarrows}$ is the trihedr ${ }^{\text {"Zigzig equals zag times loop" is a new relation." }}$ path length.

Trihedral zigzag algebras in mathematics

Generalizing zigzag algebras does not work in all directions:

- Study of Artin algebras.
- Categorical braid group actions.
- Finite groups in prime characteristic.
- Versions of category \mathcal{O}.
- Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- In various places in categorification.

Trihedral zigzag algebras in mathematics

Generalizing zigzag algebras does not work in all directions:

- Study of Artin algebras.

- Categorical braid group actions.
- Finite groups in prime characteristic.
- Versions of category \mathcal{O}.
- Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- In various places in categorification.

Trihedral zigzag algebras in mathematics

Generalizing zigzag algebras does not work in all directions:

- Study of Artin algebras.

- Categorical braid group actions. X
- Finite groups in prime characteristic.
- Versions of category \mathcal{O}.
- Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- In various places in categorification.

Trihedral zigzag algebras in mathematics

Generalizing zigzag algebras does not work in all directions:

- Study of Artin algebras.

- Categorical braid group actions.

- Finite groups in prime characteristic. \square
- Versions of category \mathcal{O}.
- Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- In various places in categorification.

Trihedral zigzag algebras in mathematics

Generalizing zigzag algebras does not work in all directions:

- Study of Artin algebras.

- Categorical braid group actions.

- Finite groups in prime characteristic. \square
- Versions of category \mathcal{O}. ?
- Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- In various places in categorification.

Trihedral zigzag algebras in mathematics

Generalizing zigzag algebras does not work in all directions:

- Study of Artin algebras.

- Categorical braid group actions.

- Finite groups in prime characteristic. \square
- Versions of category \mathcal{O}. ?
- Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- In various places in categorification.

Trihedral zigzag algebras in mathematics

Generalizing zigzag algebras does not work in all directions:

- Study of Artin algebras.

- Categorical braid group actions.

- Finite groups in prime characteristic. \square
- Versions of category \mathcal{O}. ?
- Representation theory of reductive groups in prime characteristic, quantum groups at roots of unity.
- In various places in categorification.

The Cartan matrix

$q \operatorname{dim}\left(\operatorname{Hom}_{Z_{\rightleftarrows}}(i, j)\right)=\left\{\begin{aligned} 3!, & \text { if } i=j, \\ q^{2}+q^{4}, & \text { if } i-j, \\ 0, & \text { else, },\end{aligned}\right.$
the usual cohomology basis, $\left\{i \rightarrow j, i \rightarrow j \alpha_{a}\right\}$ is a basis, \emptyset is a basis.

The volume elements are $\mathrm{x}_{\mathrm{i}}=\alpha_{\mathrm{b}}^{2} \alpha_{\mathrm{r}}=-\alpha_{\mathrm{r}}^{2} \alpha_{\mathrm{b}}=$ etc.
The (left) projectives and simples:

$$
P_{i}=\left\{i, \alpha_{a}, \alpha_{b}, \alpha_{a}^{2}, \alpha_{b}^{2}, x_{i}, j \rightarrow i, j \rightarrow i \alpha_{a}, x_{i} \mid i-j\right\} \quad \& \quad L_{i}=\{i\}
$$

The Loewy picture:

$$
\begin{aligned}
& \text { i } \\
& P_{i}=\underset{\alpha_{a}, \alpha_{b}^{2}, j \rightarrow i \alpha_{a}}{\alpha_{\mathrm{a}}, \alpha_{\mathrm{b}}, j \rightarrow i}(\text { for } \mathrm{i}-\mathrm{j})
\end{aligned}
$$

The Cartan matrix

$q \operatorname{dim}\left(\operatorname{Hom}_{Z_{\rightleftarrows}}(i, j)\right)=\left\{\begin{aligned} 3!, & \text { if } i=j, \\ q^{2}+q^{4}, & \text { if } i-j, \\ 0, & \text { else, },\end{aligned}\right.$
the usual cohomology basis, $\left\{i \rightarrow j, i \rightarrow j \alpha_{a}\right\}$ is a basis, \emptyset is a basis.

The volume elements are $\mathrm{x}_{\mathrm{i}}=\alpha_{\mathrm{b}}^{2} \alpha_{\mathrm{r}}=-\alpha_{\mathrm{r}}^{2} \alpha_{\mathrm{b}}=$ etc.
The (left) projectives and simples:

$$
\mathrm{P}_{\mathrm{i}}=\left\{\mathrm{i}, \alpha_{\mathrm{a}}, \alpha_{\mathrm{b}}, \alpha_{\mathrm{a}}^{2}, \alpha_{\mathrm{b}}^{2}, \mathrm{x}_{\mathrm{i}},\right.
$$

The Loewy picture:

The Cartan matrix

$\operatorname{qdim}\left(\operatorname{Hom}_{Z_{\rightleftarrows}}(i, j)\right)=\left\{\begin{aligned} 3_{q}!, & \text { if } i=j, \\ q^{2}+q^{4}, & \text { if } i-j, \\ 0, & \text { else, }\end{aligned}\right.$
the usual cohomology basis, $\left\{i \rightarrow j, i \rightarrow j \alpha_{a}\right\}$ is a basis, \emptyset is a basis.

The volume elements are $\mathrm{x}_{\mathrm{i}}=\alpha_{\mathrm{b}}^{2} \alpha_{\mathrm{r}}=-\alpha_{\mathrm{r}}^{2} \alpha_{\mathrm{b}}=$ etc.

The Cartan matrix

$\operatorname{qdim}\left(\operatorname{Hom}_{Z_{\rightleftarrows}}(i, j)\right)=\left\{\begin{aligned} 3_{q}!, & \text { if } i=j, \\ q^{2}+q^{4}, & \text { if } i-j, \\ 0, & \text { else, }\end{aligned}\right.$
the usual cohomology basis, $\left\{i \rightarrow j, i \rightarrow j \alpha_{a}\right\}$ is a basis, \emptyset is a basis.

The volume elements are $\mathrm{x}_{\mathrm{i}}=\alpha_{\mathrm{b}}^{2} \alpha_{\mathrm{r}}=-\alpha_{\mathrm{r}}^{2} \alpha_{\mathrm{b}}=$ etc.

The Cartan matrix

$q \operatorname{dim}\left(\operatorname{Hom}_{Z_{\rightleftarrows}}(i, j)\right)=\left\{\begin{array}{rlr}3_{q}!, & \text { if } i=j, & \text { the usual cohomology basis, } \\ q^{2}+q^{4}, & \text { if } i-j, & \left\{i \rightarrow j, i \rightarrow j \alpha_{a}\right\} \text { is a basis, } \\ 0, & \text { else. } & \emptyset \text { is a basis. }\end{array}\right.$
Thus, the Cartan matrix is
The volum
$C\left(\mathrm{gA}_{1}\right)=\left(\begin{array}{ccc}3! & 2 & 2 \\ 2 & 3! & 2 \\ 2 & 2 & 3!\end{array}\right)=2 \cdot\left(\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right)+\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)\right)$

$$
P_{i}=\left\{i, \alpha_{a}, \alpha_{b}, \alpha_{a}^{2}, \alpha_{b}^{2}, x_{i}, j \rightarrow i, j \rightarrow i \alpha_{a}, x_{i} \mid i-j\right\} \quad \& \quad L_{i}=\{i\}
$$

The Loewy picture:

$$
\mathrm{P}_{\mathrm{i}}=\begin{gathered}
\mathrm{i} \\
\alpha_{\mathrm{a}}, \alpha_{\mathrm{b}}, j \rightarrow \mathrm{i} \\
\alpha_{\mathrm{a}}^{2}, \alpha_{\mathrm{b}}^{2}, j \rightarrow \mathrm{i} \alpha_{\mathrm{a}} \\
\mathrm{x}_{\mathrm{i}}
\end{gathered}(\text { for } \mathrm{i}-\mathrm{j})
$$

The Cartan matrix

$\operatorname{qdim}\left(\operatorname{Hom}_{Z_{\rightleftarrows}}(i, j)\right)=\left\{\begin{array}{rlr}3_{q}!, & \text { if } i=j, & \text { the usual cohomology basis, } \\ q^{2}+q^{4}, & \text { if } i-j, & \left\{i \rightarrow j, i \rightarrow j \alpha_{a}\right\} \text { is a basis, } \\ 0, & \text { else. }\end{array}\right.$
Thus, the Cartan matrix is $\quad C\left(\mathrm{gA}_{1}\right)=\left(\begin{array}{ccc}3! & 2 & 2 \\ 2 & 3! & 2 \\ 2 & 2 & 3!\end{array}\right)=2 \cdot\left(\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right)+\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)\right)$

The Loewy picture:

$$
\text { The Cartan matrix } \boldsymbol{C}=\boldsymbol{C}\left(\mathrm{T}_{\rightleftarrows}\right) \text { is }
$$

$$
\begin{gathered}
\boldsymbol{C}=2(3 \boldsymbol{I}+\boldsymbol{A}) . \\
\mathrm{P}_{\mathrm{i}}=\begin{array}{c}
\alpha_{\mathrm{a}}, \alpha_{\mathrm{b}}, j \rightarrow \mathrm{j} \\
\alpha_{\mathrm{a}}^{2}, \alpha_{\mathrm{b}}^{2}, j \rightarrow \mathrm{i} \alpha_{\mathrm{a}} \\
\mathrm{x}_{\mathrm{i}}
\end{array}(\text { for } \mathrm{i}-\mathrm{j})
\end{gathered}
$$

The Cartan matrix

$\operatorname{qdim}\left(\operatorname{Hom}_{Z_{\rightleftarrows}}(i, j)\right)=\left\{\begin{array}{rlr}3 q^{2}!, & \text { if } i=j, & \text { the usual cohomology basis, } \\ q^{2}+q^{4}, & \text { if } i-j, & \left\{i \rightarrow j, i \rightarrow j \alpha_{a}\right\} \text { is a basis, } \\ 0, & \text { else. }\end{array}\right.$
Thus, the Cartan matrix is $\quad C\left(\mathrm{gA}_{1}\right)=\left(\begin{array}{ccc}3! & 2 & 2 \\ 2 & 3! & 2 \\ 2 & 2 & 3!\end{array}\right)=2 \cdot\left(\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right)+\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)\right)$

The Loewy picture:

$$
\begin{gathered}
\boldsymbol{C}=2(3 \boldsymbol{I}+\boldsymbol{A}) . \\
\alpha_{\mathrm{a}}, \alpha_{\mathrm{b}}, \mathrm{j} \rightarrow \mathrm{i} \\
\text { Fact. (Not hard to show. }) \\
\text { The graded Cartan matrix } \boldsymbol{C}=\boldsymbol{C}\left(\mathrm{T}_{\rightleftarrows}\right) \text { is } \\
\boldsymbol{C}=2_{\mathrm{q}}\left(3_{\mathrm{q}} \boldsymbol{I}+\mathrm{q}^{2} \boldsymbol{A}\right) . \\
\hline
\end{gathered}
$$

$$
\text { The Cartan matrix } \boldsymbol{C}=\boldsymbol{C}\left(\mathrm{T}_{\rightleftharpoons}\right) \text { is }
$$

Generalized Chebyshev polynomials

Observation. Let $L_{e \omega}$ be the e+1-dimensional irreducible representation of SL(2). We have the correspondence

$$
L_{1} \longleftrightarrow X \quad \& \quad L_{1}^{\otimes k} \longleftrightarrow X^{k} \quad \& \quad L_{e \omega} \longleftrightarrow U_{e}(X) \text {. }
$$

Define a Chebyshev polynomial $U_{e}\left(X_{\omega}\right)$ associated to any semisimple algebraic group G by the correspondence

$$
L_{\omega_{i}} \longleftrightarrow X_{i} \quad \& \quad L_{\omega_{i}}^{\otimes k} \longleftrightarrow X_{i}^{k} \quad \& \quad L_{e_{1} \omega_{1}+\cdots+e_{r} \omega_{r}} \longleftrightarrow \rightsquigarrow U_{e}\left(X_{\omega}\right) .
$$

where $L_{\omega_{1}}, \ldots, L_{\omega_{r}}$ are the fundamental representations of $G, e=e_{1}+\cdots+e_{r}$ and $\mathrm{X}_{\omega}=\mathrm{X}_{1}, \ldots, \mathrm{X}_{r}$.

Fact. The so-called multivariate Chebyshev polynomial $U_{e}\left(X_{\omega}\right)$ comes up in the theory of orthogonal polynomials, and has roots and recurrence relations coming from the root datum of G only.

Generalized Chebyshev polynomials

Observation. Let $L_{e \omega}$ be the e+1-dimensional irreducible representation of SL(2). We have the correspondence

$$
\begin{aligned}
& \text { Example } G=\operatorname{SL}(2) \text {. } \\
& \text { The usual Chebyshev polynomial - you have seen this before. }
\end{aligned}
$$

Define a Chebyshev polynomial $U_{e}\left(\mathrm{X}_{\omega}\right)$ associated to any semisimple algebraic group G by the correspondence

$$
L_{\omega_{i}} \longleftrightarrow X_{i} \quad \& \quad L_{\omega_{i}}^{\otimes k} \longleftrightarrow X_{i}^{k} \quad \& \quad L_{e_{1} \omega_{1}+\cdots+e_{r} \omega_{r}} \longleftrightarrow \rightsquigarrow U_{e}\left(X_{\omega}\right) .
$$

where $L_{\omega_{1}}, \ldots, L_{\omega_{r}}$ are the fundamental representations of $G, e=e_{1}+\cdots+e_{r}$ and $\mathrm{X}_{\omega}=\mathrm{X}_{1}, \ldots, \mathrm{X}_{r}$.

Fact. The so-called multivariate Chebyshev polynomial $U_{e}\left(X_{\omega}\right)$ comes up in the theory of orthogonal polynomials, and has roots and recurrence relations coming from the root datum of G only.

Generalized Chebyshev polynomials

ObservaSL(2). W	Example $G=\mathrm{SL}(3)$.	of
	3) has two fundamental representations $L_{1,0}=\mathrm{X}$ and $L_{0,1}=\mathrm{Y}$; the vector representation and its dual. Moreover, we have irreducibles $L_{m, n}$ for all $m, n \in \mathbb{Z}_{\geq 0}$.	
Define a group G	We have the following Chebyshev-like recursion relations $\begin{gathered} U_{m, n}(\mathrm{X}, \mathrm{Y})=U_{n, m}(\mathrm{Y}, \mathrm{X}), \\ \mathrm{X} U_{m, n}(\mathrm{X}, \mathrm{Y})=U_{m+1, n}(\mathrm{X}, \mathrm{Y})+U_{m-1, n+1}(\mathrm{X}, \mathrm{Y})+U_{m, n-1}(\mathrm{X}, \mathrm{Y}), \\ \mathrm{Y} U_{m, n}(\mathrm{X}, \mathrm{Y})=U_{m, n+1}(\mathrm{X}, \mathrm{Y})+U_{m+1, n-1}(\mathrm{X}, \mathrm{Y})+U_{m-1, n}(\mathrm{X}, \mathrm{Y}), \end{gathered}$	sebraic
where L_{ω} and $\mathrm{X}_{\omega}=$	together with starting conditions for $e=0,1$.	$\cdots+e_{r}$

Fact. The so-calleh The roots of these polynomial are very ante. , comes up in the theory of orthogonal polynomials, and has roots and recurrence relations coming from the root datum of G only.

Generalized Chebyshev polynomials

Observation. Let $L_{e \omega}$ be the e+1-dimensional irreducible representation of SL(2). We have the correspondence

$$
L_{1} \longleftrightarrow X \quad \& \quad L_{1}^{\otimes k} \leftrightarrow X^{k} \quad \& \quad L_{e \omega} \longleftrightarrow U_{e}(X) \text {. }
$$

The SL(3) Chebyshev polynomial plays the same role for the trihedral zigzag algebras as the Chebyshev polynomials do for the zigzag algebras.

$$
L_{\omega_{i}} \longleftrightarrow X_{i} \quad \& \quad L_{\omega_{i}}^{\otimes k} \longleftrightarrow X_{i}^{k} \quad \& \quad L_{e_{1} \omega_{1}+\cdots+e_{r} \omega_{r}} \longleftrightarrow \rightsquigarrow \longrightarrow U_{e}\left(X_{\omega}\right) .
$$

where $L_{\omega_{1}}, \ldots, L_{\omega_{r}}$ are the fundamental representations of $G, e=e_{1}+\cdots+e_{r}$ and $\mathrm{X}_{\omega}=\mathrm{X}_{1}, \ldots, \mathrm{X}_{r}$.

Fact. The so-called multivariate Chebyshev polynomial $U_{e}\left(X_{\omega}\right)$ comes up in the theory of orthogonal polynomials, and has roots and recurrence relations coming from the root datum of G only.

Generalized Chebyshev polynomials

Observation. Let $L_{e \omega}$ be the e+1-dimensional irreducible representation of $\mathrm{SL}(2)$. We have the correspondence

$$
L_{1} \leftrightarrow X \quad \& \quad L_{1}^{\otimes k} \leadsto X^{k} \quad \& \quad L_{e \omega} \longleftrightarrow U_{e}(X) .
$$

[The SL(3) Chebyshev polynomial plays the same role for the trihedral zigzag algebras as the Chebyshev polynomials do for the zigzag algebras.

Fact. The so-called multivariate Chebyshev polynomial $U_{e}\left(X_{\omega}\right)$ comes up in the theory of orthogonal polynomials, and has roots and recurrence relations coming from the root datum of G only.

Kronecker ~ 1857. Any complete set of conjugate algebraic integers in $\mid-2.2$ is a subset of routs $\left(U_{s+1}\right)$ Any (X) for fome a

∞

The Cartan matrix

x_{4}

The case $\mathrm{r}-\mathrm{A}_{\mathrm{n}} \& \mathrm{C}-\mathrm{a}$.

The case $\Gamma-A_{n} \& C-\{1\}$.
cm

Example

$$
\bar{A}_{2}=0<\left.\right|_{2} ^{1} \sim A-\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

$U_{\text {man }}(X, Y)-U_{n, n}(Y, X), X U_{\text {mon }}(X, Y)-U_{\text {Dita, }}(X, Y)+U_{n-1, n+1}(X, Y)+$
$U_{m n-1}(X, Y) . Y U_{m a l}(X, Y)-U_{m n+1}(X, Y)+U_{m+1, n-1}(X, Y)+U_{m-1,0}(X, Y)$.
Koorrwinder ~ 1973. For fowed level $m+n-e+1$, the common roots of the
Chebty

\square

There is still much to do...
$u_{0}(\mathrm{X})=1, \quad u_{2}(\mathrm{X})-\mathrm{X}, \quad \mathrm{x} u_{++2}(\mathrm{X})-u_{t+2}(\mathrm{X})+u_{d}(\mathrm{X})$
Kronecker ~1857. Any complete set of conjugate algebraic integers in]-2,2[is a subset of routs $\left(U_{s+1}\right)$ Any complete set fome a

Figure: The rooss ad the Chentraheo polymemidss fof thit mond sind).
∞

The Cartan matrix

$\underset{x_{4}}{\mathrm{x}_{1}}$

The case $\mathrm{r}-\mathrm{A}_{\mathrm{n}} \& \mathrm{C}-\mathrm{n}$.

The case Γ - $\mathrm{A}_{\mathrm{n}} \& \mathrm{C}-\{1\}$.
cm

Example

$U_{\text {man }}(X, Y)-U_{n, n}(Y, X), X U_{\text {mon }}(X, Y)-U_{n+1,0}(X, Y)+U_{n-1, n+1}(X, Y)+$ $U_{m n-1}(X, Y) . Y U_{m a l}(X, Y)-U_{m n+1}(X, Y)+U_{m+1, n-1}(X, Y)+U_{m-1,0}(X, Y)$. Koorrmwinder ~ 1973. For fowed level $m+n-e+1$, the common roots of the
Chebyzher polymomiats are all in the discoid.

\square

Thanks for your attention!

$$
\begin{array}{lll}
U_{0}(X)=1, & U_{1}(X)=X, & X U_{e+1}(X)=U_{e+2}(X)+U_{e}(X) \\
U_{0}(X)=1, & U_{1}(X)=2 X, & 2 X U_{e+1}(X)=U_{e+2}(X)+U_{e}(X)
\end{array}
$$

Kronecker ~ 1857. Any complete set of conjugate algebraic integers in $]-2,2$ [is a subset of $\operatorname{roots}\left(U_{e+1}(X)\right)$ for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

The case $\Gamma=A_{n}$ \& $C=\emptyset$.

$$
f=\left(\mathrm{n}-1 \rightarrow_{\mathrm{n}}\right), \quad g=\left(\mathrm{n} \rightarrow_{\mathrm{n}-1}\right)
$$

living on the type A_{n} graph

The case $\Gamma=A_{n} \& C=\{1\}$.

$$
C=\{1\}
$$

living on the type A_{n} graph

Definition (e.g. Cline-Parshall-Scott ~ 1988). A finite-dimensional algebra R is called quasi-hereditary if there exists a chain of ideals

$$
0=\mathrm{J}_{0} \subset \mathrm{~J}_{1} \subset \cdots \subset \mathrm{~J}_{k-1} \subset \mathrm{~J}_{k}=\mathrm{R}
$$

for some $k \in \mathbb{Z}_{\geq 1}$, such that the quotient $\mathrm{J}_{\mathrm{I}} / \mathrm{J}_{I-1}$ is an hereditary ideal in $\mathrm{R} / \mathrm{J}_{I-1}$.
The point: Quasi-hereditary algebras have associated highest weight categories, i.e. they have simple, (co)standard Δ, indecomposable projective and tilting modules, all indexed by the same ordered set.

Example.

$$
\mathrm{J}_{1}=\mathbb{k}\left\{1,2 \rightarrow 1,1 \rightarrow 2, \mathrm{x}_{2}\right\}, \quad \mathrm{J}_{2}=\mathbb{k}\left\{2,3 \rightarrow 2,2 \rightarrow 3, \mathrm{x}_{3}\right\} \oplus \mathrm{J}_{1}, \quad \mathrm{~J}_{3}=\mathbb{k}\{3\} \oplus \mathrm{J}_{1} \oplus \mathrm{~J}_{2}
$$

$$
\left.C=\left(\begin{array}{l}
1
\end{array}\right) ; \operatorname{det}=1 \quad C=\left(\begin{array}{cc}
1 & 1 \\
1 & 2
\end{array}\right) ; \operatorname{det}=1 \quad \begin{array}{ccc}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right) ; \operatorname{det}=1
$$

$\mathrm{Z}_{\rightleftarrows}^{\mathrm{C}} / \mathrm{J}_{2}$
$\mathrm{Z}_{\rightleftarrows}^{\mathrm{C}} / \mathrm{J}_{1}$

$\mathrm{Z} \underset{\rightleftarrows}{\mathrm{C}} / \mathrm{J}_{0}$

$$
\begin{aligned}
& C=\{1\}
\end{aligned}
$$

Example.

$\mathrm{J}_{1}=\mathbb{k}\left\{1,2 \rightarrow 1,1 \rightarrow 2, \mathrm{x}_{2}\right\}, \quad \mathrm{J}_{2}=\mathbb{k}\left\{2,3 \rightarrow 2,2 \rightarrow 3, \mathrm{x}_{3}\right\} \oplus \mathrm{J}_{1}, \quad \mathrm{~J}_{3}=\mathbb{k}\{3\} \oplus \mathrm{J}_{1} \oplus \mathrm{~J}_{2}$.

2
$P_{2}=1 \rightarrow 2 \& 3 \rightarrow 2$
x_{2}

$$
C=\left(\begin{array}{rr}
1 & 1 \\
1 & 2
\end{array}\right) ; \text { det }=1
$$

$$
c=\begin{gathered}
2 \\
\Delta_{2}= \\
3 \rightarrow 2
\end{gathered}
$$

Example.

$$
\begin{aligned}
& C=\{1\}
\end{aligned}
$$

$\mathrm{P}_{1}=$| 1 |
| :---: |
| $2 \rightarrow 1$ |

$\mathrm{P}_{1}=$| L_{1} |
| :--- |
| $\mathrm{~L}_{2}$ |

$\Delta_{1}=$| 1 |
| :---: |
| $2 \rightarrow 1$ |$\quad \Delta_{1}=$| L_{1} |
| :--- |
| $\mathrm{~L}_{2}$ |

$\mathrm{J}_{1}=\mathbb{k}\left\{1,2 \rightarrow 1,1 \rightarrow 2, \mathrm{x}_{2}\right\}, \quad \mathrm{J}_{2}=\mathbb{k}\left\{2,3 \rightarrow 2,2 \rightarrow 3, \mathrm{x}_{3}\right\} \oplus \mathrm{J}_{1}, \quad \mathrm{~J}_{3}=\mathbb{k}\{3\} \oplus \mathrm{J}_{1} \oplus \mathrm{~J}_{2}$.

2
$\mathrm{P}_{2}=1 \rightarrow 2 \& 3 \rightarrow 2$
x_{2}

L_{2}
$\mathrm{P}_{2}=\mathrm{L}_{1} \& \mathrm{~L}_{3}$
$\mathrm{~L}_{2}$ 1

Example.

$$
\begin{array}{|c|c|c|}
\hline \mathrm{P}_{1}=\begin{array}{c}
1 \\
2 \rightarrow 1
\end{array} & \mathrm{P}_{1}=\begin{array}{c}
\mathrm{L}_{1} \\
\mathrm{~L}_{2}
\end{array} \quad \mathrm{P}_{1}=\Delta_{1} & \Delta_{1}=\begin{array}{c}
1 \\
2 \rightarrow 1
\end{array} \quad \Delta_{1}=\begin{array}{l}
\mathrm{L}_{1} \\
\mathrm{~L}_{2}
\end{array} \\
\hline
\end{array}
$$

$$
\mathrm{J}_{1}=\mathbb{k}\left\{1,2 \rightarrow 1,1 \rightarrow 2, \mathrm{x}_{2}\right\}, \quad \mathrm{J}_{2}=\mathbb{k}\left\{2,3 \rightarrow 2,2 \rightarrow 3, \mathrm{x}_{3}\right\} \oplus \mathrm{J}_{1}, \quad \mathrm{~J}_{3}=\mathbb{k}\{3\} \oplus \mathrm{J}_{1} \oplus \mathrm{~J}_{2} .
$$

$$
\begin{aligned}
& C=\{1\}
\end{aligned}
$$

Example.

Note how nicely ordered $1<2<3$

the standards in projectives, and the simples in the standards are. This is one crucial numerical property of quasi-hereditary algebras.

$J_{1}=\mathbb{k}\left\{1,2 \rightarrow 1,1 \rightarrow 2, x_{2}\right\}, \quad J_{2}=\mathbb{k}\left\{2,3 \rightarrow 2,2 \rightarrow 3, x_{3}\right\} \oplus J_{1}, \quad J_{3}=\mathbb{k}\{3\} \oplus J_{1} \oplus J_{2}$.

2
$\mathrm{P}_{2}=1 \rightarrow 2 \& 3 \rightarrow 2$
x_{2}

L_{2}
$\mathrm{P}_{2}=\mathrm{L}_{1} \& \mathrm{~L}_{3}$
$\mathrm{~L}_{2}$

$$
\mathrm{P}_{2}=\begin{gathered}
\Delta_{2} \\
\Delta_{1}
\end{gathered}=
$$

$$
\Delta_{2}=\begin{gathered}
2 \\
3 \rightarrow 2
\end{gathered}
$$

\&

$\Delta_{3}=\mathrm{L}_{3}$

Example.

$$
C=\{1\}
$$

Note how nicely ordered $1<2<3$
the standards in projectives, and the simples in the standards are. This is one crucial numerical property of quasi-hereditary algebras.

The reciprocity:
The reciprocity:
$\mathrm{J}_{1}=\mathbb{k}\left\{1,2 \rightarrow\left\{\boldsymbol{C}=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)=\boldsymbol{D}^{\mathrm{T}} \boldsymbol{D}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)\{3\} \oplus \mathrm{J}_{1} \oplus \mathrm{~J}_{2}\right.\right.$.
\boldsymbol{D} matrix encodes simples in standards.

$$
\left.C=\left(\begin{array}{l}
1
\end{array}\right) ; \operatorname{det}=1 \quad C=\left(\begin{array}{cc}
1 & 1 \\
1 & 2
\end{array}\right) ; \operatorname{det}=1 \quad \begin{array}{cc}
1 & 1 \\
1 & 0 \\
1 & 2 \\
0 & 1
\end{array} 2\right) ; \operatorname{det}=1
$$

Example.

$$
C=\{1\}
$$

Note how nicely ordered $1<2<3$
the standards in projectives, and the simples in the standards are. This is one crucial numerical property of quasi-hereditary algebras.
$\stackrel{\alpha_{\mathrm{t}}}{\alpha_{\mathrm{t}}}$
The reciprocity:
$\mathrm{J}_{1}=\mathbb{k}\{1,2 \rightarrow 1$
$\boldsymbol{C}=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)=\boldsymbol{D}^{\mathrm{T}} \boldsymbol{D}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)\{3\} \oplus \mathrm{J}_{1} \oplus \mathrm{~J}_{2}$.
\boldsymbol{D} matrix encodes simples in standards.
$\boldsymbol{C}=(1) ; \operatorname{det}=1$
$\boldsymbol{C}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right) ;$ det $=1$
$\boldsymbol{C}=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right) ;$ det $=1$

A linear projective resolution of a graded module M of a positively graded algebra R is an exact sequence

$$
\cdots \longrightarrow \mathrm{q}^{2} \mathrm{Q}_{2} \longrightarrow \mathrm{qQ}_{1} \longrightarrow \mathrm{Q}_{0} \longrightarrow \mathrm{M}
$$

with graded projective R-modules $\mathrm{q}^{e} \mathrm{Q}_{e}$ generated in degree e.

Definition (e.g. Priddy ~1970). A finite-dimensional, positively graded algebra R is called Koszul if its degree 0 part is semisimple and each simple R-module admits a linear projective resolution.

The point: Koszul algebras have projective resolutions of simples which are as easy as possible.

Example.

$$
\mathrm{Z} \stackrel{\mathrm{C}=\emptyset}{\rightleftarrows}\left(\tilde{\mathrm{A}}_{2}\right)=0
$$

From now I just draw the graphs.

$$
\begin{gathered}
0 \\
\mathrm{P}_{0}=1 \rightarrow 0 \& 2 \rightarrow 0 \\
\mathrm{x}_{0} \\
1 \\
\mathrm{P}_{1}=0 \rightarrow 1 \& 2 \rightarrow 1, \\
\mathrm{x}_{1} \\
2 \\
\mathrm{P}_{2}=0 \rightarrow 2 \& 1 \rightarrow 2 \\
\mathrm{x}_{2}
\end{gathered}
$$

Example.

$$
\begin{array}{|l|}
\hline \text { Kernel in the first step: } \mathbb{k}\left\{1 \rightarrow 0,2 \rightarrow 0, \mathrm{x}_{0}\right\} \\
\mathrm{Z}_{\rightleftarrows}^{c=w}\left(\mathrm{~A}_{2}\right)=0
\end{array}
$$

$$
\begin{gathered}
0 \\
\mathrm{P}_{0}=1 \rightarrow 0 \& 2 \rightarrow 0 \\
\mathrm{x}_{0} \\
1 \\
\mathrm{P}_{1}=0 \rightarrow 1 \& 2 \rightarrow 1, \\
\mathrm{x}_{1} \\
2 \\
\mathrm{P}_{2}=0 \rightarrow 2 \& 1 \rightarrow 2 \\
\mathrm{x}_{2}
\end{gathered}
$$

Example.

$$
\begin{aligned}
& \begin{array}{l}
\text { Kernel in the first step: } \mathbb{k}\left\{1 \rightarrow 0,2 \rightarrow 0, \mathrm{x}_{0}\right\} \\
\hline \mathrm{Z}_{\rightleftarrows}^{c=0} \\
\hline
\end{array}\left(\mathrm{~A}_{2}\right)=0 \\
& \text { Kernel in the second step: } \mathbb{k}\left\{2 \rightarrow 1, \mathrm{x}_{1}, 1 \rightarrow 2, \mathrm{x}_{2}\right\} \text { and } \mathbb{k}\{0 \rightarrow 1-0 \rightarrow 2\} .
\end{aligned}
$$

$$
\begin{gathered}
0 \\
\mathrm{P}_{0}=1 \rightarrow 0 \& 2 \rightarrow 0 \\
\mathrm{x}_{0} \\
1 \\
\mathrm{P}_{1}=0 \rightarrow 1 \& 2 \rightarrow 1, \\
\mathrm{x}_{1} \\
2 \\
\mathrm{P}_{2}=0 \rightarrow 2 \& 1 \rightarrow 2 \\
\mathrm{x}_{2}
\end{gathered}
$$

Example.

Kernel in the first step: $\mathbb{k}\left\{1 \rightarrow 0,2 \rightarrow 0, \mathrm{x}_{0}\right\}$
$\mathrm{Z}_{\rightleftarrows}^{c=0}\left(\mathrm{~A}_{2}\right)=0$
Kernel in the second step: $\mathbb{k}\left\{2 \rightarrow 1, \mathrm{x}_{1}, 1 \rightarrow 2, \mathrm{x}_{2}\right\}$ and $\mathbb{k}\{0 \rightarrow 1-0 \rightarrow 2\}$.

Kernel in the third step: $\mathbb{k}\left\{0 \rightarrow 2, \mathrm{x}_{2}, 0 \rightarrow 1, \mathrm{x}_{1}\right\}$ and $\mathbb{k}\{1 \rightarrow 2-1 \rightarrow 0\}$ and $\mathbb{k}\{2 \rightarrow 0+2 \rightarrow 1\}$.

Example.

Kernel in the first step: $\mathbb{k}\left\{1 \rightarrow 0,2 \rightarrow 0, \mathrm{x}_{0}\right\}$
$\mathrm{Z}_{\rightleftarrows}^{c=0}\left(\mathrm{~A}_{2}\right)=0$
Kernel in the second step: $\mathbb{k}\left\{2 \rightarrow 1, \mathrm{x}_{1}, 1 \rightarrow 2, \mathrm{x}_{2}\right\}$ and $\mathbb{k}\{0 \rightarrow 1-0 \rightarrow 2\}$.

Kernel in the third step: $\mathbb{k}\left\{0 \rightarrow 2, \mathrm{x}_{2}, 0 \rightarrow 1, \mathrm{x}_{1}\right\}$ and $\mathbb{k}\{1 \rightarrow 2-1 \rightarrow 0\}$ and $\mathbb{k}\{2 \rightarrow 0+2 \rightarrow 1\}$.

Example.

Example.

$\boldsymbol{C}=\left(\begin{array}{ccc}1+q^{2} & q & q \\ q & 1+q^{2} & q \\ q & q & 1+q^{2}\end{array}\right)$
gives the cofactor matrix $\boldsymbol{C}^{*}=\left(\begin{array}{ccc}1+q^{2}+q^{4} & -q+q^{2}-q^{3} & -q+q^{2}-q^{3} \\ -q+q^{2}-q^{3} & 1+q^{2}+q^{4} & q \\ -q+q^{2}-q^{3} & -q+q^{2}-q^{3} & 1+q^{2}+q^{4}\end{array}\right)$
and the determinant det $=1+2 q^{3}+q^{6}$.
Then $1+\mathrm{q}^{2}+\mathrm{q}^{4}+2\left(-\mathrm{q}+\mathrm{q}^{2}-\mathrm{q}^{3}\right) /\left(1+2 \mathrm{q}^{3}+\mathrm{q}^{6}\right)$ 'taylored' gives

$$
\frac{1-2 q+3 q^{2}-4 q^{3}+5 q^{4}-6 q^{5} \pm \ldots}{D}
$$

The numerical criterion for koszulness:

$$
\operatorname{det}^{-1} \boldsymbol{C}^{*} \text { has q-linear column sums. }
$$

This is almost an if and only if: \boldsymbol{C} encodes how projectives are filtered by simples. So, det ${ }^{-1} \boldsymbol{C}^{*}$ encodes how simples are resolved by projectives.

Example.

$$
\tilde{\mathrm{A}}_{2}=\left.0\right|_{2} ^{1} \rightsquigarrow \boldsymbol{A}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Example.

$$
\tilde{\mathrm{A}}_{2}=\left.0\right|_{2} ^{1} \rightsquigarrow \boldsymbol{A}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Example.

$$
\mathrm{A}_{3}=1-2-3 \rightsquigarrow \boldsymbol{A}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

??	$3-2-1$	$U_{1}(\boldsymbol{A})=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right)$
??		$U_{2}(\boldsymbol{A})=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
??	$1-2-\underline{3}$	$U_{3}(\boldsymbol{A})=\left(\begin{array}{llll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
e=3	$e=2 \quad e=1 \quad e=0$	

Example.

$$
\mathrm{A}_{3}=1-2-3 \rightsquigarrow \boldsymbol{A}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

$$
\text { ?? } \quad 3-2-1 \quad U_{1}(\boldsymbol{A})=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

The inverses of the graded Cartan determinants.

$$
\begin{array}{cl}
\mathrm{A}_{n}:\left(1-\mathrm{q}^{2}\right) \sum_{s=0}^{\infty} \mathrm{q}^{(2 n+2) s}, & \text { gap }=2 n-1, \\
\mathrm{D}_{n}, n \text { even }:\left(1-\mathrm{q}^{2} \pm \cdots+\mathrm{q}^{2 n-4}\right) \sum_{s=0}^{\infty}(-1)^{s}(s+1) \mathrm{q}^{(2 n-2) s}, & \text { gap }=1, \\
\mathrm{D}_{n}, n \text { odd }:\left(1-\mathrm{q}^{2} \pm \cdots-\mathrm{q}^{2 n-4}\right) \sum_{s=0}^{\infty} \mathrm{q}^{(4 n-4) s}, & \text { gap }=2 n-1, \\
\mathrm{E}_{6}:\left(1-\mathrm{q}^{2}+\mathrm{q}^{4}-\mathrm{q}^{8}+\mathrm{q}^{10}-\mathrm{q}^{12}\right) \sum_{s=0}^{\infty} \mathrm{q}^{24 s}, & \text { gap }=11, \\
\mathrm{E}_{7}:\left(1-\mathrm{q}^{2}+\mathrm{q}^{4}\right) \sum_{s=0}^{\infty}(-1)^{s} \mathrm{q}^{18 s}, & \text { gap }=13, \\
\mathrm{E}_{8}:\left(1-\mathrm{q}^{2}+\mathrm{q}^{4}+\mathrm{q}^{10}-\mathrm{q}^{12}+\mathrm{q}^{14}\right) \sum_{s=0}^{\infty}(-1)^{s} \mathrm{q}^{30 s}, & \text { gap }=15 .
\end{array}
$$

Observing now that the cofactor matrix has entries which are polynomials of degree $\leq 2 n-2$, one is done. Type $D_{2 n}$ needs an extra argument along the same lines.

Explicitly, for type A_{3} we get

$$
\begin{gathered}
\left(1-q^{2}\right)\left(1+q^{8}+q^{16}+q^{24}+\ldots\right)=1-q^{2}+q^{8}-q^{10}+q^{16}-q^{18}+q^{24}-q^{26}+\ldots \\
\boldsymbol{A}^{*}=\left(\begin{array}{ccc}
1+q^{2}+q^{4} & -q-q^{3} & q \\
-q-q^{3} & 1+q^{2}+q^{4} & -q-q^{3} \\
q & -q-q^{3} & 1+q^{2}+q^{4}
\end{array}\right)
\end{gathered}
$$

Numerical resolutions are

$$
\begin{gathered}
1-q+q^{2}-0 q^{3}+q^{4}-q^{5}+q^{6}-0 q^{7} \pm \ldots \\
1-2 q+q^{2}-0 q^{3}+q^{4}-2 q^{5}+q^{6}-0 q^{7} \pm \ldots \\
1-q+q^{2}-0 q^{3}+q^{4}-q^{5}+q^{6}-0 q^{7} \pm \ldots
\end{gathered}
$$

The case $\Gamma=A_{1} \& C=\emptyset$.

living on the type gA_{1} graph

The case $\Gamma=A_{3} \& C=\emptyset$, omitting loops.

living on the type gA_{3} graph

Example. The first few SL(3) Chebyshev polynomials:

$$
\begin{aligned}
& e=0 \\
& U_{1,0}(X, Y)=X, \quad U_{0,1}(X, Y)=Y, \\
& \begin{array}{c:c}
e=1 & U_{2,0}(\mathrm{X}, \mathrm{Y})=\mathrm{X}^{2}-\mathrm{Y}, U_{1,1}(\mathrm{X}, \mathrm{Y})=\mathrm{XY}-1, U_{0,2}(\mathrm{X}, \mathrm{Y})=\mathrm{Y}^{2}-\mathrm{X}, \\
e=2 & U_{3,0}(\mathrm{X}, \mathrm{Y})=\mathrm{X}^{3}-2 \mathrm{XY}+1, \quad U_{2,1}(\mathrm{X}, \mathrm{Y})=\mathrm{X}^{2} \mathrm{Y}-\mathrm{Y}^{2}-\mathrm{X}, \\
& U_{1,2}(\mathrm{X}, \mathrm{Y})=\mathrm{XY}^{2}-\mathrm{X}^{2}-\mathrm{Y}, \quad U_{0,3}(\mathrm{X}, \mathrm{Y})=\mathrm{Y}^{3}-2 \mathrm{XY}+1, \\
e=3 & U_{4,0}(\mathrm{X}, \mathrm{Y})=\mathrm{X}^{4}-3 \mathrm{X}^{2} \mathrm{Y}+\mathrm{Y}^{2}+2 \mathrm{X}, U_{3,1}(\mathrm{X}, \mathrm{Y})=\mathrm{X}^{3} \mathrm{Y}-2 \mathrm{XY} \mathrm{Y}^{2}-\mathrm{X}^{2}+2 \mathrm{Y}, \\
& U_{2,2}(\mathrm{X}, \mathrm{Y})=\mathrm{X}^{2} \mathrm{Y}^{2}-\mathrm{X}^{3}-\mathrm{Y}^{3},
\end{array} \\
& U_{1,3}(X, Y)=X Y^{3}-2 X^{2} Y-Y^{2}+2 X, \quad U_{0,4}(X, Y)=Y^{4}-3 X Y^{2}+X^{2}+2 Y, \\
& U_{5,0}(X, Y)=X^{5}-4 X^{3} Y+3 X Y^{2}+3 X^{2}-2 Y, \quad U_{4,1}(X, Y)=X^{4} Y-3 X^{2} Y^{2}-X^{3}+Y^{3}+4 X Y-1 \text {, } \\
& e=4 \quad U_{3,2}(X, Y)=X^{3} Y^{2}-X^{4}-2 X Y^{3}+X^{2} Y+2 Y^{2}-X, \quad U_{2,3}(X, Y)=X^{2} Y^{3}-Y^{4}-2 X^{3} Y+X Y^{2}+2 X^{2}-Y \text {, } \\
& U_{1,4}(X, Y)=X Y^{4}-3 X^{2} Y^{2}-Y^{3}+X^{3}+4 X Y-1, \quad U_{0,5}(X, Y)=Y^{5}-4 X Y^{3}+3 X^{2} Y+3 Y^{2}-2 X .
\end{aligned}
$$

One usually considers them for one level $m+n=e+1$ together.

$$
\begin{gathered}
U_{m, n}(\mathrm{X}, \mathrm{Y})=U_{n, m}(\mathrm{Y}, \mathrm{X}), \quad \mathrm{X} U_{m, n}(\mathrm{X}, \mathrm{Y})=U_{m+1, n}(\mathrm{X}, \mathrm{Y})+U_{m-1, n+1}(\mathrm{X}, \mathrm{Y})+ \\
U_{m, n-1}(\mathrm{X}, \mathrm{Y}), \mathrm{Y} U_{m, n}(\mathrm{X}, \mathrm{Y})=U_{m, n+1}(\mathrm{X}, \mathrm{Y})+U_{m+1, n-1}(\mathrm{X}, \mathrm{Y})+U_{m-1, n}(\mathrm{X}, \mathrm{Y}),
\end{gathered}
$$

Koornwinder \sim 1973. For fixed level $m+n=e+1$, the common roots of the Chebyshev polynomials are all in the discoid.

Figure: The roots of the $\mathrm{SL}(3)$ Chebyshev polynomials.
$U_{m, n}(\mathrm{X}, \mathrm{Y})=U_{n, m}(\mathrm{Y}, \mathrm{X}), \quad \mathrm{X} U_{m, n}(\mathrm{X}, \mathrm{Y})=U_{m+1, n}(\mathrm{X}, \mathrm{Y})+U_{m-1, n+1}(\mathrm{X}, \mathrm{Y})+$
$U_{m, n}$ How does this generalize the interval]-2,2[for the Chebyshev roots? $\left.\mathrm{X}, \mathrm{Y}\right)$,

Koornwinder ~ 1973. For fixed level $m+n=e+1$, the common roots of the Chebyshev polynomials are all in the discoid.

Figure: The roots of the $\mathrm{SL}(3)$ Chebyshev polynomials.

$$
U_{m, n}(\mathrm{X}, \mathrm{Y})=U_{n, m}(\mathrm{Y}, \mathrm{X}), \quad \mathrm{X} U_{m, n}(\mathrm{X}, \mathrm{Y})=U_{m+1, n}(\mathrm{X}, \mathrm{Y})+U_{m-1, n+1}(\mathrm{X}, \mathrm{Y})+
$$ $U_{m, n}$ How does this generalize the interval] - 2, 2[for the Chebyshev roots? X, Y),

 Cheb

etc.

[^0]: Not important for today: This definition only works for more than three vertices.

