Handlebodies, Artin-Tits and HOMFLYPT

Or: All I know about Artin-Tits groups; and a filler for the remaining 59 minutes

Joint with David Rose
March 2019

(1) Links and braids in handlebodies

- Braid diagrams
- Links in handlebodies
(2) Some "low-genus-coincidences"
- The ball
- The torus and the double torus
(3) Arbitrary genus
- What we should do
- What we can do

Let $\operatorname{Br}(g, n)$ be the group defined as follows.

Generators. Braid and twist generators

Relations. Redemeste braid reations, type C relations and special relations, e.g.

Involves three players and inverses!

$b_{1} t_{2} b_{1} t_{2}=t_{2} b_{1} t_{2} b_{1}$

$\left(t_{1} t_{2} t_{1}^{-1}\right) t_{3}=t_{3}\left(t_{1} t_{2} t_{1}^{-1}\right)$

Let $\operatorname{Br}(g, n)$ be the group defined as follows.

$b_{1} t_{2} b_{1} t_{2}=t_{2} b_{1} t_{2} b_{1}$

$\left(b_{1} t_{2} b_{1}^{-1}\right) t_{3}=t_{3}\left(b_{1} t_{2} b_{1}^{-1}\right)$

Let $\operatorname{Br}(g, n)$ be the group defined as follows.

Let $\operatorname{Br}(g, n)$ be the group defined as follows.

Generators. Braid and twist generators

The group $\mathscr{B} \mathrm{r}(g, n)$ of braid in a g-times punctures disk $\mathscr{D}_{g}^{2} \times[0,1]$:

Two types of braidings, the usual ones and "winding around cores", e.g.

The group $\mathscr{B r}(g, n)$ of braid in a g-times punctures disk $\mathscr{D}_{g}^{2} \times[0,1]$:

The group $\mathscr{B r}(g, n)$ of braid in a g-times punctures disk $\mathscr{D}_{g}^{2} \times[0,1]$:

Two tunes of braidines the usual ones and "winding around cores" eo Note.

For the proof it is crucial that \mathscr{D}_{g}^{2} and the boundary points of the braids \bullet are only defined up to isotopy, e.g.

\Rightarrow one can always "conjugate cores to the left".
This is useful to define $\mathscr{B} \mathrm{r}(g, \infty)$.

The Alexander closure on $\mathscr{B r}(g, \infty)$ is given by merging core strands at infinity.

This is different from the classeal Alexander closure.

The Alexander closure on $\mathscr{B} r(g, \infty)$ is given by merging core strands at infinity.

This is different from the Alexander closure.

The Alexander closure on $\mathscr{B r}(g, \infty)$ is given by merging core strands at infinity.

The Markov moves on $\mathscr{B} \mathrm{r}(g, \infty)$ are conjugation and stabilization.

Conjugation.

$$
a \sim s a s^{-1}
$$

for $\mathfrak{b} \in \mathscr{B r}(g, n), s \in\left\langle\mathfrak{b}_{1}, \ldots, b_{n-1}\right\rangle$

Stabilization.

They are weaker than the \qquad Markov moves.

The Marknv moves on Rr (a n) aro coniuoation and stabilization

Theorem (Häring-Oldenburg-Lambropoulou ~2002).

Two links in \mathscr{H}_{g} are equivalent if and only if
Conjuga they are equal in $\mathscr{B} \mathrm{r}(g, \infty)$ up to conjugation and stabilization.

Stabilization.

They are weaker than the Markov moves.

The Marknv moves on Rr (a ~ O aro conimoation and stabilization
Theorem (Häring-Oldenburg-Lambropoulou ~2002).
Two links in \mathscr{H}_{g} are equivalent if and only if Conjuga they are equal in $\mathscr{B} \mathrm{r}(g, \infty)$ up to conjugation and stabilization.

The Markov moves on $\mathscr{B} \mathrm{r}(g, \infty)$ are conjugation and stabilization.

Conjugation.

Stabilization.

 links in \mathscr{H}_{g}.

They are weaker than the Markov moves.

The Markov moves on $\mathscr{B} \mathrm{r}(g, \infty)$ are conjugation and stabilization.

Conjugation.

They are weaker than the Markov moves.

Let Γ be a Coxeter graph.

Artin ~ 1925, Tits $\mathbf{\sim 1 9 6 1 +}$. The Artin-Tits group and its Coxeter group quotient are given by generators-relations:

Artin-Tits groups
$>$ genearize classical braid groups, Coxeter groups polyhedron groups.

A different idea for today:
What can Artin-Tits groups tell you about flavor two?

Let Γ be a Coxeter graph.

	Jones ~1987, Geck-Lambropoulou ~1997, Gomi ~2006				
quotient are	In finite type:	Markov trace	on the	Hecke algebras	

$$
\begin{gathered}
\mathrm{AT}(\Gamma)=\langle b_{i} \mid \underbrace{\cdots b_{i} b_{j} b_{i}}_{m_{i j} \text { factors }}=\underbrace{\cdots b_{j} b_{i} b_{j}}_{m_{i j} \text { factors }}\rangle \\
\mathbb{W}(\Gamma)=\langle\sigma_{i} \mid \sigma_{i}^{2}=1, \underbrace{\cdots \sigma_{i} \sigma_{j} \sigma_{i}}_{m_{i j} \text { factors }}=\underbrace{\cdots \sigma_{j} \sigma_{i} \sigma_{j}}_{m_{i j} \text { factors }}\rangle
\end{gathered}
$$

Artin-Tits groups ©generaize classical braid groups, Coxeter groups +generlize

 polyhedron groups.```
Let }\Gamma\mathrm{ be a Coxeter graph.
```



$$
\mathrm{AT}(\Gamma)=\langle b_{i} \mid \underbrace{\cdots b_{i} b_{j} b_{i}}=\underbrace{\cdots b_{j} b_{i} b_{j}}\rangle
$$

Khovanov ~2005, Rouquier ~2012, Webster-Williamson ~2009; categorification.
In finite type: Hochschild homology on complexes of the Hecke category


Artin-Tits groups classical braid groups, Coxeter groups ceneralize polyhedron groups.

```
Let }\Gamma\mathrm{ be a Coxeter graph.
```



$$
\mathrm{AT}(\Gamma)=\langle a_{i} \mid \underbrace{\cdots b_{i} b_{j} b_{i}}=\underbrace{\cdots b_{j} b_{i} b_{j}}\rangle
$$

Khovanov ~2005, Rouquier ~2012, Webster-Williamson ~2009; categorification.
In finite type: Hochschild homology on complexes of the Hecke category $m_{m_{i j} \text { factors }}^{m_{i j} \text { factors }}$
Corollary.
HOMFLYPT polynomial/homology for links in ????
$\mathbf{q}=$ Hecke parameter ; $\mathbf{t}=$ =homological parameter ; $\mathbf{a}=$ trace parameter.
$\cos (\pi / 3)$ on a line:

$$
\text { type } \mathrm{A}_{n-1}: 1-2-\ldots-\mathrm{n}-2-\mathrm{n}-1
$$

The classical case. Consider the map

braid rel.:


Artin $\sim$ 1925. This gives an isomorphism of groups $\operatorname{AT}\left(\mathrm{A}_{n-1}\right) \stackrel{\cong}{\leftrightarrows} \mathscr{B r}(0, n)$.
$\cos (\pi / 4)$ on a line:

$$
\text { type } C_{n}: 0 \xlongequal{4} 1-2-\ldots-\mathrm{n}-1-\mathrm{n}
$$

The semi-classical case. Consider the map

braid rel.:


Brieskorn $\boldsymbol{\sim}$ 1973. This gives an isomorphism of groups $\operatorname{AT}\left(\mathrm{C}_{n}\right) \xrightarrow{\cong} \mathscr{B} \mathrm{r}(1, n)$.
$\cos (\pi / 4)$ twice on a line:

$$
\text { type } \tilde{\mathrm{C}}_{n}: 0^{1} \xlongequal[=]{=} 1-2-\ldots-\mathrm{n}-1-\mathrm{n} \xlongequal{4} 0^{2}
$$

Affine adds genus. Consider the map

Allcock $\sim$ 1999. This gives an isomorphism of groups $\operatorname{AT}\left(\tilde{\mathrm{C}}_{n}\right) \xrightarrow{\cong} \mathscr{B r}(2, n)$.


Allcock $\sim$ 1999. This gives an isomorphism of groups $\operatorname{AT}\left(\tilde{\mathrm{C}}_{n}\right) \stackrel{\cong}{\leftrightarrows} \mathscr{B r}(2, n)$.

This case is strange - it only arises under conjugation:
$\cos (\pi / 4)$ twice

Affine adds g


By a miracle, one can avoid the special relation


Currently, not much seems to be known, but I think the same story works. Allcock $\sim 1999$. This gives an isomorphism of groups $\operatorname{AT}\left(\tilde{\mathrm{C}}_{n}\right) \stackrel{\cong}{\leftrightarrows} \mathscr{B r}(2, n)$.

This case is strange - it only arises under conjugation:
$\cos (\pi / 4)$ twice

Affine adds g


By a miracle, one can avoid the special relation


This relation
involves three players and inverses.

Bad!


Currently, not much seems to be known, but I think the same story works.
Allcock However, this is where it seems to end, e.g. genus $g=3$ wants to be $n$ ).


But the special relation makes it a mere quotient.
So: In the remaining time I tell you what works.
$\cos (\pi / 4)$ twice on a line:

## Currently known (to the best of my knowledge).


$\cos (\pi / 4)$ twice on a line:
Affine adds genus

The handlebody Hecke algebra $\mathrm{H}^{\mathbf{q}}(g, n)$ is the quotient of $\mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right] \operatorname{Br}(g, n)$ by:

Example $(g=0) . \mathrm{H}^{\mathbf{q}}(0, n)$ is the classical type A Hecke algebra.

- Markov trace exists and gives a HOMFLYPT polynomial for $\ell \in \mathscr{H}_{0}$.
- Kazhdan-Lusztig bases exist, categorified by Soergel bimodules.
- Markov 2-trace exists and gives a HOMFLYPT homology for $\ell \in \mathscr{H}_{0}$.

Example $(g=1) . \mathrm{H}^{\mathbf{q}}(1, n)$ is the extended affine type A Hecke algebra.

- Markov trace exists and gives a HOMFLYPT polynomial for $\ell \in \mathscr{H}_{1}$.
- Kazhdan-Lusztig bases exist, categorified by Soergel bimodules.
- Markov 2-trace exists and gives a HOMFLYPT homology for $\ell \in \mathscr{H}_{1}$.

The handlebody Hecke algebra $\mathrm{H}^{\mathbf{q}}(g, n)$ is the quotient of $\mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right] \operatorname{Br}(g, n)$ by:
General genus?
Open. (Work in progress; we are having some progress now and then.)
Example $(g=0) . H^{\mathrm{q}}(0, n)$ is the classical type A Hecke algebra.

- Markov trace exists and gives a HOMFLYPT polynomial for $\ell \in \mathscr{H}_{0}$.
- Kazhdan-Lusztig bases exist, categorified by Soergel bimodules.
- Markov 2-trace exists and gives a HOMFLYPT homology for $\ell \in \mathscr{H}_{0}$.

Example $(g=1) . \mathrm{H}^{\mathrm{q}}(1, n)$ is the extended affine type A Hecke algebra.

- Markov trace exists and gives a HOMFLYPT polynomial for $\ell \in \mathscr{H}_{1}$.
- Kazhdan-Lusztig bases exist, categorified by Soergel bimodules.
- Markov 2-trace exists and gives a HOMFLYPT homology for $\ell \in \mathscr{H}_{1}$.

The handlebody Hecke algebra $\mathrm{H}^{\mathbf{q}}(g, n)$ is the quotient of $\mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right] \operatorname{Br}(g, n)$ by:


Open. (Work in progress; we are having some progress now and then.)
Example $(g=0)$. Hq(n $n$ ) is the classical thne A Herke aloehra However, computer calculations (SAGE) suggest the existence of Markov traces $\quad$ r $\ell \in \mathscr{H}_{0}$.

- Markov trace
- Kazhdan-Lusz and bases with positive structure constants. ules.
- Markov 2-trace exists and gives a HOMFLYPT homology for $\ell \in \mathscr{H}_{0}$.

Example $(g=1) . \mathrm{H}^{\mathrm{q}}(1, n)$ is the extended affine type A Hecke algebra.

- Markov trace exists and gives a HOMFLYPT polynomial for $\ell \in \mathscr{H}_{1}$.
- Kazhdan-Lusztig bases exist, categorified by Soergel bimodules.
- Markov 2-trace exists and gives a HOMFLYPT homology for $\ell \in \mathscr{H}_{1}$.

The handlebody Hecke algebra $\mathrm{H}^{\mathbf{q}}(g, n)$ is the quotient of $\mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right] \operatorname{Br}(g, n)$ by:


Open. (Work in progress; we are having some progress now and then.)
Example $(g=0)$. Hq(n $n$ is the classical tyne A Herke alochra However, computer calculations (SAGE) suggest

- Markov trace $\left.\begin{gathered}\text { However, computer calculations (SAGE) suggest } \\ \text { the existence of Markov traces }\end{gathered} \right\rvert\, r \ell \in \mathscr{H}_{0}$.
- Kazhdan-Lusz and bases with positive structure constants. ules.
- Markov 2-trace exis Let me instead show you what works. pgy for $\ell \in \mathscr{H}_{0}$.

Example $(g=1) . H^{\mathrm{q}}($

- Or not; time is up
- Markov trace exists and gives a HOMFLYPT polynomial for $\ell \in \mathscr{H}_{1}$.
- Kazhdan-Lusztig bases exist, categorified by Soergel bimodules.
- Markov 2-trace exists and gives a HOMFLYPT homology for $\ell \in \mathscr{H}_{1}$.

Singular Soergel bimodules $\mathscr{S}_{\mathrm{S}}^{\mathrm{q}}(\mathrm{W})$ for $\mathrm{W}=\mathrm{W}\left(\mathrm{A}_{N-1}\right)$.

Tuples $\mathrm{I}=\left(k_{1}, \ldots, k_{N}\right) \in \mathbb{N}_{\geq 1}^{N}$ with $k_{1}+\cdots+k_{N}=N \leadsto$ parabolic subgroups $\mathrm{W}_{\mathrm{I}}=\mathrm{W}\left(\mathrm{A}_{k_{1}-1}\right) \times \cdots \times \mathrm{W}\left(\mathrm{A}_{k_{N}-1}\right) \subset \mathrm{W}$.
W acts on $\mathrm{R}=\mathrm{R}_{N}=\mathbb{k}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right]$ via permutation $\rightsquigarrow$ rings of invariants $\mathrm{R}^{\mathrm{I}}$.

Bimodules. Identities, restriction ("merge") and induction ("split"), e.g.


Define $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ as the full 2-subcategory of the rings\&bimodules 2-category.

Tuples $\mathrm{I}=\left(k_{1}, \ldots, k_{N}\right) \in \mathbb{N}_{\geq 1}^{N}$ with $k_{1}+\cdots+k_{N}=N \leadsto$ parabolic subgroups $\mathrm{W}_{\mathrm{I}}=\mathrm{W}\left(\mathrm{A}_{k_{1}-1}\right) \times \cdots \times \mathrm{W}\left(\mathrm{A}_{k_{N}-1}\right) \subset \mathrm{W}$.
W acts on $\mathrm{R}=\mathrm{R}_{N}=$ Everything is $\mathbb{Z}$-graded, called $\mathbf{q}$-grading. . ${ }^{\text {s }}$ of invariants $\mathrm{R}^{\mathrm{I}}$. I just omit this for simplicity.

Bimodules. Identities, restriction ("merge") and induction ("split"), e.g.


Define $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ as the full 2-subcategory of the rings\&bimodules 2-category.

Singular Soergel bimodules $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ for $\mathrm{W}=\mathrm{W}\left(\mathrm{A}_{N-1}\right)$.
This gives a way to define bimodules associated to any web built out of merge and split.

Bimodules. Identities, restriction ("merge") and induction ("split"), e.g.


Define $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ as the full 2-subcategory of the rings\&bimodules 2-category.


Bimodules. Identi There are several bimodule isomorphisms, e.g. plit"), e.g.


Singular Soergel bimodules $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ for $\mathrm{W}=\mathrm{W}\left(\mathrm{A}_{N-1}\right)$.

## Soergel $\sim 1992$, Williamson $\sim 2010$.

Tuples $I=\mathscr{S}_{\mathbf{s}}^{\mathbf{q}}(\Gamma)$ categorifies the Hecke algebra (or rather, the algebroid). subgroups

$$
\mathrm{W}_{\mathrm{I}}=\mathrm{W}\left(\mathrm{~A}_{k_{1}-1}\right) \times \cdots \times \mathrm{W}\left(\mathrm{~A}_{k_{N}-1}\right) \subset \mathrm{W}
$$

W acts on $\mathrm{R}=\mathrm{R}_{N}=\mathbb{k}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right]$ via permutation $\rightsquigarrow$ rings of invariants $\mathrm{R}^{\mathrm{I}}$.

Bimodules. Identities, restriction ("merge") and induction ("split"), e.g.


Define $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ as the full 2-subcategory of the rings\&bimodules 2-category.

Singular Soergel bimodules $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ for $\mathrm{W}=\mathrm{W}\left(\mathrm{A}_{N-1}\right)$.

## Soergel $\sim 1992$, Williamson $\sim 2010$.

Tuples $I=\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\Gamma)$ categorifies the Hecke algebra (or rather, the algebroid). subgroups
Rouquier $\sim 2004$, Mackaay-Stošić-Vaz $\sim 2008$, Webster-Williamson $\sim 2009$, etc.

There are certain complex ("t-graded") of singular Soergel bimodules, e.g.

$$
\llbracket \beta_{i} \rrbracket_{M}=\sum_{k}^{l}=\left.\left.\underbrace{k}_{0} \underbrace{k-l}_{l} \stackrel{d_{0}^{+}}{\longrightarrow} \mathbf{q} \mathbf{|}\right|_{k} ^{\mid+1} \underbrace{d_{1}^{+}}_{l} \ldots{ }^{d_{l-1}^{+}} \mathbf{q}^{l} \mathbf{t}^{l}\right|_{l} ^{\left.\right|_{l} ^{k}}
$$

providing a categorical action of the Artin-Tits group of type A.


Define $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ as the full 2-subcategory of the rings\&bimodules 2-category.

## Soergel ~1992, Williamson ~2010.

Tuples $I=\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\Gamma)$ categorifies the Hecke algebra (or rather, the algebroid).
subgroups
Rouquier $\sim 2004$, Mackaay-Stošić-Vaz $\sim 2008$, Webster-Williamson $\sim 2009$, etc.
There are certain complex ("t-graded") of singular Soergel bimodules, e.g.

$$
\llbracket \beta_{i} \rrbracket_{M}=\underbrace{l}_{k}=\left.\left.\underbrace{k}_{k} \underbrace{k-l}_{l} \xrightarrow{d_{0}^{+}} \mathbf{q} \mathbf{t}\right|_{k} ^{\left.\right|_{k} ^{k-l}+1} \xrightarrow{d_{1}^{+}} \ldots \xrightarrow{d_{l-1}^{+}} \mathbf{q}^{l} \mathbf{t}^{l}\right|_{k} ^{\mid}
$$

providing a categorical action of the Artin-Tits group of type A.


Partial Hochschild homology (à la Hogancamp $\sim$ 2015). R- $f \mathscr{B} \mathrm{im}_{N}^{\text {atq }}$ category of ( bicomplers of) q-graded, free $\mathrm{R}_{N}$-bimodules. Adjoint pair ( $\mathcal{I}, \mathcal{T}$ ):
$\mathcal{I}: \mathrm{R}-f \mathscr{B} \mathrm{im}_{N-1}^{\text {atq }} \rightarrow \mathrm{R}-f \mathscr{B} \mathrm{im}_{N}^{\text {atq }}$

$$
\mathrm{B} \mapsto \mathrm{~B} \otimes_{\mathrm{R}_{N-1}^{e}}\left(\mathrm{R}_{N}^{\mathrm{e}} /\left(\mathrm{x}_{N} \otimes 1-1 \otimes \mathrm{x}_{N}\right)\right)
$$



## extending scalars

$$
\mathcal{T}: \mathrm{R}-f \mathscr{B} \mathrm{im}_{N}^{\mathbf{a t q}} \rightarrow \mathrm{R}-f \mathscr{B} \mathrm{im}_{N-1}^{\mathbf{a t q}}
$$



$$
\mathrm{B} \mapsto\left(\mathrm{~B} \xrightarrow{\mathrm{x}_{N} \cdot \mathrm{~b}-\mathrm{b}, \mathrm{x}_{N}} \mathrm{aq}^{2} \mathrm{~B}\right)
$$



Skein relations. One gets e.g.

\&

\&


Partial Hochschild homology (à la Hogancamp ~2015). R- $f \mathscr{B} \mathrm{im}_{N}^{\text {atq }}$ category of ( of) q-graded, free $\mathrm{R}_{N}$-bimodules. Adjoint pair ( $\mathcal{I}, \mathcal{T}$ ):

## Theorem (after normalization).

We get a triply-graded invariant $\mathrm{HHH}_{M}^{\star}(\mathfrak{b}) \in \mathbb{k}$ - $\operatorname{Vect}^{\text {atq }}$ for $\mathfrak{b} \in \mathscr{B} \mathrm{r}(g, n)$, which respects Markov stabilization, i.e.


Skein relations. One gets e.g.

\&


Partial Hochschild homology (à la Hogancamp ~2015). R- $f \mathscr{B} \mathrm{im}_{N}^{\text {atq }}$ category of ( of) q-graded, free $\mathrm{R}_{N}$-bimodules. Adjoint pair ( $\mathcal{I}, \mathcal{T}$ ):

## Theorem (after normalization).

We get a triply-graded invariant $\mathrm{HHH}_{M}^{\star}(\mathfrak{b}) \in \mathbb{k}$ - $\operatorname{Vect}^{\text {atq }}$ for $\mathfrak{b} \in \mathscr{B} \mathrm{r}(g, n)$, which respects Markov stabilization, i.e.


Skein relations One antcor
However, we are not quite there: one gets a too strong Markov conjugation, i.e.


Partial Hochschild homology (à la Hogancamp ~2015). R- $f \mathscr{B} \mathrm{im}_{N}^{\text {atc }}$ category of ( of) q-graded, free $\mathrm{R}_{N}$-bimodules. Adjoint pair ( $\mathcal{I}, \mathcal{T}$ ):

## Idea: Flank them!

should be thought as

and things get stuck, egg.
topologically stuck:


Partial Hochschild homology (à la Hogancamp ~2015). R- $f \mathscr{B} \mathrm{im}_{N}^{\text {atq }}$ category of ( of) q-graded, free $\mathrm{R}_{N}$-bimodules. Adjoint pair $(\mathcal{I}, \mathcal{T})$ :

$$
\mathcal{I}: \mathrm{R}-f \mathscr{B} \mathrm{im}_{N-1}^{\mathrm{atq}} \rightarrow \mathrm{R}-f \mathscr{B} \mathrm{im}_{N}^{\text {atq }}
$$



## Theorem (after normalization and flanking).

We get a triply-graded invariant $\operatorname{HHH}_{M}^{*}(\mathfrak{a}) \in \mathbb{k}$ - $\mathcal{V}$ ect ${ }^{\text {atq }}$ for $a \in \mathscr{B} \mathrm{r}(g, n)$, which respects Markov conjugation and stabilization, i.e.



Brunn $\sim$ 1897, Alexander $\sim 1923$. For any link $f$ in the 3 -ball $S^{3}$ there is 2 braid in $\mathscr{B r}(\infty)$ whose closure is isotopic to $A$

There are various proofs of this result, are all based on the same idear 'Eliminate one by one the acs of the diagram that hawe the wrong sense".

Here is an example which works for general 3-manifolds, the L-move 'Mark the local maxima and minima of the link diagram with respect to some height
function and cut open wrong aibacs.". e.e.


wrong closare

correct closure
This is different from the Aloxander closure.

Markov $\sim 1936$, Weinberg $\sim 1939$, Lambropoulou $\sim 1990$. Two links in the 3 -ball $D^{1}$ are equivalent if and only if they are equal in $Q \mathbf{i r r}(x)$ up to conjugation and stabilization

Trick: Again we the $L$-more and show that two links are cequivalent if and only if they are equal in $8 \mathrm{BT}(\mathrm{x})$ up to L -moves

Here is an example which works in the for geneal 3 -manifouls, the $L$-mowe again.


The handiebody Hecke algebra $\mathrm{H}^{9}(g, n)$ is the quotient of $Z\left[q, q^{-1} \mid \mathrm{Br}(g, n)\right.$ by:

Example $(0-0)$. $\mathrm{H}^{9}(0, n)$ is the classical type A Hecke algebra

- Marhow trace exits and gives a HOMFLYPT polynomial for $f \in X_{0}$.

Marbo 2 trace mistr and viws HOMFIYPT Homelogy for $2<$
Example $(g-1)$. $\mathrm{H}^{\mathrm{a}}(1, n)$ is the extended aftine type A Heche algebra.

- Markow trace exasts and gives a HOMFLYPT polynomial for $\ell \in X_{1}$
- Kazhdan-Luastig bases exiat categcerified by Soergel bimadules
- Marbov 2 trace exatil and gives a HOMFLYPT homology for $f \in \mathscr{X}_{1}$


## There is still much to do..



Brunn $\sim$ 1897, Alexander $\sim 1923$. For any link $f$ in the 3 -ball $S^{3}$ there is 2 braid in $\mathscr{B r}(\infty)$ whose closure is isotopic to $A$

There are various proofs of this result, are all based on the same idear 'Eliminate one by one the acs of the diagram that hawe the wrong sense".

Here is an example which works for general 3-manifolds, the L-move 'Mark the local maxima and minima of the link diagram with respect to some height
function and cut open wrong ribarcs." e.g.


## Thecrem (Hàring-Oldenburg-Lamberopociluu $\sim 2002$, Vershininin $\sim$ 1998)- <br> The map <br> IIIX <br> 

The Markov meves on $\operatorname{Gr}(\rho, \infty)$ are conjugation and stabilization.

## Conjugation.

$$
\begin{aligned}
& 6 \sim 36 s^{-1}
\end{aligned}
$$

## Stabilization.


They are waiker than the Marhov moves.


The Alexander closure on $\operatorname{Br}(\underline{g} . \infty)$ is given by merging core strands at infinity.


Markov ~1936, Weinberg ~1939, Lambropoulou 1990. Two links in the
 and stabilization

Trick: Again, use the L-more and show that teno links are cequivalent if and only if they are equal in $8 \mathrm{BT}(\mathrm{x})$ up to $L$-mowes

Here is an example which works in the for geneal 1 -manifouls, the $L$-move again


The handiebody Hecke algebra $\mathrm{H}^{9}(\rho, n)$ is the quotient of $Z\left[\boldsymbol{q}, \mathrm{q}^{-1}\right] \mathrm{B}(\underline{g}, n)$ by

Example $(0-0)$. $\mathrm{H}^{9}(0, n)$ is the classical type A Hecke algebra
Marhov trace exats and gives a HOMFLYPT polynomial for $f \in X$
Marbou a toen mistr and gives HOMFIYPT homelogy for
Example $(g-1)$. $\mathrm{H}^{9}(1, n)$ is the entended affine type A Hecke algebra

- Markov trace exats and gives a HOMFLYPT polynomial for $\ell \in X$.
-Kazhdan-Lusztig bases exiatt categcerified by Soergel bimodules.
- Markow 2 trace exats and gives a HOMFLYPT homology for $f \in \mathscr{X _ { 1 }}$

Thanks for your attention!

The Reidemeister braid relations:

$$
\mathcal{H}=\uparrow \uparrow=\uparrow
$$

These hold for usual strands only since core strands do not cross each other, e.g.


Brunn $\sim 1897$, Alexander $\sim 1923$. For any link $\ell$ in the 3 -ball $\mathscr{D}^{3}$ there is a braid in $\mathscr{B r}(\infty)$ whose closure is isotopic to $\ell$.

There are various proofs of this result, are all based on the same idea: "Eliminate one by one the arcs of the diagram that have the wrong sense.".

Here is an example which works for general 3-manifolds, the L-move: "Mark the local maxima and minima of the link diagram with respect to some height function and cut open wrong subarcs.", e.g.


Brunn $\sim 1897$, Alexander $\sim 1923$. For any link $\ell$ in the 3 -ball $\mathscr{D}^{3}$ there is a braid in $\mathscr{B r}(\infty)$ whose closure is isotopic to $\ell$.

There are various proofs of this result, are all based on the same idea: "Eliminate one by one the arcs of the diagram that have the wrong sense.".

Here is an example which works for general 3-manifolds, the L-move: "Mark the local maxima and minima of the link diagram with respect to some height function and cut open wrong subarcs.", e.g.


Brunn $\sim 1897$, Alexander $\sim 1923$. For any link $\ell$ in the 3 -ball $\mathscr{D}^{3}$ there is a braid in $\mathscr{B r}(\infty)$ whose closure is isotopic to $\ell$.

There are various proofs of this result, are all based on the same idea: "Eliminate one by one the arcs of the diagram that have the wrong sense.".

Here is an example which works for general 3-manifolds, the L-move: "Mark the local maxima and minima of the link diagram with respect to some height function and cut open wrong subarcs.", e.g.


Markov ~1936. Two links in the 3 -ball $\mathscr{D}^{3}$ are equivalent if and only if they are equal in $\mathscr{B r}(\infty)$ up to conjugation and stabilization.

## Conjugation.



Stabilization.


Markov ~1936. Two links in the 3 -ball $\mathscr{D}^{3}$ are equivalent if and only if they are equal in $\mathscr{B r}(\infty)$ up to conjugation and stabilization.

## Conjugation.

 3 -ball $\mathscr{D}^{3}$ are equivalent if and only if they are equal in $\mathscr{B} \mathrm{r}(\infty)$ up to conjugation and stabilization.

Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to L-moves.

Here is an example which works in the for general 3-manifolds, the L-move again:


Markov ~1936, Weinberg $\boldsymbol{\sim}$ 1939, Lambropoulou~1990. Two links in the 3 -ball $\mathscr{D}^{3}$ are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to conjugation and stabilization.

Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to L-moves.

Here is an example which works in the for general 3-manifolds, the L-move again:


Markov ~1936, Weinberg $\boldsymbol{\sim}$ 1939, Lambropoulou~1990. Two links in the 3 -ball $\mathscr{D}^{3}$ are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to conjugation and stabilization.

Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to L-moves.

Here is an example which works in the for general 3-manifolds, the L-move again:


Markov ~1936, Weinberg $\boldsymbol{\sim}$ 1939, Lambropoulou~1990. Two links in the 3 -ball $\mathscr{D}^{3}$ are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to conjugation and stabilization.

Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to L-moves.

Here is an example which works in the for general 3-manifolds, the L-move again:



Figure: The first ever "published" braid diagram. (Page 283 from Gauß' handwritten notes, volume seven, $\leq 1830$ ).

Tits $\boldsymbol{\sim} \mathbf{1 9 6 1}+$. Gauß' braid group is the type $A$ case of more general groups.


Figure: The first ever "published" braid diagram. (Page 283 from Gauß' handwritten notes, volume seven, $\leq 1830$ ).

Tits $\boldsymbol{\sim} \mathbf{1 9 6 1}+$. Gauß' braid group is the type $A$ case of more general groups.


Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

## Examples.

Type $\mathrm{A}_{3} \longleftrightarrow \leadsto$ tetrahedron $\leadsto \leadsto$ symmetric group $S_{4}$.
Type $\mathrm{B}_{3} \leadsto$ cube/octahedron $\rightsquigarrow \rightsquigarrow$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \longleftrightarrow \leadsto$ dodecahedron/icosahedron $\longleftrightarrow \rightsquigarrow$ exceptional Coxeter group.
For $\mathrm{I}_{8}$ we have a 4-gon:

$$
\text { Idea (Coxeter } \sim 1934++ \text { ). }
$$



Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

## Examples.

Type $\mathrm{A}_{3} \nVdash \leadsto$ tetrghadun. The symmetries are given by exchanging flags.

Type $\mathrm{H}_{3} \longleftrightarrow \leadsto$ dodecahedron/icosahedron $\longleftrightarrow \rightsquigarrow$ exceptional Coxeter group.
For $\mathrm{I}_{8}$ we have a 4-gon:
Fix a flag $F$.

$$
\text { Idea (Coxeter } \sim 1934++ \text { ). }
$$



Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

## Examples.

Type $\mathrm{A}_{3} \longleftrightarrow \leadsto$ tetrahedron $\leadsto \leadsto$ symmetric group $S_{4}$.
Type $\mathrm{B}_{3} \longleftrightarrow \nrightarrow$ cube/octahedron $\rightsquigarrow \rightsquigarrow$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \longleftrightarrow \leadsto$ dodecahedron/icosahedron $\longleftrightarrow \rightsquigarrow$ exceptional Coxeter group.
For $\mathrm{I}_{8}$ we have a 4-gon:
Fix a flag $F$.
Idea (Coxeter ~1934++).
Fix a hyperplane $H_{0}$ permuting the adjacent 0 -cells of $F$.



Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

## Examples.

Type $\mathrm{A}_{3} \leadsto$ tetrahedron $\leadsto \rightsquigarrow$ symmetric group $S_{4}$.
Type $\mathrm{B}_{3} \longleftrightarrow \nrightarrow$ cube/octahedron $\rightsquigarrow \rightsquigarrow$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \longleftrightarrow \leadsto$ dodecahedron/icosahedron $\longleftrightarrow \rightsquigarrow$ exceptional Coxeter group.
For $\mathrm{I}_{8}$ we have a 4-gon:
Fix a flag $F$.
Idea (Coxeter ~1934++).

Fix a hyperplane $H_{0}$ permuting the adjacent 0 -cells of $F$.

Fix a hyperplane $H_{1}$ permuting the adjacent 1 -cells of $F$, etc.



Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

## Examples.

Type $\mathrm{A}_{3} \leadsto$ tetrahedron $\leadsto \rightsquigarrow$ symmetric group $S_{4}$.
Type $\mathrm{B}_{3} \longleftrightarrow \nrightarrow$ cube/octahedron $\rightsquigarrow \rightsquigarrow$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \leadsto>$ dodecahedron/icosahedron $\leadsto \rightsquigarrow$ exceptional Coxeter group.
For $\mathrm{I}_{8}$ we have a 4-gon:

$$
\text { Fix a flag } F \text {. }
$$

Fix a hyperplane $H_{0}$ permuting the adjacent 0 -cells of $F$.

Fix a hyperplane $H_{1}$ permuting the adjacent 1-cells of $F$, etc.
Write a vertex $i$ for each $H_{i}$.
Idea (Coxeter ~1934++).



Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

## Examples.

 This gives a generator-relation presentation.Type $A_{3} \leadsto \leadsto$ tetrahedron $\underset{\sim}{ } \rightarrow$ symmetric group $S_{4}$.
Type $B_{3} \leadsto \leadsto$ And the braid relation measures the angle between hyperplanes.
Type $\mathrm{H}_{3} \longleftrightarrow \leadsto$ dodecahedron/icosahedron $\longleftrightarrow \rightsquigarrow$ exceptional Coxeter group. For $\mathrm{I}_{8}$ we have a 4-gon:

## Fix a flag $F$.

Fix a hyperplane $H_{0}$ permuting the adjacent 0 -cells of $F$.

Fix a hyperplane $H_{1}$ permuting the adjacent 1-cells of $F$, etc.
Write a vertex $i$ for each $H_{i}$.
Idea (Coxeter ~1934++).


Connect $i, j$ by an $n$-edge for $H_{i}, H_{j}$ having angle $\cos (\pi / n)$.

Three gradings:

```
q m}->\mathrm{ internal & t & m homological & a & M Hochschild
```

Example. To compute Hochschild cohomology take the Koszul resolution

$$
\otimes_{i=1}^{N}\left(\mathrm{R}^{\mathrm{e}}=\mathrm{R} \otimes \mathrm{R}^{\mathrm{op}} \xrightarrow{\cdot\left(\mathrm{x}_{i} \otimes 1-1 \otimes \mathrm{x}_{i}\right)} \mathbf{a q}^{2} \mathrm{R}^{\mathrm{e}}\right)
$$

Tensor it with B , gives a complex with differentials $\mathrm{x}_{i} \otimes 1-1 \otimes \mathrm{x}_{i}$, of which we think as identifying the variables. This gives a chain complex having non-trivial chain groups in a-degree $0, \ldots, n$. Here the $i^{\text {th }}$ chain group consists of $\binom{n}{i}$ copies of B , with differentials given by the various ways of identifying $i$ variables. The $a^{\text {th }}$ cohomology $=a^{\text {th }}$ Hochschild cohomology.

Example. If B is already a t-graded complex, then one can take homology of it and gets "triple H".

