2-representation theory of Soergel bimodules

Or: Mind your groups

Daniel Tubbenhauer

"left modules" "right modules" "bimodules" "subalgebras"
Joint with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang

June 2019

2-representation theory in a nutshell

categorical module

Examples of 2-categories.

Monoidal categories, module categories $\mathscr{R} \mathrm{ep}(G)$ of finite groups G, module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules \mathscr{S}, categorified quantum groups, categorified Heisenberg algebras.

Examples of 2-categories.

Monoidal categories, module categories $\mathscr{R} \operatorname{ep}(G)$ of finite groups G, module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules \mathscr{S}, categorified quantum groups, categorified Heisenberg algebras.
2-module
category functor
nat. trafo

Examples of 2-representation of these.

Categorical modules, functorial actions, (co)algebra objects, conformal embeddings of affine Lie algebras, the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.

Examples of 2-categories.

Monoidal categories, module categories $\mathscr{R} \operatorname{ep}(G)$ of finite groups G, module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules \mathscr{S}, categorified quantum groups, categorified Heisenberg algebras.

Examples of 2-representation of these.

Categorical modules, functorial actions, (co)algebra objects, conformal embeddings of affine Lie algebras, the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.

Applications of 2-representations.

Representation theory (classical and modular), link homology, combinatorics
TQFTs, quantum physics, geometry.

2-representation theory in a nutshell

categorical module

1) Give an overview of the main ideas of 2-representation theory.
2) Discuss the group-like example $\mathscr{R} \operatorname{ep}(G)$.
3) Discuss the semigroup-like example \mathscr{S}.

Representation theory is group theory in vector spaces

Let C be a finite-dimensional algebra.
Frobenius $\sim 1895+$, Burnside $\sim 1900+$, Noether $\sim 1928+$.
Representation theory is the usetirl study of algebra actions

$$
\mathcal{M}: \mathrm{C} \longrightarrow \mathcal{E} \operatorname{nd}(\mathrm{v})
$$

with V being some vector space. (Called modules or representations.)

The "atoms" of such an action are called simple.
Maschke ~1899, Noether, Schreier $\boldsymbol{\sim}$ 1928. All modules are built out of simples ("Jordan-Hölder" filtration).

> Basic question: Find the periodic table of simples.

2-representation theory is group theory in categories

Let \mathscr{C} be a finitary 2-category.
Etingof-Ostrik, Chuang-Rouquier, many others $\boldsymbol{\sim} \mathbf{2 0 0 0 + +}$. 2-representation theory is the useful? study of actions of 2-categories:

$$
\mathscr{M}: \mathscr{C} \longrightarrow \mathscr{E} \operatorname{nd}(\mathcal{V})
$$

with \mathcal{V} being some finitary category. (Called 2-modules or 2-representations.)

The "atoms" of such an action are called 2-simple ("simple transitive").
Mazorchuk-Miemietz ~2014. All 2-modules are built out of 2-simples ("weak 2-Jordan-Hölder filtration").

Basic question: Find the periodic table of 2-simples.

2-representation theory is group theory in categories

Let \mathscr{C} be a finitary 2-category.
Etingof-Ostrik, Chuang-Rouquier, many others $\sim 2000+$. 2 -representation theory is the useful? study of actions of 2-categories:

Empirical fact.

Most of the fun happens already for monoidal categories (one-object 2-categories);
I will stick to this case for the rest of the talk,
but what I am going to explain works for 2-categories.
Mazorchuk-Miemietz ~2014. All 2-modules are built out of 2-simples ("weak 2-Jordan-Hölder filtration").

Basic question: Find the periodic table of 2-simples.

A category \mathcal{V} is called finitary if its equivalent to $\mathrm{C}-\mathrm{p} \mathcal{M o d}$. In particular:

- It has finitely many indecomposable objects M_{j} (up to \cong).
- It has finite-dimensional hom-spaces.
- Its Grothendieck group $[\mathcal{V}]=[\mathcal{V}]_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C}$ is finite-dimensional.

A finitary, monoidal category \mathscr{C} can thus be seen as a categorification of a finite-dimensional algebra.
Its indecomposable objects C_{i} give a distinguished basis of $[\mathscr{C}]$.

A finitary 2 -representation of \mathscr{C} :

- A choice of a finitary category \mathcal{V}.
- (Nice) endofunctors $\mathscr{M}\left(\mathrm{C}_{i}\right)$ acting on \mathcal{V}.
- $\left[\mathscr{M}\left(\mathrm{C}_{i}\right)\right]$ give \mathbb{N}-matrices acting on $[\mathcal{V}]$.

A category \mathcal{V} is called finitary if its equivalent to C-pMod. In particular:

- It has finitely many indornmnncahlo nhiortc M. (यp to \cong).
- It has finite-dimension
- Its Grothendieck group A C module is called simple timensional.
if it has no C-stable ideals.
A finitary, monoidal category \mathscr{C} can thus be seen as a categorification of a finite-dimensional algebra The atoms (cat). Its indecomposable objec

A finitary 2-representatio if it has no \mathscr{C}-stable \otimes-ideals.

- A choice of a finitary category D.
- (Nice) endofunctors $\mathscr{M}\left(\mathrm{C}_{i}\right)$ acting on \mathcal{V}.
$-\left[\mathscr{M}\left(\mathrm{C}_{i}\right)\right]$ give \mathbb{N}-matrices acting on $[\mathcal{V}]$.

A category \mathcal{V} is called finitary if its equivalent to C-pMod. In particular:

- It has finitely many indecomposable objects M_{j} (up to \cong).
- It has finite-dimensional hom-spaces.

- Its	Dictionary.				
	cat	finitary	finitary+monoidal	fiat	functors
A finit	decat	vector space	algebra	self-injective	matrices

Its indecomposablo ohiects C. oive a dictinowished hasis of [CC]
Instead of studying C and its action via matrices,
A finitary 2-repres study C-pMod and its action via functors.

- A choice of a finitary category \mathcal{V}.
- (Nice) endofunctors $\mathscr{M}\left(\mathrm{C}_{i}\right)$ acting on \mathcal{V}.
$-\left[\mathscr{M}\left(\mathrm{C}_{i}\right)\right]$ give \mathbb{N}-matrices acting on $[\mathcal{V}]$.

A category \mathcal{V} is called finitary if its equivalent to C-pMod. In particular:

- It has finitely many indecomposable objects M_{j} (up to \cong).
- It has finite-dimensional_hom-snares
- Its Grothendie
Example (decat).
$\mathrm{C}=\mathbb{C}=1$ acts on any vector space via λ... nal. fication of a
A finitary, monoida finite-dimensional atgetra.

It has only one simple $\mathrm{V}=\mathbb{C}$.
Its indecomposable objects C_{i} give a distinguished basis of [\mathscr{C}].
A finitary $2-\quad$ Example (cat).

- A choic $\mathscr{C}=\mathscr{V}$ ec $=\mathscr{R}$ ep(1) acts on any finitary category via $\mathbb{C} \otimes \mathbb{C}_{-}$
- (Nice)
- $\left[\mathscr{M}\left(\mathrm{C}_{i}\right)\right.$ It has only one 2 -sim 10

An algebra $\mathrm{A}=(\mathrm{A}, \mu, \iota)$ in $\mathscr{C}:$

Its (right) modules (M, δ):

Example. Algebras in \mathscr{V} ec are algebras; modules are modules.

Example. Algebras in $\mathscr{R} \operatorname{ep}(G)$ and their modules

An algebra $\mathrm{A}=(\mathrm{A}, \mu, \iota)$ in $\mathscr{C}:$

Its (right) modules (M, δ):

$$
\delta={\underset{M}{M}}_{\substack{M}}^{\square}, \quad \square=\square
$$

Example. Algebras in \mathscr{V} ec are algebras; modules are modules.

Example. Algebras in $\mathscr{R} \operatorname{ep}(G)$ and their modules

An algebra $\mathrm{A}=(\mathrm{A}, \mu, \iota)$ in \mathscr{C} :

Example. Algebras in \mathscr{V} ec are algebras; modules are modules.

Example. Algebras in $\mathscr{R} \operatorname{ep}(G)$ and their modules

An algebra $\mathrm{A}=(\mathrm{A}, \mu, \iota)$ in \mathscr{C} :

| Example. |
| :---: | :---: |
| Simple algebra objects in \mathscr{V} ec are simple algebras. |
| Up to Morita-Takeuchi equivalence these are just \mathbb{C}; and $\mathcal{M o d} \mathscr{V}_{\text {ec }}(\mathbb{C}) \cong \mathcal{V}$ ec. |
| The above theorem is a vast generalization of this. |

Example ($\mathscr{R} \mathrm{ep}(G))$.

- Let $\mathscr{C}=\mathscr{R} \operatorname{ep}(G)$ (G a finite group).
- \mathscr{C} is monoidal and finitary (and fiat). For any $\mathrm{M}, \mathrm{N} \in \mathscr{C}$, we have $\mathrm{M} \otimes \mathrm{N} \in \mathscr{C}$:

$$
g(m \otimes n)=g m \otimes g n
$$

for all $g \in G, m \in \mathrm{M}, n \in \mathrm{~N}$. There is a trivial representation $\mathbb{1}$.

- The regular 2-representation $\mathscr{M}: \mathscr{C} \rightarrow \mathscr{E}$ nd (\mathscr{C}) :

- The decategorification is a \mathbb{N}-representation, the regular representation.
- The associated algebra object is $\mathrm{A}_{\mathscr{M}}=\mathbb{1} \in \mathscr{C}$.

Example ($\mathscr{R} \mathrm{ep}(G))$.

- Let $K \subset G$ be a subgroup.
- $\mathcal{R e p}(K)$ is a 2 -representation of $\mathscr{R} \operatorname{ep}(G)$, with action

$$
\mathcal{R e s}_{K}^{G} \otimes_{-}: \mathscr{R} \operatorname{ep}(G) \rightarrow \mathscr{E} \operatorname{nd}(\mathcal{R e p}(K))
$$

which is indeed a 2 -action because $\operatorname{Res}_{K}^{G}$ is a \otimes-functor.

- The decategorifications are \mathbb{N}-representations.
- The associated algebra object is $\mathrm{A}_{\mathscr{M}}=\operatorname{Ind}{ }_{K}^{G}\left(\mathbb{1}_{K}\right) \in \mathscr{C}$.

Example $(\mathscr{R} \operatorname{ep}(G))$.

- Let $\psi \in H^{2}\left(K, \mathbb{C}^{*}\right)$. Let $\mathcal{V}(K, \psi)$ be the category of projective K-modules with Schur multiplier ψ, i.e. vector spaces V with $\rho: K \rightarrow \mathcal{E}$ nd(V$)$ such that

$$
\rho(g) \rho(h)=\psi(g, h) \rho(g h), \text { for all } g, h \in K
$$

- Note that $\mathcal{V}(K, 1)=\mathcal{R e p}(K)$ and

$$
\otimes: \mathcal{V}(K, \phi) \boxtimes \mathcal{V}(K, \psi) \rightarrow \mathcal{V}(K, \phi \psi) .
$$

- $\mathcal{V}(K, \psi)$ is also a 2-representation of $\mathscr{C}=\mathscr{R} \operatorname{ep}(G)$:

$$
\mathscr{R} \mathrm{ep}(G) \boxtimes \mathcal{V}(K, \psi) \xrightarrow{\mathcal{R e s}_{k}^{\epsilon} \boxtimes \mathrm{Id}} \mathcal{R e p}(K) \boxtimes \mathcal{V}(K, \psi) \xrightarrow{\otimes} \mathcal{V}(K, \psi) .
$$

- The decategorifications are \mathbb{N}-representations.
- The associated algebra object is $\mathrm{A}_{\mathscr{M}}=\operatorname{In} d_{K}^{G}\left(\mathbb{1}_{K}\right) \in \mathscr{C}$, but with ψ-twisted multiplication.

Example ($\mathscr{R e p}(G))$.

Theorem (folklore?).

Completeness. All 2-simples of $\mathscr{R} \operatorname{ep}(G)$ are of the form $\mathcal{V}(K, \psi)$.
Non-redundancy. We have $\mathcal{V}(K, \psi) \cong \mathcal{V}\left(K^{\prime}, \psi^{\prime}\right)$
the subgroups are conjugate or $\psi^{\prime}=\psi^{g}$, where $\psi^{g}(k, l)=\psi\left(g k g^{-1}, g / g^{-1}\right)$.

$$
\otimes: \mathcal{V}(K, \phi) \boxtimes \mathcal{V}(K, \psi) \rightarrow \mathcal{V}(K, \phi \psi)
$$

- $\mathcal{V}(K, \psi)$ is also a 2-representation of $\mathscr{C}=\mathscr{R} \mathrm{ep}(G)$:

$$
\mathscr{R} \operatorname{ep}(G) \boxtimes \mathcal{V}(K, \psi) \xrightarrow{\mathcal{R} e s_{K}^{G} \boxtimes \mathrm{Id}} \mathcal{R e p}(K) \boxtimes \mathcal{V}(K, \psi) \xrightarrow{\otimes} \mathcal{V}(K, \psi) .
$$

- The decategorifications are \mathbb{N}-representations.
- The associated algebra object is $\mathrm{A}_{\mathscr{M}}=\mathcal{I n d}_{K}^{G}\left(\mathbb{1}_{K}\right) \in \mathscr{C}$, but with ψ-twisted multiplication.

Example ($\mathscr{R e p}(G))$.

Theorem (folklore?).

Completeness. All 2-simples of $\mathscr{R} \operatorname{ep}(G)$ are of the form $\mathcal{V}(K, \psi)$.
Non-redundancy. We have $\mathcal{V}(K, \psi) \cong \mathcal{V}\left(K^{\prime}, \psi^{\prime}\right)$
the subgroups are conjugate or $\psi^{\prime}=\psi^{g}$, where $\psi^{g}(k, l)=\psi\left(g k g^{-1}, g / g^{-1}\right)$.
Note that $\mathscr{R} \operatorname{ep}(G)$ has only finitely many 2-simples.
$-\mathcal{V}(K, \psi)$ is This is no coincidence.

$$
\mathscr{R} \operatorname{ep}(G) \boxtimes \mathcal{V}(K, \psi) \xrightarrow{\mathcal{R} e s_{K}^{G} \boxtimes \mathrm{Id}} \mathcal{R e p}(K) \boxtimes \mathcal{V}(K, \psi) \xrightarrow{\otimes} \mathcal{V}(K, \psi) .
$$

- The decategorifications are \mathbb{N}-representations. - Example
- The associated algebra object is $\mathrm{A}_{\mathscr{M}}=\mathcal{I n d}_{K}^{G}\left(\mathbb{1}_{K}\right) \in \mathscr{C}$, but with ψ-twisted multiplication.

Example ($\mathscr{R} \operatorname{ep}(G))$.

Theorem (folklore?).

Completeness. All 2-simples of $\mathscr{R} \operatorname{ep}(G)$ are of the form $\mathcal{V}(K, \psi)$.
Non-redundancy. We have $\mathcal{V}(K, \psi) \cong \mathcal{V}\left(K^{\prime}, \psi^{\prime}\right)$
the subgroups are conjugate or $\psi^{\prime}=\psi^{g}$, where $\psi^{g}(k, l)=\psi\left(g k g^{-1}, g / g^{-1}\right)$.
$-\mathcal{V}(K, \psi)$ is $\begin{gathered}\text { Note that } \mathscr{R} \operatorname{ep}(G) \text { has only finitely many 2-simples. } \\ \text { This is no coincidence. }\end{gathered}$
Theorem (Etingof-Nikshych-Ostrik ~2004); the group-like case.
If \mathscr{C} is fusion (fiat and semisimple), then it has only finitely many 2 -simples.

This is false if one drops the semisimplicity.

```
D Example
```

Clifford, Munn, Ponizovskiĩ, Green $\sim 1942+$. Semigonps
Write $\mathrm{X} \leq_{L} \mathrm{Y}$ if Y is a direct summand of ZX for $\mathrm{Z} \in \mathscr{C}$, i.e. $\mathrm{Y} \subset_{\oplus} \mathrm{ZX} . \mathrm{X} \sim_{L} \mathrm{Y}$ if $\mathrm{X} \leq_{L} \mathrm{Y}$ and $\mathrm{Y} \leq_{L} \mathrm{X} . \sim_{L}$ partitions \mathscr{C} into left cells \mathcal{L}. Similarly for right \mathcal{R}, two-sided cells \mathcal{J} or 2 -modules.

An apex is a maximal two-sided cell not annihilating a 2-module.
Fact (Chan-Mazorchuk ~2016). Any 2 -simple has a unique apex.
Mackaay-Mazorchuk-Miemietz-Zhang $\mathbf{\sim}$ 2018. For any fiat 2-category \mathscr{C} (semigroup-like) there exists a fiat 2-subcategory $\mathscr{A}_{\mathcal{H}}$ (almost group-like) such that

$$
\left\{\begin{array}{c}
\text { 2-simples of } \mathscr{C} \\
\text { with apex } \mathcal{J}
\end{array}\right\} \stackrel{\text { one-to-one }}{\longleftrightarrow}\left\{\begin{array}{c}
\text { 2-simples of } \mathscr{A} \mathcal{H} \\
\text { with apex } \mathcal{H} \subset \mathcal{J}
\end{array}\right\}
$$

Catch. In general $\mathscr{A}_{\mathcal{H}}$ is not fusion.

An apex is a maximal two-sided cell not annihilating a 2-module.
Fact (Chan-Mazorchuk ~2016). Any 2 -simple has a unique apex.
Mackaay-Mazorchuk-Miemietz-Zhang $\mathbf{\sim}$ 2018. For any fiat 2-category \mathscr{C} (semigroup-like) there exists a fiat 2-subcategory $\mathscr{A}_{\mathcal{H}}$ (almost group-like) such that

$$
\left\{\begin{array}{c}
\text { 2-simples of } \mathscr{C} \\
\text { with apex } \mathcal{J}
\end{array}\right\} \stackrel{\text { one-to-one }}{ }\left\{\begin{array}{c}
\text { 2-simples of } \mathscr{A} \mathcal{H} \\
\text { with apex } \mathcal{H} \subset \mathcal{J}
\end{array}\right\}
$$

Catch. In general $\mathscr{A}_{\mathcal{H}}$ is not fusion.

	Example (semigroup-like).
An apex is	
Fact (Cha	Let $\mathscr{R} \operatorname{ep}(G, \mathbb{K})$ for \mathbb{K} being of prime characteristic.
	The projectives form a two-sided cell. $\mathscr{A}_{\mathcal{H}}$ can be complicated.

Mackaay-Mazorchuk-Miemietz-Zhang ~2018. For any fiat 2-category \mathscr{C} (semigroup-like) there exists a fiat 2-subcategory $\mathscr{A}_{\mathcal{H}}$ (almost group-like) such that

$$
\left\{\begin{array}{c}
\text { 2-simples of } \mathscr{C} \\
\text { with apex } \mathcal{J}
\end{array}\right\} \stackrel{\text { one-to-one }}{\longleftrightarrow}\left\{\begin{array}{c}
\text { 2-simples of } \mathscr{A}_{\mathcal{H}} \\
\text { with apex } \mathcal{H} \subset \mathcal{J}
\end{array}\right\}
$$

Catch. In general $\mathscr{A}_{\mathcal{H}}$ is not fusion.

An apex is Fact (Cha	Example (semigroup-like). Let $\mathscr{R} \operatorname{ep}(G, \mathbb{K})$ for \mathbb{K} being of prime characteristic. The projectives form a two-sided cell. $\mathscr{A}_{\mathcal{H}}$ can be complicated.	
Mackaay (semigrou	Mazorchuk-Miemietz-Zhang ~2018. For anv fiat 2-cate Example (Kazhdan-Lusztig ~1979, Soergel ~1990). Soergel bimodules $\mathscr{S}\left(S_{n}\right)$ for the symmetric group have cells coming from the Robinson-Schensted correspondence. $\mathscr{A}_{\mathcal{H}}$ has one indecomposable object, but is not fusion.	ory \mathscr{C} such that

Catch. In general $\mathscr{A}_{\mathcal{H}}$ is not fusion.

An apex is Fact (Cha	Example (semigroup-like).
	Let $\mathscr{R} \operatorname{ep}(G, \mathbb{K})$ for \mathbb{K} being of prime characteristic.

$\mathscr{A}_{\mathcal{H}}$ has one indecomposable object, but is not fusion.

Catch In oeneral du is not fusion

Example (Taft algebra T_{2}).

T_{2}-Mod has two cells - the lowest cell containing the trivial representation; the biggest containing the projectives.

Let Γ be a Coxeter graph.

Artin ~ 1925, Tits $\mathbf{\sim 1 9 6 1 +}$. The Artin-Tits group and its Coxeter group quotient are given by generators-relations:

$$
\begin{aligned}
& A T=\langle b_{i} \mid \underbrace{\cdots b_{i} b_{j} b_{i}}_{m_{i j} \text { factors }}=\underbrace{\cdots b_{j} b_{i} b_{j}}_{m_{i j} \text { factors }}\rangle \\
& \mathbb{W}=\langle s_{i} \mid s^{2}=1, \underbrace{\cdots s_{i} s_{j} s_{i}}_{m_{i j} \text { factors }}=\underbrace{\cdots s_{j} s_{i} s_{j}}_{m_{i j} \text { factors }}\rangle
\end{aligned}
$$

- Genarire classical braid groups, or genarire polyhedron groups, respectively.

H is the quotient of $\mathbb{Z}\left[v, v^{-1}\right] A T$ by the quadratic relations, e.g.

$$
\uparrow \uparrow \uparrow=\left(v-v^{-1}\right) \uparrow \uparrow
$$

Fact (Kazhdan-Lusztig ~1979, Soergel-Elias-Williamson ~1990,2012). H has a distinguished basis, called the kL basis, which is a decategorification of indecomposable objects of \mathscr{S}.

Let Γ be a Coxeter graph.

Artin ~ 1925, Tits $\mathbf{\sim 1 9 6 1 +}$. The Artin-Tits group and its Coxeter group quotient are given by generators-relations:

- Genarire classical braid groups, or genarire polyhedron groups, respectively.

H is the quotient of $\mathbb{Z}\left[v, v^{-1}\right] A T$ by the quadratic relations, e.g.

$$
\uparrow \uparrow \uparrow=\left(v-v^{-1}\right) \uparrow \uparrow
$$

Fact (Kazhdan-Lusztig ~1979, Soergel-Elias-Williamson ~1990,2012). H has a distinguished basis, called the KL basis, which is a decategorification of indecomposable objects of \mathscr{S}.

Example (type B_{2}).

$W=\left\langle s, t \mid s^{2}=t^{2}=1, t s t s=s t s t\right\rangle$. Number of elements: 8 . Number of cells: 3 , named 0 (lowest) to 2 (biggest).

Cell order:

$$
0-1-2
$$

Size of the cells:

cell	0	1	2
size	1	6	1

Cell structure:

Example (type B_{2}).

$W=\langle s, t| s^{2}=t^{2}=1$, tsts $=$ Example (SAGE). named 0 (lowest) to 2 (biggest)

$$
1 \cdot 1=1
$$

Cell order:

$$
0-1-2
$$

Size of the cells:

cell	0	1	2
size	1	6	1

Cell structure:

Example (type B_{2}).

$W=\langle s, t| s^{2}=t^{2}=1$, tsts $=$ Example (SAGE). . named 0 (lowest) to 2 (biggest)

Cell order:

$$
1 \cdot 1=1 .
$$

Size of the cells \quad Example (SAGE).

$$
\begin{aligned}
c_{s} \cdot c_{s} & =(1+\text { bigger powers }) c_{s} \\
c_{s t s} \cdot c_{s} & =(1+\text { bigger powers }) c_{s t s}
\end{aligned}
$$

Cell structure: $c_{s t s} \cdot c_{s t s}=(1+$ bigger powers $) c_{s}+$ higher cell elements.

$$
c_{s t s} \cdot c_{t s t}=(\text { bigger powers }) c_{s t}+\text { higher cell elements. }
$$

Example (type B_{2}).

$W=\langle s, t| s^{2}=t^{2}=1$, tsts $=\left[\begin{array}{c}\text { Example (SAGE). } \\ \text { Exits: } \\ \text { named } 0 \text { (lowest) to } 2 \text { (biggest) } \\ 1 \cdot 1=1 .\end{array}\right]$
Cell order:
Size of the cells \quad Example (SAGE).

$$
c_{s} \cdot c_{s}=(1+\text { bigger powers }) c_{s} .
$$

$$
c_{s t s} \cdot c_{s}=(1+\text { bigger powers }) c_{s t s}
$$

Cell structure: $c_{s t s} \cdot c_{s t s}=(1+$ bigger powers $) c_{s}+$ higher cell elements.
$c_{s t s} \cdot c_{\text {tst }}=($ bigger powers $) c_{s t}+$ higher cell elements.

Example (type B_{2}).

$W=\langle s, t\| s^{2}=t^{2}=1 \mid$ named 0 (lowest) to 2	Fact (Lusztig ~1984++).
	For any Coxeter group W there is a well-defined function
Cell order:	$a: W \rightarrow \mathbb{N}$
Size of the cells:	which is constant on two-sided cells.
	- Big example

8. Number of cells: 3,

For any Coxeter group W there is a well-defined function

$$
a: W \rightarrow \mathbb{N}
$$

Big example
Cell structure:

Example (type B_{2}).

The asymptotic limit $\mathrm{A}_{0}(W)$ of $\mathrm{H}_{v}(W)$ is defined as follows.

As a free \mathbb{Z}-module:

$$
\mathrm{A}_{0}(W)=\bigoplus_{\mathcal{J}} \mathbb{Z}\left\{a_{w} \mid w \in \mathcal{J}\right\} . \text { vs. } \mathrm{H}_{v}(W)=\mathbb{Z}\left[v, v^{-1}\right]\left\{c_{w} \mid w \in W\right\}
$$

Multiplication.

$$
a_{x} a_{y}=\sum_{z \in \mathcal{J}} \gamma_{x, y}^{z} a_{z} . \text { vs. } \quad c_{x} c_{y}=\sum_{z \in \mathcal{J}} v^{a(z)} h_{x, y}^{z} c_{z}+\text { bigger friends. }
$$

where $\gamma_{x, y}^{z} \in \mathbb{N}$ is the leading coefficient of $h_{x, y}^{z} \in \mathbb{N}\left[v, v^{-1}\right]$.

Example (type B_{2}).

The multiplication tables (empty entries are 0 and [2] $=1+v^{2}$) in 1 :

	a_{s}	$a_{s t s}$	$a_{s t}$	a_{t}	$a_{t s t}$	$a_{t s}$
a_{s}	a_{s}	$a_{s t s}$	$a_{s t}$			
$a_{s t s}$	$a_{s t s}$	a_{s}	$a_{s t}$			
$a_{t s}$	$a_{t s}$	$a_{t s}$	$a_{t}+a_{t s t}$			
a_{t}				a_{t}	$a_{t s t}$	$a_{t s}$
$a_{t s t}$				$a_{t s t}$	a_{t}	$a_{t s}$
$a_{s t}$				$a_{s t}$	$a_{s t}$	$a_{s}+a_{s t s}$

$\mathrm{M} |$| | c_{s} | $c_{s t s}$ | $c_{s t}$ | c_{t} | $c_{t s t}$ | $c_{t s}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c_{s} | $[2] c_{s}$ | $[2] c_{s t s}$ | $[2] c_{s t}$ | $c_{s t}$ | $c_{s t}+c_{w_{0}}$ | $c_{s}+c_{s t s}$ |
| $c_{s t s}$ | $[2] c_{s t s}$ | $[2] c_{s}+[2]^{2} c_{w_{0}}$ | $[2] c_{s t}+[2] c_{w_{0}}$ | $c_{s}+c_{s t s}$ | $c_{s}+[2]^{2} c_{w_{0}}$ | $c_{s}+c_{s t s}+[2] c_{w_{0}}$ |
| $c_{t s}$ | $[2] c_{t s}$ | $[2] c_{t s}+[2] c_{w_{0}}$ | $[2] c_{t}+[2] c_{t s t}$ | $c_{t}+c_{t s t}$ | $c_{t}+c_{t s t}+[2] c_{w_{0}}$ | $2 c_{t s}+c_{w_{0}}$ |
| c_{t} | $c_{t s}$ | $c_{t s}+c_{w_{0}}$ | $c_{t}+c_{t s t}$ | $[2] c_{t}$ | $[2] c_{t s t}$ | $[2] c_{t s}$ |
| $c_{t s t}$ | $c_{t}+c_{t s t}$ | $c_{t}+[2]^{2} c_{w_{0}}$ | $c_{t}+c_{t s t}+[2] c_{w_{0}}$ | $[2] c_{t s t}$ | $[2] c_{t}+[2]^{2} c_{w_{0}}$ | $[2] c_{t s}+[2] c_{w_{0}}$ |
| $c_{s t}$ | $c_{s}+c_{s t s}$ | $c_{s}+c_{s t s}+[2] c_{w_{0}}$ | $2 c_{s t}+c_{w_{0}}$ | $[2] c_{s t}$ | $[2] c_{s t}+[2] c_{w_{0}}$ | $[2] c_{s}+[2] c_{s t s}$ |

(Note the "subalgebras".)
The asymptotic algebra is much simpler!

Multiplication.

$$
a_{x} a_{y}=\sum_{z \in \mathcal{J}} \gamma_{x, y}^{z} a_{z} . \text { vs. } \quad c_{x} c_{y}=\sum_{z \in \mathcal{J}} v^{a(z)} h_{x, y}^{z} c_{z}+\text { bigger friends. }
$$

where $\gamma_{x, y}^{z} \in \mathbb{N}$ is the leading coefficient of $h_{x, y}^{z} \in \mathbb{N}\left[v, v^{-1}\right]$.

Fact (Lusztig $\sim 1984+$).

The asyn	Fact (Lusztig $\sim 1984+$).
As a free	$\mathrm{A}_{0}(W)=\bigoplus_{\mathcal{J}} \mathrm{A}_{0}^{\mathcal{J}}(W)$ with the a_{w} basis and all its summands $\mathrm{A}_{0}^{\mathcal{J}}(W)=\mathbb{Z}\left\{a_{w} \mid w \in \mathcal{J}\right\}$ are multifusion algebras. (Group-like.)
	Multifusion algebras $=$ decategorifications of multifusion categories.

Surprising fact 1 (Lusztig $\sim 1984++$).

It seems one throws almost away everything, but:

There is an explicit embedding
Multiplication.

$$
\mathrm{H}_{v}(W) \hookrightarrow \mathrm{A}_{0}(W) \otimes_{\mathbb{Z}} \mathbb{Z}\left[v, v^{-1}\right]
$$

$a_{x} a_{y}=\{$ which is an isomorphism after scalar extension to $\mathbb{C}(v) . r$ friends. where $\gamma_{x, y}^{z} \in \mathbb{N}$ is the leading coefficient of $h_{x, y}^{z} \in \mathbb{N}\left[v, v^{-1}\right]$.

Fact (Lusztig $\sim 1984+$).

$\mathrm{A}_{0}(W)=\bigoplus_{\mathcal{J}} \mathrm{A}_{0}^{\mathcal{J}}(W)$ with the a_{w} basis and all its summands $\mathrm{A}_{0}^{\mathcal{J}}(W)=\mathbb{Z}\left\{a_{w} \mid w \in \mathcal{J}\right\}$ are multifusion algebras. (Group-like.)
As a free
Multifusion algebras $=$ decategorifications of multifusion categories.

Surprising fact 1 (Lusztig ~1984++).

It seems one throws almost away everything, but:

There is an explicit embedding

$$
\mathrm{H}_{v}(W) \hookrightarrow \mathrm{A}_{0}(W) \otimes_{\mathbb{Z}} \mathbb{Z}\left[v, v^{-1}\right]
$$

$a_{x} a_{y}=\{$ which is an isomorphism after scalar extension to $\mathbb{C}(v) . r$ friends. where $\gamma_{x,}^{z}, \quad$ Surprising fact $2 \mathbf{- \mathcal { H }}$-cell-theorem (Lusztig $\sim 1984++$).

There is an explicit one-to-one correspondence $\left\{\right.$ simples of $\mathrm{H}_{v}(W)$ with apex $\left.\mathcal{J}\right\} \xrightarrow{\text { one-to-one }}\left\{\right.$ simples of $\left.\mathrm{A}_{0}^{\mathcal{H}}(W)\right\}$.

Categorified picture - Part 1.

Theorem (Soergel-Elias-Williamson $\sim 1990,2012$).
There exists a monoidal category \mathscr{S} such that:

- (1) For every $w \in W$, there exists an indecomposable object C_{w}.
- (2) The C_{w}, for $w \in W$, form a complete set of pairwise non-isomorphic indecomposable objects up to shifts.
- (3) The identity object is C_{1}, where 1 is the unit in W.
- (4) \mathscr{C} categorifies H with $\left[\mathrm{C}_{w}\right]=c_{w}$.

Examples in type A_{1}; polynomial ring.

Categori Let $\mathrm{R}=\mathbb{C}[x]$ with $W=S_{2}$ action given by s. $x=-x ; \mathrm{R}^{s}=\mathbb{C}\left[x^{2}\right]$.
The indecomposable Soergel bimodules over R are

$$
\mathrm{C}_{1}=\mathbb{C}[x] \text { and } \mathrm{C}_{s}=\mathbb{C}[x] \otimes_{\mathbb{C}\left[x^{2}\right]} \mathbb{C}[x]
$$

Theoren $\quad \mathrm{C}_{1}=\mathbb{C}[x]$ and $\mathrm{C}_{s}=\mathbb{C}[x] \otimes_{\mathbb{C}\left[x^{2}\right]} \mathbb{C}[x]$.
There exists a monoldal category \mathscr{T} such that:

- (1) For every $w \in W$, there exists an indecomposable object C_{w}.
- (2) The C_{w}, for $w \in W$, form a complete set of pairwise non-isomorphic indecomposable objects up to shifts.
- (3) The identity object is C_{1}, where 1 is the unit in W.
- (4) \mathscr{C} categorifies H with $\left[\mathrm{C}_{w}\right]=c_{w}$.

Examples in type A_{1}; polynomial ring.

Categori Let $\mathrm{R}=\mathbb{C}[x]$ with $W=S_{2}$ action given by s. $x=-x ; \mathrm{R}^{s}=\mathbb{C}\left[x^{2}\right]$.
The indecomposable Soergel bimodules over R are

$$
\mathrm{C}_{1}=\mathbb{C}[x] \text { and } \mathrm{C}_{s}=\mathbb{C}[x] \otimes_{\mathbb{C}\left[x^{2}\right]} \mathbb{C}[x]
$$

Theoren $\quad \mathrm{C}_{1}=\mathbb{C}[x]$ and $\mathrm{C}_{s}=\mathbb{C}[x] \otimes_{\mathbb{C}\left[x^{2}\right]} \mathbb{C}[x]$.
There exists a monoldal category \mathscr{T} sucn that:

- (1) For eve Examples in type A_{1}; coinvariant algebra.

The coinvariant algebra is $\mathrm{R}_{W}=\mathbb{C}[x] / x^{2}$.

- (2) The C_{w} indecompos
- (3) The ide The indecomposable Soergel bimodules over R_{w} are $\mathrm{C}_{1}=\mathbb{C}[x] / x^{2}$ and $\mathrm{C}_{s}=\mathbb{C}[x] / x^{2} \otimes \mathbb{C}[x] / x^{2}$.

Examples in type A_{1}; polynomial ring.

Categori Let $\mathrm{R}=\mathbb{C}[x]$ with $W=S_{2}$ action given by $s . x=-x ; \mathrm{R}^{s}=\mathbb{C}\left[x^{2}\right]$.
The indecomposable Soergel bimodules over R are

$$
\mathrm{C}_{1}=\mathbb{C}[x] \text { and } \mathrm{C}_{s}=\mathbb{C}[x] \otimes_{\mathbb{C}\left[x^{2}\right]} \mathbb{C}[x]
$$

Theorem $\quad \mathrm{C}_{1}=\mathbb{C}[x]$ and $\mathrm{C}_{s}=\mathbb{C}[x] \otimes_{\mathbb{C}\left[x^{2}\right]} \mathbb{C}[x]$.
There exists a monoldal category \mathscr{T} such that:

- (1) For eve Examples in type A_{1}; coinvariant algebra.
- (2) The C_{w} indecompos
- (3) The ide The indecomposable Soergel bimodules over R_{w} are $\mathrm{C}_{1}=\mathbb{C}[x] / x^{2}$ and $\mathrm{C}_{s}=\mathbb{C}[x] / x^{2} \otimes \mathbb{C}[x] / x^{2}$.

Examples in type A_{1}; coinvariant algebra.

$$
\mathrm{C}_{s} \otimes_{\mathrm{R}_{W}} \mathrm{C}_{s}=\left(\mathbb{C}[x] / x^{2} \otimes \mathbb{C}[x] / x^{2}\right) \otimes_{\mathbb{C}[x] / x^{2}}\left(\mathbb{C}[x] / x^{2} \otimes \mathbb{C}[x] / x^{2}\right)
$$

Which gives $\mathrm{C}_{s} \mathrm{C}_{s} \cong \mathrm{C}_{s} \oplus \mathrm{C}_{s}\langle 2\rangle=\left(1+v^{2}\right) \mathrm{C}_{s}$.

Categorified picture - Part 2.

Theorem (Lusztig, Elias-Williamson ~2012).

Let \mathcal{H} be an \mathcal{H}-cell of W. There exists a fusion category $\mathscr{A}_{\mathcal{H}}$ such that:

- (1) For every $w \in \mathcal{H}$, there exists a simple object A_{w}.
- (2) The A_{w}, for $w \in \mathcal{H}$, form a complete set of pairwise non-isomorphic simple objects.
- (3) The identity object is A_{d}, where d is the Duflo involution.
- (4) $\mathscr{A}_{\mathcal{H}}$ categorifies $\mathrm{A}_{\mathcal{H}}$ with $\left[\mathrm{A}_{w}\right]=a_{w}$ and

$$
\mathrm{A}_{x} \mathrm{~A}_{y}=\bigoplus_{z \in \mathcal{J}} \gamma_{x, y}^{z} \mathrm{~A}_{z} . \text { vs. } \quad \mathrm{C}_{x} \mathrm{C}_{y}=\bigoplus_{z \in \mathcal{J}} v^{a(z)} h_{x, y}^{z} \mathrm{C}_{z}+\text { bigger friends. }
$$

Categorified picture - Part 2.

Theorem (Lusztig, Elias-Williamson ~2012).

Let \mathcal{H} be an \mathcal{H}-cell of W. There exists a fusion category $\mathscr{A}_{\mathcal{H}}$ such that:

- (1) For every $w \in \mathcal{H}$, there exists a simple object A_{w}.
- (2) The A_{w}, for $w \in \mathcal{H}$, form a complete set of pairwise non-isomorphic simple objects.
- (3) The identity object is A_{d}, where d is the Duflo involution.
- (4) $\mathscr{A}_{\mathcal{H}}$ categorifies $\mathrm{A}_{\mathcal{H}}$ with $\left[\mathrm{A}_{w}\right]=a_{w}$ and

$$
\mathrm{A}_{x} \mathrm{~A}_{y}=\bigoplus_{z \in \mathcal{J}} \gamma_{x, y}^{z} \mathrm{~A}_{z} . \quad \text { vs. } \quad \mathrm{C}_{x} \mathrm{C}_{y}=\bigoplus_{z \in \mathcal{J}} v^{2(z)} h_{x, y}^{z} \mathrm{C}_{z}+\text { bigger friends. }
$$

$$
\begin{gathered}
\text { Examples in type } A_{1} ; \text { coinvariant algebra. } \\
\mathrm{C}_{1}=\mathbb{C}[x] / x^{2} \text { and } \mathrm{C}_{s}=\mathbb{C}[x] / x^{2} \otimes \mathbb{C}[x] / x^{2} \text {. (Positively graded, but non-semisimple.) } \\
\mathrm{A}_{1}=\mathbb{C} \text { and } \mathrm{A}_{s}=\mathbb{C} \otimes \mathbb{C} \text {. (Degree zero part.) }
\end{gathered}
$$

Categorified picture - Part 2.

Theorem (June 2019 on arXiv).

For any finite Coxeter group W and any $\mathcal{H} \subset \mathcal{J}$ of W, there is an injection
$\Theta:\left(\left\{2\right.\right.$-simples of $\left.\left.\mathscr{A}_{\mathcal{H}}\right\} / \cong\right) \hookrightarrow(\{$ graded 2 -simples of \mathscr{S} with apex $\mathcal{J}\} / \cong)$

- We conjecture Θ to be a bijection.
- We have proved the conjecture for all \mathcal{H} which contain the longest element of a parabolic subgroup of W.
- If true, the conjecture implies that there are finitely many equivalence classes of 2-simples of \mathscr{S}.
- For almost all W, we would get a complete classification of the 2 -simples.

An algetra $A-(\lambda, \rho, i)$ in $\cdot 6$

This is completdy different from their classical representation theory:

∞

Example. Algebas in $\mathbb{R}^{\prime} \cdot \mathrm{p}(G)$ and their modules 0 .

Example. Algebras in $\gamma_{\text {ec are algebras, modules are modules. }}$

Clifford, Munn, Ponizowskī, Green $\sim 1942++$. Finite semigroups ar monoids. Example (the transformation semigroup T_{3}). Cells - left \mathcal{C} (columns), right R Ewows) too-sided \mathcal{J} (big rectangles) $H=\angle \cap R$ (small rectangles).

$J_{\text {bowe }}$	(123) $\mid 213),(123 \mid$ (221) (112), (221)			$\mathrm{H}_{3} \mathrm{~S}_{1}$
$J_{\text {xiadk }}$	(122), (221)	(133).(mi)	(231), 123)	$H \simeq S_{2}$
	(121) (212)	(131), (213)	(323) , 1221	
	[213), (112]	(II3).(121)	(223), (1721	
Suseme	(III) \mid (222) \mid (333)			$H^{\text {® }} S_{1}$

Cute facts

- Each \mathcal{H} contains precisely one idempotent e or none idempotent. Each e is
contained in some $\mathcal{H}(\mathrm{e})$. (Idempoctent separation.)
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not hill it. (Apex.)
\rightarrow

Example: Hecke algebras as non-semisimple fusion rings (Lusztig ~ 1984)

This gives a complete classification of smples for finite Weyl type Heche algetras.
cm
cmom

There is still much to do.

Example. Algebras in $\gamma_{\text {ec }}$ are algebras, modules are modules.
Example. Algebias in $\operatorname{Rip}(G)$ and their modules 0 .
neminery
Clifford, Munn, Ponizovskii, Green $\sim 1942++$. Finite semigroups or monoids
Example (the transformation semigroup T_{3}). Cells - left \mathcal{C} (columns). right R (rows), two-sided \mathcal{J} (big rectangles), $\hat{H}=\angle \cap \mathcal{Z}$ (small rectanglis).

$J_{\text {bouse }}$	$(123)-1213) .(1221$ (231) (212), (321)			$H^{*} S_{1}$
$J_{\text {xiast }}$	(122), (21)	(133). (mi)]	(23) ${ }^{\text {a }}$ [2]	$\mathrm{H}_{\sim} \mathrm{S}_{2}$
	(121), (212)	(112).(123)	(323) ,2221	
	${ }^{[221)}$ (112]	(113).(12])	(223), (mmi)	
3 Suges	(111) \mid (222) \mid (333)			$\mathrm{H}_{\sim} \mathrm{S}_{1}$

Cute forts.

- Each H contains precisely one idempotent e or none idempotent. Each e is
contained in some $\mathcal{H}(\mathrm{e})$. (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not hill it. (Apex.)

am

Example Hecke algebras as non-semisimple fusion rings (Lusztig ~ 1984).

This gives a complete classification of smples for finite Wey type Heche algetres.

$\ldots \ldots \ldots \ldots$
…
\qquad

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that could be most directly obtained by the consideration of groups of linear transformations.

V
ERY considerable advances in the theory of groups of finite order have been made since the appearance of the first edition of this book. In particular the theory of groups of linear substitutions has been the subject of numerous and important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that
Nowadays representation theory is pervasive across mathematics, and beyond.
TERY considerable advances in the theory of groups of But this wasn't clear at all when Frobenius started it.
of linear substitutions has been the subject of numerous and important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).

Simple objects in $\mathscr{R e p}(\mathbb{Z} / 2 \mathbb{Z})$ are $\mathbb{1}$ (trivial) and $-\mathbb{1}$ (sign).

Algebra object 1. $\mathrm{A}_{1}=\mathbb{1}$:

$$
\begin{array}{c||c}
\mu & \mathbb{1} \otimes \mathbb{1} \\
\hline \hline \mathbb{1} & 1
\end{array} .
$$

Two modules $M_{1}=\mathbb{1}$ and $M_{2}=-\mathbb{1}$, so $\operatorname{Mod}_{\mathscr{R} \operatorname{ep}(\mathbb{Z} / 2 \mathbb{Z})}(\mathbb{1}) \cong \mathscr{R} \mathrm{ep}(\mathbb{Z} / 2 \mathbb{Z})$.

Algebra object 2. $\mathrm{A}_{2}=\mathbb{1} \oplus-\mathbb{1}$:

μ	$\mathbb{1} \otimes \mathbb{1}$	$\mathbb{1} \otimes-\mathbb{1}$	$-\mathbb{1} \otimes \mathbb{1}$	$-\mathbb{1} \otimes-\mathbb{1}$
$\mathbb{1}$	1			1
$-\mathbb{1}$		1	1	

One module $M_{3}=\mathbb{1} \oplus-\mathbb{1}$, so $\operatorname{Mod}_{\mathscr{R} \text { ep }(\mathbb{Z} / 2 \mathbb{Z})}(\mathbb{1} \oplus-\mathbb{1}) \cong \mathscr{R} \mathrm{ep}(1)$.

Both are 2-representation of $\mathscr{R} \mathrm{ep}(\mathbb{Z} / 2 \mathbb{Z})$ since e.g.

$$
-\mathbb{1} \otimes(\mathbb{1} \oplus-\mathbb{1}) \cong-\mathbb{1} \oplus \mathbb{1} \cong \mathbb{1} \oplus-\mathbb{1}
$$

$G=S_{3}, S_{4}$ and S_{5}, their subgroups (up to conjugacy), Schur multipliers and ranks of their 2 -simples.

K	1	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 3 \mathbb{Z}$	S_{3}	K	1	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 3 \mathbb{Z}$	$\mathbb{Z} / 4 \mathbb{Z}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	S_{3}	D_{4}	A_{4}	S_{4}
\#	1	1	1	1	\#	1	2	1	1	2	1	1	1	1
H^{2}	1	1	1	1	H^{2}	1	1	1	1	$\mathbb{Z} / 2 \mathbb{Z}$	1	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$
rk	1	2	3	3	$r k$	1	2	3	4	4,1	3	5,2	4,3	5,3

| $\overline{\operatorname{sep}\left(5_{5}\right)}$ | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K | 1 | $\mathbb{Z} / 2 \mathbb{Z}$ | $\mathbb{Z} / 3 \mathbb{Z}$ | $\mathbb{Z} / 4 \mathbb{Z}$ | $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ | $\mathbb{Z} / 5 \mathbb{Z}$ | S_{3} | $\mathbb{Z} / 6 \mathbb{Z}$ | D_{4} | D_{5} | A_{4} | D_{6} | $G A(1,5)$ | S_{4} | A_{5} | S_{5} |
| $\#$ | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| H^{2} | 1 | 1 | 1 | 1 | $\mathbb{Z} / 2 \mathbb{Z}$ | 1 | 1 | 1 | $\mathbb{Z} / 2 \mathbb{Z}$ | 1 | $\mathbb{Z} / 2 \mathbb{Z}$ | $\mathbb{Z} / 2 \mathbb{Z}$ | $\mathbb{Z} / 2 \mathbb{Z}$ |
| $r k$ | 1 | 2 | 3 | 4 | 4,1 | 5 | 3 | 6 | 5,2 | 4,2 | 4,3 | 6,3 | 5 | 5,3 | 5,4 | 7,5 |

This is completely different from their classical representation theory.
Example $\left(G=S_{3}, K=S_{3}\right)$; the \mathbb{N}-matrices.

$\left.\mathscr{R} \operatorname{es}_{K}^{G}(\square \square) \cong \square \square\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \mathscr{R} \operatorname{es}_{K}^{G}(\square) \cong \square \square\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right), \mathscr{R} \operatorname{es}_{K}^{G}(\square) \cong \square\right) \rightsquigarrow\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$.

K	1	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 3 \mathbb{Z}$	$\mathbb{Z} / 4 \mathbb{Z}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	$\mathbb{Z} / 5 \mathbb{Z}$	S_{3}	$\mathbb{Z} / 6 \mathbb{Z}$	D_{4}	D_{5}	A_{4}	D_{6}	$G A(1,5)$	S_{4}	A_{5}	S_{5}
$\#$	1	2	1	1	2	1	2	1	1	1	1	1	1	1	1	1
H^{2}	1	1	1	1	$\mathbb{Z} / 2 \mathbb{Z}$	1	1	1	$\mathbb{Z} / 2 \mathbb{Z}$	1	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$			
$r k$	1	2	3	4	4,1	5	3	6	5,2	4,2	4,3	6,3	5	5,3	5,4	7,5

This is completely different from their classical representation theory.

Example ($G=S_{3}, K=S_{3}$); the \mathbb{N}-matrices.

 Example ($G=S_{3}, K=\mathbb{Z} / 2 \mathbb{Z}=S_{2}$); the \mathbb{N}-matrices.

$\mathscr{R} \operatorname{es}_{K}^{G}(\square \square) \cong \square \rightsquigarrow\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \mathscr{R} \operatorname{es}_{K}^{G}(\square) \cong \square \oplus \square \rightsquigarrow\left(\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right), \mathscr{R} \operatorname{es}_{K}^{G}(\square) \cong \square \rightsquigarrow\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

The Taft Hopf algebra:

$$
\mathrm{T}_{2}=\mathbb{C}\langle g, x\rangle /\left(g^{2}=1, x^{2}=0, g x=-x g\right)=\mathbb{C}[\mathbb{Z} / 2 \mathbb{Z}] \hat{\otimes} \mathbb{C}[x] /\left(x^{2}\right) .
$$

$\mathrm{T}_{2}-p \mathcal{M o d}$ is a non-semisimple fiat category.

$$
\text { simples : }\left\{S_{0}, S_{-1}\right\}\left\{\begin{array}{l}
g \cdot m= \pm m, \\
x \cdot m=0,
\end{array} \quad \text { indecomposables : }\left\{P_{0}, P_{-1}\right\} .\right.
$$

Tensoring with the projectives P_{0} or P_{-1} gives a 2-representation of $\mathrm{T}_{2}-p$ Mod which however can be twisted by a scalar $\lambda \in \mathbb{C}$. The algebra objects are

$$
\mathbb{C}[\mathbb{Z} / 2 \mathbb{Z}] \otimes \mathbb{C}[x] /\left(x^{2}-\lambda\right) \quad \text { and } \quad \mathbb{C}[1] \otimes \mathbb{C}[x] /\left(x^{2}-\lambda\right)
$$

This gives a one-parameter family of non-equivalent 2 -simples of T_{2}-pMod.

The Taft Hopf algebra:

$$
\mathrm{T}_{2}=\mathbb{C}\langle g, x\rangle /\left(g^{2}=1, x^{2}=0, g x=-x g\right)=\mathbb{C}[\mathbb{Z} / 2 \mathbb{Z}] \hat{\otimes} \mathbb{C}[x] /\left(x^{2}\right) .
$$

T_{2}-pMod is a non-semis $\begin{gathered}\text { Classical result (decat). } \\ \mathrm{C} \text { has only finitely many simples. }\end{gathered}$

$$
\begin{gathered}
\text { simples : }\left\{S_{0}, S_{-1}\right\}\left\{\begin{array}{l}
g \cdot m= \pm m, \quad \text { indecomposables: }:\left\{P_{0}, P_{-1}\right\} . \\
x \cdot m=0,
\end{array} \quad\right. \text { Wrong result (cat). }
\end{gathered}
$$

Tensoring with the proje \mathscr{C} has only finitely many 2 -simples. ntation of $\mathrm{T}_{2}-p \mathcal{M o d}$ which however can be twisted by a scalar $\lambda \in \mathbb{C}$. The algebra objects are

$$
\mathbb{C}[\mathbb{Z} / 2 \mathbb{Z}] \otimes \mathbb{C}[x] /\left(x^{2}-\lambda\right) \quad \text { and } \quad \mathbb{C}[1] \otimes \mathbb{C}[x] /\left(x^{2}-\lambda\right)
$$

This gives a one-parameter family of non-equivalent 2 -simples of $\mathrm{T}_{2}-p$ Mod.

The Taft Hopf algebra:

$$
\mathrm{T}_{2}=\mathbb{C}\langle g, x\rangle /\left(g^{2}=1, x^{2}=0, g x=-x g\right)=\mathbb{C}[\mathbb{Z} / 2 \mathbb{Z}] \hat{\otimes} \mathbb{C}[x] /\left(x^{2}\right) .
$$

Tensoring with the proje \mathscr{C} has only finitely many 2 -simples. ntation of $\mathrm{T}_{2}-p \mathcal{M o d}$ which however can be twisted by a scalar $\lambda \in \mathbb{C}$. The algebra objects are

Clifford, Munn, PonizovskiĨ, Green $\sim 1942++$. Finite semigroups or monoids.
Example. \mathbb{N}, $\operatorname{Aut}(\{1,2,3\})=S_{3} \subset T_{3}=\operatorname{End}(\{1,2,3\})$, groups, groupoids, categories, any • closed subsets of matrices, "anything you will ever meet", etc.

The cell orders and equivalences:

$$
\begin{aligned}
x \leq_{L} y \Leftrightarrow \exists z: z x=y, & x \sim_{L} y \Leftrightarrow\left(x \leq_{L} y\right) \wedge\left(y \leq_{L} x\right), \\
x \leq_{R} y \Leftrightarrow \exists z^{\prime}: x z^{\prime}=y, & x \sim_{R} y \Leftrightarrow\left(x \leq_{R} y\right) \wedge\left(y \leq_{R} x\right), \\
x \leq_{L R} y \Leftrightarrow \exists z, z^{\prime}: z x z^{\prime}=y, & x \sim_{L R} y \Leftrightarrow\left(x \leq_{L R} y\right) \wedge\left(y \leq_{L R} x\right) .
\end{aligned}
$$

Left, right and two-sided cells: Equivalence classes.

Example (group-like). The unit 1 is always in the lowest cell - e.g. $1 \leq_{L} y$ because we can take $z=y$. Invertible elements g are always in the lowest cell - e.g. $g \leq_{L} y$ because we can take $z=y g^{-1}$.

Clifford, Munn, PonizovskiĨ, Green $\sim 1942+$. Finite semigroups or monoids.
Example (the transformation semigroup T_{3}). Cells - left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided \mathcal{J} (big rectangles), $\mathcal{H}=\mathcal{L} \cap \mathcal{R}$ (small rectangles).

$\mathcal{J}_{\text {lowest }}$	$\begin{gathered} \text { (123), (213), (132) } \\ (231),(312),(321) \end{gathered}$			$\mathcal{H} \cong S_{3}$
	(122), (221)	(133), (331)	(233), (322)	$\mathcal{H} \cong S_{2}$
$\mathcal{J}_{\text {middle }}$	(121), (212)	(313), (131)	(323), (232)	
	(221), (112)	(113), (311)	(223), (332)	
$\mathcal{J}_{\text {biggest }}$	(111)	(222)	(333)	$\mathcal{H} \cong S_{1}$

Cute facts.

- Each \mathcal{H} contains precisely one idempotent e or none idempotent. Each e is contained in some $\mathcal{H}(e)$. (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not kill it. (Apex.)

Cute facts.

- Each \mathcal{H} contains precisely one idempotent e or none idempotent. Each e is contained in some $\mathcal{H}(e)$. (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not kill it. (Apex.)

Cute facts.

- Each \mathcal{H} contains precisely one idempotent e or none idempotent. Each e is contained in some $\mathcal{H}(e)$. (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not kill it. (Apex.)

Cute facts.

- Each 7

This is a general philosophy in representation theory.
contain Buzz words. Idempotent truncations, Kazhdan-Lusztig cells,

- Each \mathcal{H}^{2} quasi-hereditary algebras, cellular algebras, etc.
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not kill it. (Apex.)

Figure: The first ever "published" braid diagram. (Page 283 from Gauß' handwritten notes, volume seven, ≤ 1830).

Tits $\boldsymbol{\sim} \mathbf{1 9 6 1}+$. Gauß' braid group is the type A case of more general groups.

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type $A_{3} \leadsto \rightarrow$ tetrahedron $n \rightarrow$ symmetric group S_{4}.
Type $B_{3} \leadsto$ cube/octahedron $\rightsquigarrow \rightsquigarrow$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $H_{3} \leadsto 4$ dodecahedron/icosahedron u exceptional Coxeter group.
For I_{8} we have a 4-gon:
Idea (Coxeter ~1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type $H_{3} \longleftrightarrow \leadsto$ dodecahedron/icosahedron $\longleftrightarrow \rightsquigarrow$ exceptional Coxeter group.
For I_{8} we have a 4-gon:
Fix a flag F.

> Idea (Coxeter ~1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type $A_{3} \leadsto \rightarrow$ tetrahedron $n \rightarrow$ symmetric group S_{4}.
Type $B_{3} \leadsto$ cube/octahedron $\rightsquigarrow \rightsquigarrow$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $H_{3} \leadsto 4$ dodecahedron/icosahedron u exceptional Coxeter group.
For I_{8} we have a 4-gon:

Fix a flag F.
Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.
Idea (Coxeter ~1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type $A_{3} \leadsto \rightarrow$ tetrahedron $n \rightarrow$ symmetric group S_{4}.
Type $B_{3} \rightsquigarrow$ cube/octahedron $\rightsquigarrow>$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $H_{3} \leadsto 4$ dodecahedron/icosahedron u exceptional Coxeter group.
For I_{8} we have a 4-gon:
Fix a flag F.
Idea (Coxeter ~1934++).

Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Fix a hyperplane H_{1} permuting the adjacent 1 -cells of F, etc.

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type $A_{3} \leadsto$ tetrahedron $\leadsto \rightsquigarrow$ symmetric group S_{4}.
Type $B_{3} \longleftrightarrow \rightsquigarrow$ cube/octahedron $\rightsquigarrow>$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $H_{3} \longleftrightarrow$ dodecahedron/icosahedron $\leadsto \rightsquigarrow$ exceptional Coxeter group.
For I_{8} we have a 4-gon:
Fix a flag F.
Idea (Coxeter ~1934++).

Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Fix a hyperplane H_{1} permuting the adjacent 1 -cells of F, etc.
Write a vertex i for each H_{i}.

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

This gives a generator-relation presentation.
Type $A_{3} \leadsto \nrightarrow$ tetrahedron $\leadsto \nrightarrow$ symmetric group J_{4}.
Type $B_{3} \leadsto$ And the braid relation measures the angle between hyperplanes.
Type $H_{3} \longleftrightarrow \leadsto$ dodecahedron/icosahedron $\longleftrightarrow \rightsquigarrow$ exceptional Coxeter group.
For I_{8} we have a 4-gon:
Fix a flag F.
Idea (Coxeter ~1934++).

Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Fix a hyperplane H_{1} permuting the adjacent 1 -cells of F, etc.
Write a vertex i for each H_{i}.

Connect i, j by an n-edge for H_{i}, H_{j} having angle $\cos (\pi / n)$.

Example (type B_{2}).

$$
W=\left\langle s, t \mid s^{2}=t^{2}=1, t s t s=s t s t\right\rangle .
$$

$W=\left\{1, s, t, s t, t s, s t s, t s t, w_{0}\right\}$
$\mathrm{H}(W)=\mathbb{C}(v)\left\langle H_{s}, H_{t} \mid H_{s}^{2}=\left(v^{-1}-v\right) H_{s}+1, H_{t}^{2}=\left(v^{-1}-v\right) H_{t}+1, H_{t} H_{s} H_{t} H_{s}=H_{s} H_{t} H_{s} H_{t}\right\rangle$

KL basis:

$$
c_{1}=1, c_{s}=v H_{s}+v^{2}, c_{t}=v H_{t}+v^{2}, e t c .
$$

$c_{s}^{2}=\left(1+v^{2}\right) c_{s}$. (Quasi-idempotent, but "positively graded".)

Example (SAGE). The Weyl group of type B_{6}. Number of elements: 46080. Number of cells: 26, named 0 (lowest) to 25 (biggest).

Cell order:

Size of the cells and a-value:

cell	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	576	3150	650	342	62	1
a	0	1	2	3	3	4	4	5	5	6	6	6	7	9	10	10	10	15	11	16	17	12	15	25	25	36

Example (cell 12).

Example (SAGE). The Number of cells: 26, nam Cell order:

ell	$\mathbf{1}_{20,5}$	$\mathbf{1}_{20,5}$	$4_{20,20}$	20,25	220,25
	225,5	225,5	225,20	$4_{25,25}$	$\mathbf{1}_{25,25}$
	225,5	225,5	255,20	$\mathbf{1 2 5 , 2 5}^{1}$	425,25

Size of the cells and a-value:

cell	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	576	3150	650	342	62	1
a	0	1	2	3	3	4	4	5	5	6	6	6	7	9	10	10	10	15	11	16	17	12	15	25	25	36

Example (SAGE). Here is a random calculation in the cell 12 for type B_{6}.

Graph:

$$
1-\frac{4}{-3-4-5-6}
$$

Elements (shorthand $s_{i}=i$):

$$
d=d^{-1}=132123565, u=u^{-1}=12132123565 .
$$

Example (SAGE). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
c_{d} c_{d}= \\
\left(1+5 v^{2}+12 v^{4}+18 v^{6}+18 v^{8}+12 v^{10}+5 v^{12}+v^{14}\right) c_{d} \\
+\left(v^{2}+4 v^{4}+7 v^{6}+7 v^{8}+4 v^{10}+v^{12}\right) c_{u} \\
+\left(v^{-4}+5 v^{-2}+11+14 v^{2}+11 v^{4}+5 v^{6}+v^{8}\right) c_{121232123565}
\end{gathered}
$$

Graph:

$$
14-2-3-4-5-6
$$

Elements (shorthand $s_{i}=i$):

$$
d=d^{-1}=132123565, u=u^{-1}=12132123565 .
$$

Example (SAGE). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
a_{d} a_{d}= \\
\left(1+5 v^{2}+12 v^{4}+18 v^{6}+18 v^{8}+12 v^{10}+5 v^{12}+v^{14}\right) c_{d} \\
+\left(v^{2}+4 v^{4}+7 v^{6}+7 v^{8}+4 v^{10}+v^{12}\right) c_{u} \\
+\left(v^{-4}+5 v^{-2}+11+14 v^{2}+11 v^{4}+5 v^{6}+v^{8}\right) c_{121232123565}
\end{gathered}
$$

Graph:

$$
1-4-3-4-5-6
$$

Elements (shorthand $s_{i}=i$):

$$
d=d^{-1}=132123565, u=u^{-1}=12132123565 .
$$

Example (SAGE). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
a_{d} a_{d}= \\
\left(1+5 v^{2}+12 v^{4}+18 v^{6}+18 v^{8}+12 v^{10}+5 v^{12}+v^{14}\right) c_{d} \\
+\left(v^{2}+4 v^{4}+7 v^{6}+7 v^{8}+4 v^{10}+v^{12}\right) c_{u} \\
+\left(v^{-4}+5 v^{-2}+11+14 v^{2}+11 v^{4}+5 v^{6}+v^{8}\right) c_{121232123565} \\
\text { Bigger friends. }
\end{gathered}
$$

Graph:

$$
14-2-3-4-5-6
$$

Elements (shorthand $s_{i}=i$):

$$
d=d^{-1}=132123565, u=u^{-1}=12132123565 .
$$

Example (SAGE). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
a_{d} a_{d}= \\
\left(1+5 v^{2}+12 v^{4}+18 v^{6}+18 v^{8}+12 v^{10}+5 v^{12}+v^{14}\right) c_{d} \\
+\left(v^{2}+4 v^{4}+7 v^{6}+7 v^{8}+4 v^{10}+v^{12}\right) c_{u}
\end{gathered}
$$

Graph:

$$
14-2-3-4-5-6
$$

Elements (shorthand $s_{i}=i$):

$$
d=d^{-1}=132123565, u=u^{-1}=12132123565 .
$$

Example (SAGE). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{aligned}
& a_{d} a_{d}= \\
& \left(1+5 v^{2}+12 v^{4}+18 v^{6}+18 v^{8}+12 v^{10}+5 v^{12}+v^{14}\right) c_{d} \\
& +\left(v^{2}+4 v^{4}+7 v^{6}+7 v^{8}+4 v^{10}+v^{12}\right) c_{u}
\end{aligned}
$$

Killed in the limit $v \rightarrow 0$.

Graph:

$$
1-4-3-4-5-6
$$

Elements (shorthand $s_{i}=i$):

$$
d=d^{-1}=132123565, u=u^{-1}=12132123565 .
$$

Example (SAGE). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
a_{d} a_{d}= \\
a_{d}
\end{gathered}
$$

Looks much simpler.

Graph:

$$
1-\frac{4}{-3-4-5-6}
$$

Elements (shorthand $s_{i}=i$):

$$
d=d^{-1}=132123565, u=u^{-1}=12132123565 .
$$

Example: Hecke algebras as non-semisimple fusion rings (Lusztig ~1984).

type	A	$B=C$	D	E_{6}
worst case	$\mathrm{A}_{0}^{\mathcal{H}} m \rightarrow \mathscr{R} \mathrm{ep}(1)$	$\mathrm{A}_{0}^{\mathcal{H}}, m \rightarrow \mathscr{R} \operatorname{ep}\left(\mathbb{Z} / 2 \mathbb{Z}^{d}\right)$	$\mathrm{A}_{0}^{\mathcal{H}} m \rightarrow \mathscr{R} \mathrm{ep}\left(\mathbb{Z} / 2 \mathbb{Z}^{d}\right)$	$\mathrm{A}_{0}^{\mathcal{H}} m \rightarrow \mathscr{R} \mathrm{ep}\left(S_{3}\right)$

type	E_{7}	E_{8}	F_{4}	G_{2}
worst case	$\mathrm{A}_{0}^{\mathcal{H}} \longleftrightarrow \mathscr{R} \operatorname{ep}\left(S_{3}\right)$	$\mathrm{A}_{0}^{\mathcal{H}} \longleftrightarrow \mathscr{R} \operatorname{ep}\left(S_{5}\right)$	$\mathrm{A}_{0}^{\mathcal{H}} \nsim \mathscr{R} \operatorname{ep}\left(S_{4}\right)$	$\mathrm{A}_{0}^{\mathcal{H}} \longleftrightarrow \mathscr{S} \mathscr{O}(3)_{6}$

This gives a complete classification of simples for finite Weyl type Hecke algebras.

