2-representation theory of Soergel bimodules

Or: Mind your groups

Daniel Tubbenhauer

Joint with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang

June 2019

	Examples of 2-categories.			
2	Monoidal categories, module categories $\mathscr{R}\mathrm{ep}(G)$ of finite groups G ,			
	module categories of Hopf algebras, fusion or modular tensor categories,			
	Soergel bimodules \mathscr{S} , categorified quantum groups, categorified Heisenberg algebras.			
	2-module category functor nat. trafo			
	Examples of 2-representation of these.			
Categorical modules, functorial actions,				
(co)algebra objects, conformal embeddings of affine Lie algebras,				
tł	the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.			

		Examples of 2	-categories.			
2	Monoidal categories, module categories $\mathscr{R}\mathrm{ep}(G)$ of finite groups G ,					
	module categories of Hopf algebras, fusion or modular tensor categories,					
	Soergel bimodules \mathscr{S} , categorified quantum groups, categorified Heisenberg algebras.					
	2-module category functor nat. trafo					
Examples of 2-representation of these. Categorical modules, functorial actions,						
	(co)algebra objects, conformal embeddings of affine Lie algebras,					
the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.						

Applications of 2-representations.

Representation theory (classical and modular), link homology, combinatorics

TQFTs, quantum physics, geometry.

Let ${\rm C}$ be a finite-dimensional algebra.

Frobenius ~1895++, Burnside ~1900++, Noether ~1928++. Representation theory is the \bigodot study of algebra actions

 $\mathcal{M}\colon \mathrm{C}\longrightarrow \mathcal{E}\mathrm{nd}(\mathtt{V}),$

with V being some vector space. (Called modules or representations.)

The "atoms" of such an action are called simple.

Maschke \sim 1899, Noether, Schreier \sim 1928. All modules are built out of simples ("Jordan–Hölder" filtration).

Basic question: Find the periodic table of simples.

Let \mathscr{C} be a finitary 2-category.

Etingof–Ostrik, Chuang–Rouquier, many others \sim 2000++. 2-representation theory is the useful? study of actions of 2-categories:

$$\mathscr{M}: \mathscr{C} \longrightarrow \mathscr{E}\mathrm{nd}(\mathcal{V}),$$

with \mathcal{V} being some finitary category. (Called 2-modules or 2-representations.)

The "atoms" of such an action are called 2-simple ("simple transitive").

Mazorchuk–Miemietz \sim **2014.** All 2-modules are built out of 2-simples ("weak 2-Jordan–Hölder filtration").

Basic question: Find the periodic table of 2-simples.

Let \mathscr{C} be a finitary 2-category.

Etingof–Ostrik, Chuang–Rouquier, many others \sim 2000++. 2-representation theory is the useful? study of actions of 2-categories:

Empirical fact. Most of the fun happens already for monoidal categories (one-object 2-categories); I will stick to this case for the rest of the talk, but what I am going to explain works for 2-categories.

 $Mazorchuk-Miemietz \sim 2014.$ All 2-modules are built out of 2-simples ("weak 2-Jordan-Hölder filtration").

Basic question: Find the periodic table of 2-simples.

W

- ▶ It has finitely many indecomposable objects M_j (up to \cong).
- ► It has finite-dimensional hom-spaces.
- ▶ Its Grothendieck group $[\mathcal{V}] = [\mathcal{V}]_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C}$ is finite-dimensional.

A finitary, monoidal category \mathscr{C} can thus be seen as a categorification of a finite-dimensional algebra. Its indecomposable objects C_i give a distinguished basis of $[\mathscr{C}]$.

A finitary 2-representation of \mathscr{C} :

- A choice of a finitary category \mathcal{V} .
- ▶ (Nice) endofunctors $\mathcal{M}(C_i)$ acting on \mathcal{V} .
- ▶ $[\mathscr{M}(C_i)]$ give N-matrices acting on $[\mathcal{V}]$.

- ▶ It has finitely many indecomposable objects M_{\cdot} (up to \cong). The atoms (decat).
- It has finite-dimension
- ▶ Its Grothendieck group A C module is called simple limensional.

if it has no C-stable ideals.

A finitary, monoidal category \mathscr{C} can thus be seen as a categorification of a

finite-dimensional algebra The atoms (cat). of [C]. Its indecomposable object A & 2-module is called 2-simple

A finitary 2-representation

- if it has no \mathscr{C} -stable \otimes -ideals. ► A choice of a finitary category V.
- ▶ (Nice) endofunctors $\mathcal{M}(C_i)$ acting on \mathcal{V} .
- ▶ $[\mathcal{M}(C_i)]$ give N-matrices acting on $[\mathcal{V}]$.

- ▶ It has finitely many indecomposable objects M_j (up to \cong).
- ▶ It has finite-dimensional hom-spaces.

► lts	Dictionary.				
	cat	finitary	finitary+monoidal	fiat	functors
A finita	decat	vector space	algebra	self-injective	matrices
finite-dimensional algebra.					
Its indecomposable objects C: give a distinguished basis of [%]					
A finitary 2-represestudy C-pMod and its action via functors.					
► A choice of a finitary category V.					

- ▶ (Nice) endofunctors $\mathcal{M}(C_i)$ acting on \mathcal{V} .
- ▶ $[\mathcal{M}(C_i)]$ give N-matrices acting on $[\mathcal{V}]$.

- ▶ It has finitely many indecomposable objects M_j (up to \cong).
- It has finite-dimensional hom-spaces Example (decat).

► Its Grothendie

 $\mathrm{C}=\mathbb{C}=1$ acts on any vector space via $\lambda\cdot$.

A finitary, monoida **It has only one simple V** = \mathbb{C} . finite-dimensional argebra. Its indecomposable objects C_i give a distinguished basis of [\mathscr{C}].

Example (cat).

 A choic

$$\mathscr{C} = \mathscr{V}ec = \mathscr{R}ep(1)$$
 acts on any finitary category via $\mathbb{C} \otimes_{\mathbb{C}}$.

 (Nice)
 It has only one 2-simple $\mathcal{V} = \mathcal{V}ec$.

 [$\mathscr{M}(C_i)$] give IN-matrices acting on $[\mathcal{V}]$.

nal.

An algebra $A = (A, \mu, \iota)$ in \mathscr{C} :

Its (right) modules (M, δ) :

$$\delta = \prod_{M=A}^{M}, \quad \Box = \Box, \quad \Box = C$$

Example. Algebras in $\mathscr{V}ec$ are algebras; modules are modules.

Example. Algebras in $\mathscr{R}ep(G)$ and their modules \bigcirc Click.

An algebra $A = (A, \mu, \iota)$ in \mathscr{C} :

Its (right) modules (M, δ) :

Example. Algebras in $\mathscr{V}ec$ are algebras; modules are modules.

Example. Algebras in $\Re ep(G)$ and their modules \frown click.

Example. Algebras in \mathscr{V} ec are algebras; modules are modules.

Example. Algebras in $\mathscr{R}ep(G)$ and their modules \frown click.

An algebra $A = (A, \mu, \iota)$ in \mathscr{C} :

Example.

Simple algebra objects in $\mathscr{V}ec$ are simple algebras. Example to Morita–Takeuchi equivalence these are just \mathbb{C} ; and $Mod_{\mathscr{V}ec}(\mathbb{C}) \cong \mathcal{V}ec$. The above theorem is a vast generalization of this.

Fxa

- Let $\mathscr{C} = \mathscr{R}ep(G)$ (G a finite group).
- ▶ \mathscr{C} is monoidal and finitary (and fiat). For any $M, N \in \mathscr{C}$, we have $M \otimes N \in \mathscr{C}$:

$$g(m \otimes n) = gm \otimes gn$$

for all $g \in G, m \in M, n \in N$. There is a trivial representation 1.

▶ The regular 2-representation $\mathcal{M}: \mathscr{C} \to \mathscr{E}nd(\mathscr{C})$:

- \blacktriangleright The decategorification is a $\mathbb N$ -representation, the regular representation.
- The associated algebra object is $A_{\mathscr{M}} = \mathbb{1} \in \mathscr{C}$.

- Let $K \subset G$ be a subgroup.
- ▶ $\mathcal{R}ep(K)$ is a 2-representation of $\mathscr{R}ep(G)$, with action

 $\mathcal{R}es^{G}_{K} \otimes _: \mathscr{R}ep(G) \to \mathscr{E}nd(\mathcal{R}ep(K))$

which is indeed a 2-action because $\mathcal{R}es^{\mathcal{G}}_{\mathcal{K}}$ is a \otimes -functor.

- ► The decategorifications are N-representations.
- ▶ The associated algebra object is $A_{\mathscr{M}} = \mathcal{I}nd_{K}^{G}(\mathbb{1}_{K}) \in \mathscr{C}.$

Let ψ ∈ H²(K, C^{*}). Let V(K, ψ) be the category of projective K-modules with Schur multiplier ψ, *i.e.* vector spaces V with ρ: K → End(V) such that

 $\rho(g)\rho(h) = \psi(g,h)\rho(gh), \text{ for all } g,h \in K.$

• Note that
$$\mathcal{V}(K,1) = \mathcal{R}ep(K)$$
 and

 $\otimes : \mathcal{V}(K,\phi) \boxtimes \mathcal{V}(K,\psi) \to \mathcal{V}(K,\phi\psi).$

▶ $\mathcal{V}(\mathcal{K}, \psi)$ is also a 2-representation of $\mathscr{C} = \mathscr{R} ep(\mathcal{G})$:

$$\mathscr{R}ep(\mathcal{G}) \boxtimes \mathcal{V}(\mathcal{K},\psi) \xrightarrow{\mathcal{R}es_{\mathcal{K}}^{\mathcal{G}}\boxtimes\operatorname{Id}} \mathcal{R}ep(\mathcal{K}) \boxtimes \mathcal{V}(\mathcal{K},\psi) \xrightarrow{\otimes} \mathcal{V}(\mathcal{K},\psi)$$

- ► The decategorifications are N-representations. ► Example
- ► The associated algebra object is A_M = Ind^G_K(1_K) ∈ C, but with ψ-twisted multiplication.

Theorem (folklore?).

Completeness. All 2-simples of $\Re ep(G)$ are of the form $\mathcal{V}(K, \psi)$.

Non-redundancy. We have $\mathcal{V}(\mathcal{K},\psi) \cong \mathcal{V}(\mathcal{K}',\psi')$

the subgroups are conjugate or $\psi' = \psi^g$, where $\psi^g(k, l) = \psi(gkg^{-1}, glg^{-1})$.

 $\otimes : \mathcal{V}(K,\phi) \boxtimes \mathcal{V}(K,\psi) \to \mathcal{V}(K,\phi\psi).$

▶ $\mathcal{V}(K, \psi)$ is also a 2-representation of $\mathscr{C} = \mathscr{R} ep(G)$:

$$\mathscr{R}\mathrm{ep}(G) \boxtimes \mathcal{V}(K,\psi) \xrightarrow{\mathcal{R}\mathrm{es}_{K}^{G} \boxtimes \mathrm{Id}} \mathcal{R}\mathrm{ep}(K) \boxtimes \mathcal{V}(K,\psi) \xrightarrow{\otimes} \mathcal{V}(K,\psi)$$

- ► The decategorifications are N-representations. ► Example
- ► The associated algebra object is A_M = Ind^G_K(1_K) ∈ C, but with ψ-twisted multiplication.

es

hat

- ▶ The decategorifications are ℕ-representations. ▶ Example
- ► The associated algebra object is A_M = Ind^G_K(1_K) ∈ C, but with ψ-twisted multiplication.

Clifford, Munn, Ponizovskiĩ, Green \sim **1942**++. Write $X \leq_L Y$ if Y is a direct summand of ZX for $Z \in \mathscr{C}$, *i.e.* $Y \subset_{\oplus} ZX$. $X \sim_L Y$ if

 $X \leq_L Y$ and $Y \leq_L X$. \sim_L partitions \mathscr{C} into left cells \mathcal{L} . Similarly for right \mathcal{R} , two-sided cells \mathcal{J} or 2-modules.

An apex is a maximal two-sided cell not annihilating a 2-module. Fact (Chan–Mazorchuk \sim 2016). Any 2-simple has a unique apex.

Mackaay–Mazorchuk–Miemietz–Zhang \sim **2018.** For any fiat 2-category \mathscr{C} (semigroup-like) there exists a fiat 2-subcategory $\mathscr{A}_{\mathcal{H}}$ (almost group-like) such that

$$\left(\begin{array}{c} \text{2-simples of } \mathscr{C} \\ \text{with apex } \mathcal{J} \end{array} \right) \xleftarrow{\text{one-to-one}} \left\{ \begin{array}{c} \text{2-simples of } \mathscr{A}_{\mathcal{H}} \\ \text{with apex } \mathcal{H} \subset \mathcal{J} \end{array} \right\}$$

Catch. In general $\mathscr{A}_{\mathcal{H}}$ is not fusion.

Clifford Example (group-like). Write X $X \leq_L Y$ Fusion categories, *e.g.* $\mathscr{R}ep(G)$, have only one cell. $\mathscr{A}_{\mathcal{H}}$ is everything. two-sided cells \mathcal{J} or 2-modules.

An apex is a maximal two-sided cell not annihilating a 2-module. Fact (Chan–Mazorchuk \sim 2016). Any 2-simple has a unique apex.

 $\label{eq:mackaay-Mazorchuk-Miemietz-Zhang} \sim 2018. \mbox{ For any fiat 2-category \mathcal{C}} (semigroup-like) there exists a fiat 2-subcategory $\mathcal{A}_{\mathcal{H}}$ (almost group-like) such that $\ensuremath{\mathsf{C}}$ (blue the set of the$

$$\left(\begin{array}{c} \text{2-simples of } \mathscr{C} \\ \text{with apex } \mathcal{J} \end{array}\right) \xleftarrow{\text{one-to-one}} \left\{\begin{array}{c} \text{2-simples of } \mathscr{A}_{\mathcal{H}} \\ \text{with apex } \mathcal{H} \subset \mathcal{J} \end{array}\right\}$$

Catch. In general $\mathscr{A}_{\mathcal{H}}$ is not fusion.

Catch. In general $\mathscr{A}_{\mathcal{H}}$ is not fusion.

Artin \sim 1925, Tits \sim 1961++. The Artin–Tits group and its Coxeter group quotient are given by generators-relations:

H is the quotient of $\mathbb{Z}[v, v^{-1}]AT$ by the quadratic relations, *e.g.*

$$\mathbf{X} - \mathbf{X} = (\mathbf{v} - \mathbf{v}^{-1}) \mathbf{\uparrow} \mathbf{\uparrow}.$$

Fact (Kazhdan–Lusztig ~1979, Soergel–Elias–Williamson ~1990,2012). H has a distinguished basis, called the \checkmark KL basis, which is a decategorification of indecomposable objects of \mathscr{S} .

Artin ~1925, Tits ~1961++. The Artin–Tits group and its Coxeter group quotient are given by generators-relations:

H is the quotient of $\mathbb{Z}[v, v^{-1}]AT$ by the quadratic relations, *e.g.*

$$\mathbf{X} - \mathbf{X} = (\mathbf{v} - \mathbf{v}^{-1}) \mathbf{\uparrow} \mathbf{\uparrow}.$$

Fact (Kazhdan–Lusztig ~1979, Soergel–Elias–Williamson ~1990,2012). H has a distinguished basis, called the \checkmark KL basis, which is a decategorification of indecomposable objects of \mathscr{S} .

 $W = \langle s, t | s^2 = t^2 = 1, tsts = stst \rangle$. Number of elements: 8. Number of cells: 3, named 0 (lowest) to 2 (biggest).

Cell order:

Size of the cells:

cell	0	1	2
size	1	6	1

Cell structure:

$W = \langle s, t \mid s^2 = t^2 =$ named 0 (lowest) to 2	1, tsts = Example (SAGE). Elements: 8. Number of cells: 3, (biggest)
Cell order:	$1 \cdot 1 = 1.$ $0 - 1 - 2$
Size of the cells:	cell 0 1 2 size 1 6 1
Cell structure:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

t, tst

ts

8. Number of cells: 3,

2

As a free \mathbb{Z} -module:

$$A_0(W) = \bigoplus_{\mathcal{J}} \mathbb{Z}\{a_w \mid w \in \mathcal{J}\}. \text{ vs. } H_v(W) = \mathbb{Z}[v, v^{-1}]\{c_w \mid w \in W\}.$$

Multiplication.

$$a_x a_y = \sum_{z \in \mathcal{J}} \gamma^z_{x,y} a_z$$
. vs. $c_x c_y = \sum_{z \in \mathcal{J}} v^{a(z)} h^z_{x,y} c_z$ + bigger friends.

where $\gamma_{x,y}^z \in \mathbb{N}$ is the leading coefficient of $h_{x,y}^z \in \mathbb{N}[v, v^{-1}]$.

Τł	Example (type B ₂).												
	The multiplication tables (empty entries are 0 and $[2] = 1 + v^2$) in 1:												
	a_s a_{sts} a_{st} a_t a_{tst} a_{ts}												
Δc				as	as	a _{sts}	a _{st}						
~3		a _{sts}	a _{sts}	as	a _{st}								
				ats	a _{ts}	ats	$a_t + a_{tst}$						
				at				at	a _{tst}	a _{ts}			
	a							a _{tst}	at	a _{ts}			
				a _{st}	Ι.	.		a _{st} a _{st}		$a_s + a_{sts}$			
		Cs		C _{sts}			Ct		Ctst		Cts		
М	Cs	c _s [2] <i>c</i> _s [2] <i>c</i> _{sts}			[]	Cst		$c_{st} + c_{w_0}$		$c_s + c_{sts}$			
	Csts	[2] <i>csts</i>	[2] <i>c</i> _s -	$[2]c_s + [2]^2 c_{w_0}$			$+ [2]c_{w_0}$	$c_s +$	C _{sts}	$c_s + [2]^2 c_s$	w ₀	$c_s + c_{sts} + [2]c_{w_0}$	
	Cts	[2] <i>c</i> _{ts}	[2] <i>c</i> _{ts}	+ [2] <i>c</i> ,	v ₀	$[2]c_t$	+ [2] <i>c</i> _{tst}	$c_t +$	Ctst	$c_t + c_{tst} + [2$	$2]c_{w_0}$	$2c_{ts}+c_{w_0}$	
	Ct	Cts	Cts	$+ c_{w_0}$		Ct	$+ c_{tst}$	[2]	c _t	[2] <i>c</i> _{tst}		[2] <i>c</i> _{ts}	
	Ctst	c_{tst} $c_t + c_{tst}$ $c_t +$				$c_t + c_t$	[2] <i>c</i> _{tst}		$[2]c_t + [2]^2 c_{w_0}$		$[2]c_{ts} + [2]c_{w_0}$		
wr	$ \begin{array}{c c c c c c c c c } VI & c_{st} & c_{s} + c_{sts} & c_{s} + c_{sts} + [2]c_{w_0} & 2c_{st} + c_{w_0} & [2]c_{st} & [2]c_{st} + [2]c_{w_0} & \end{array} $									$[2]c_s + [2]c_{sts}$			
	(Note the "subalgebras".)												
	The asymptotic algebra is much simpler!												
	► Big example												

Multiplication.

$$a_x a_y = \sum_{z \in \mathcal{J}} \gamma_{x,y}^z a_z$$
. vs. $c_x c_y = \sum_{z \in \mathcal{J}} v^{a(z)} h_{x,y}^z c_z$ + bigger friends.

where $\gamma_{x,y}^z \in \mathbb{N}$ is the leading coefficient of $h_{x,y}^z \in \mathbb{N}[v, v^{-1}]$.

where $\gamma_{x,y}^z \in \mathbb{N}$ is the leading coefficient of $h_{x,y}^z \in \mathbb{N}[v, v^{-1}]$.

Daniel Tubbenhauer

Categorified picture – Part 1.

Theorem (Soergel–Elias–Williamson ~1990,2012).

There exists a monoidal category ${\mathscr S}$ such that:

- ▶ (1) For every $w \in W$, there exists an indecomposable object C_w .
- ► (2) The C_w, for w ∈ W, form a complete set of pairwise non-isomorphic indecomposable objects up to shifts.
- ▶ (3) The identity object is C_1 , where 1 is the unit in W.
- ▶ (4) \mathscr{C} categorifies H with $[C_w] = c_w$.

Examples in type A_1 ; polynomial ring.

CategoriLet $R = \mathbb{C}[x]$ with $W = S_2$ action given by s.x = -x; $R^s = \mathbb{C}[x^2]$.TheoremThe indecomposable Soergel bimodules over R are
 $C_1 = \mathbb{C}[x]$ and $C_s = \mathbb{C}[x] \otimes_{\mathbb{C}[x^2]} \mathbb{C}[x]$.There exists a monoidal category \mathcal{S} such that:

- ▶ (1) For every $w \in W$, there exists an indecomposable object C_w .
- ► (2) The C_w, for w ∈ W, form a complete set of pairwise non-isomorphic indecomposable objects up to shifts.
- ▶ (3) The identity object is C_1 , where 1 is the unit in W.
- ▶ (4) \mathscr{C} categorifies H with $[C_w] = c_w$.

Categorified picture – Part 2.

Theorem (Lusztig, Elias–Williamson ~2012).

Let \mathcal{H} be an \mathcal{H} -cell of W. There exists a fusion category $\mathscr{A}_{\mathcal{H}}$ such that:

- ▶ (1) For every $w \in \mathcal{H}$, there exists a simple object A_w .
- ▶ (2) The A_w, for w ∈ H, form a complete set of pairwise non-isomorphic simple objects.
- ▶ (3) The identity object is A_d , where d is the Duflo involution.
- ▶ (4) $\mathscr{A}_{\mathcal{H}}$ categorifies $A_{\mathcal{H}}$ with $[A_w] = a_w$ and

$$A_{x}A_{y} = \bigoplus_{z \in \mathcal{J}} \gamma_{x,y}^{z}A_{z}.$$
 vs.
$$C_{x}C_{y} = \bigoplus_{z \in \mathcal{J}} v^{a(z)}h_{x,y}^{z}C_{z} + \text{bigger friends.}$$

Categorified picture – Part 2.

Theorem (Lusztig, Elias–Williamson ~2012).

Let \mathcal{H} be an \mathcal{H} -cell of W. There exists a fusion category $\mathscr{A}_{\mathcal{H}}$ such that:

- ▶ (1) For every $w \in \mathcal{H}$, there exists a simple object A_w .
- ▶ (2) The A_w, for w ∈ H, form a complete set of pairwise non-isomorphic simple objects.
- ▶ (3) The identity object is A_d , where d is the Duflo involution.
- ▶ (4) $\mathscr{A}_{\mathcal{H}}$ categorifies $A_{\mathcal{H}}$ with $[A_w] = a_w$ and

$$A_{x}A_{y} = \bigoplus_{z \in \mathcal{J}} \gamma_{x,y}^{z}A_{z}.$$
 vs.
$$C_{x}C_{y} = \bigoplus_{z \in \mathcal{J}} v^{a(z)}h_{x,y}^{z}C_{z} + \text{bigger friends.}$$

Examples in type A_1 ; coinvariant algebra.

 $C_1 = \mathbb{C}[x]/x^2$ and $C_s = \mathbb{C}[x]/x^2 \otimes \mathbb{C}[x]/x^2$. (Positively graded, but non-semisimple.)

 $A_1 = \mathbb{C}$ and $A_s = \mathbb{C} \otimes \mathbb{C}$. (Degree zero part.)

Theorem (June 2019 on arXiv).

For any finite Coxeter group W and any $\mathcal{H} \subset \mathcal{J}$ of W, there is an injection

 $\Theta \colon \big(\left\{\text{2-simples of }\mathscr{A}_{\mathcal{H}}\right\} / \cong \big) \hookrightarrow \big(\left\{\text{graded 2-simples of }\mathscr{S} \text{ with apex } \mathcal{J}\right\} / \cong \big)$

- We conjecture Θ to be a bijection.
- We have proved the conjecture for all \mathcal{H} which contain the longest element of a parabolic subgroup of W.
- ▶ If true, the conjecture implies that there are finitely many equivalence classes of 2-simples of *S*.
- \blacktriangleright For almost all *W*, we would get a complete classification of the 2-simples.

2-representation theory in a nutshell

Aug 2018 2/10

Resid Tolkahaar Propramise they of Sargel kinetees

Clifford, Munn, Ponizovskii, Green ~1942++, Finite semigroups or monoids.

Example (the transformation semigroup T_3). Cells - left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided \mathcal{J} (big rectangles), $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$ (small rectangles).

(123). (223). (223).

221) (133),(m) (2

(111) (222) (333)

(113).(m) (223).

Are 201 \$/10

 $\mathcal{H} \cong S_2$

Example. Algebras in Vec are algebras; modules are modules.

Example. Algebras in Rep(G) and their modules

James

This is completely different from their classical representation theory

-

There is still much to do...

$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array}{} \\ \hline \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} \end{array}{} \end{array}{} \\$ \\	8

Figure: The Coster graphs of finite type. Providence processing and an experimental processing of the second secon

Examples

Type $A_1 \longrightarrow$ tetrahedron \longrightarrow symmetric group S_2 . Type $B_1 \longrightarrow \text{cube}/\text{octahedron} \longrightarrow \text{Weyl group } (\mathbb{Z}/2\mathbb{Z})^1 \times S_1$. Type $D_1 \rightarrow cabe/occanteren \rightarrow reep group (2,22) \times S_1$. Type $H_1 \rightarrow dodecabedron / cosabedron \rightarrow exceptional Coxeter group.$ For Is we have a 4-gon:

2-representation theory in a nutshell

Clifford, Munn, Ponizovskii, Green ~1942++, Finite semigroups or monoids.

Example (the transformation semigroup T_3). Cells - left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided \mathcal{J} (big rectangles), $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$ (small rectangles).

(123). (223). (223).

211/1 (133).(111) (21

(111) (222) (333)

▶ Each H contains precisely one idempotent e or none idempotent. Each e is ontained in some $\mathcal{H}(e)$. (Idempotent separation.)

(113).(11) (223)

Example. Algebras in Yec are algebras; modules are modules

Example. Algebras in Rep(G) and their modules

James

Cute facts

 $G = S_1$, S_4 and S_6 , their subgroups (up to conjugacy), Schur multipliers and ranks of their 2-simples.

This is completely different from their classical representation theory

-

Figure: The Coaster graphs of finite type, show the street on estame enterchance man

Type He ---- dodecahedron /icosahedron ---- exceptional Coveter group.

ina (Counter ~1934++).

-

Type $A_1 \longrightarrow$ tetrahedron \longrightarrow symmetric group S_2 . Type $B_1 \longrightarrow \text{cube}/\text{octahedron} \longrightarrow \text{Weyl group } (\mathbb{Z}/2\mathbb{Z})^1 \times S_1$.

a fag F.

1-cells of F

Examples

Aug 2018 2/10

Are 201 \$/10

 $\mathcal{H} \cong S_2$

Example: Hecke algebras as non-semisimple fusion rings (Lusztig ~1984).

This gives a complete classification of simples for finite Weyl type Hecke algebras

Thanks for your attention!

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that could be most directly obtained by the consideration of groups of linear transformations.

WERY considerable advances in the theory of groups of finite order have been made since the appearance of the first edition of this book. In particular the theory of groups of linear substitutions has been the subject of numerous and important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that

Nowadays representation theory is pervasive across mathematics, and beyond.

VERY considerable advances in the theory of groups of But this wasn't clear at all when Frobenius started it. of linear substitutions has been the subject of numerous and

important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).

Simple objects in $\Re \operatorname{ep}(\mathbb{Z}/2\mathbb{Z})$ are $\mathbb{1}$ (trivial) and $-\mathbb{1}$ (sign).

Algebra object 1. $A_1 = 1$:

$$\frac{\begin{array}{c|c} \mu & \parallel & \mathbb{1} \otimes \mathbb{1} \\ \hline \mathbb{1} & \parallel & \mathbb{1} \end{array}$$

Two modules $M_1 = \mathbb{1}$ and $M_2 = -\mathbb{1}$, so $\mathcal{M}od_{\mathscr{R}ep(\mathbb{Z}/2\mathbb{Z})}(\mathbb{1}) \cong \mathscr{R}ep(\mathbb{Z}/2\mathbb{Z})$.

Algebra object 2. $A_2 = \mathbb{1} \oplus -\mathbb{1}$:

One module $M_3 = \mathbb{1} \oplus -\mathbb{1}$, so $\mathcal{M}od_{\mathscr{R}ep(\mathbb{Z}/2\mathbb{Z})}(\mathbb{1} \oplus -\mathbb{1}) \cong \mathscr{R}ep(1)$.

Both are 2-representation of $\mathscr{R}ep(\mathbb{Z}/2\mathbb{Z})$ since *e.g.*

$$-1 \otimes (1 \oplus -1) \cong -1 \oplus 1 \cong 1 \oplus -1.$$

 $G = S_3$, S_4 and S_5 , their subgroups (up to conjugacy), Schur multipliers and ranks of their 2-simples.

$\Re \exp(S_3)$								$\mathfrak{stop}(S_4)$									
		κ	1	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z} \mid \mathbb{Z}/3$	$\mathbb{SZ} \mid S_3$	к	1	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/3\mathbb{Z}$	$\mathbb{Z}/4\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z})$	² S ₃	D_4	A4	<i>S</i> ₄	
		#	1	1	1	1	#	1	2	1	1	2	1	1	1	1	
		H^2	1	1	1	1	H^2	1	1	1	1	$\mathbb{Z}/2\mathbb{Z}$	1	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	
		rk	1	2	3	3	rk	1	2	3	4	4, 1	3	5,2	4,3	5,3	
	$[\pi_{ep}(S_{5})]$																
к	1	$\mathbb{Z}/2\mathbb{Z}$	\mathbb{Z}	/3ℤ	$\mathbb{Z}/4\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z})^2$	$\mathbb{Z}/5\mathbb{Z}$	S_3	$\mathbb{Z}/6\mathbb{Z}$	D_4	D_5	A4	D_6	GA(1,5) S ₄	A_5	S ₅
#	1	2		1	1	2	1	2	1	1	1	1	1	1	1	1	1
H^2	1	1		1	1	$\mathbb{Z}/2\mathbb{Z}$	1	1	1	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	1	$\mathbb{Z}/2$	\mathbb{Z} $\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$
rk	1	2		3	4	4,1	5	3	6	5,2	4,2	4,3	6,3	5	5,3	3 5,4	7,5

This is completely different from their classical representation theory.

This is completely different from their classical representation theory.

The Taft Hopf algebra:

$$\mathrm{T}_2=\mathbb{C}\langle g,x\rangle/(g^2=1,\;x^2=0,\;gx=-xg)=\mathbb{C}[\mathbb{Z}/2\mathbb{Z}]\hat{\otimes}\mathbb{C}[x]/(x^2).$$

 T_2 -pMod is a non-semisimple fiat category.

simples :
$$\{S_0, S_{-1}\}$$
 $\begin{cases} g.m = \pm m, \\ x.m = 0, \end{cases}$ indecomposables : $\{P_0, P_{-1}\}.$

Tensoring with the projectives P_0 or P_{-1} gives a 2-representation of T_2 -pMod which however can be twisted by a scalar $\lambda \in \mathbb{C}$. The algebra objects are

$$\mathbb{C}[\mathbb{Z}/2\mathbb{Z}]\otimes\mathbb{C}[x]/(x^2-\lambda)$$
 and $\mathbb{C}[1]\otimes\mathbb{C}[x]/(x^2-\lambda).$

This gives a one-parameter family of non-equivalent 2-simples of T_2 -pMod.

The Taft Hopf algebra:

$$\mathbb{C}[\mathbb{Z}/2\mathbb{Z}]\otimes\mathbb{C}[x]/(x^2-\lambda)$$
 and $\mathbb{C}[1]\otimes\mathbb{C}[x]/(x^2-\lambda).$

This gives a one-parameter family of non-equivalent 2-simples of $\mathrm{T}_{2}\text{-}\mathcal{p}\mathcal{M}\mathrm{od}.$

The Taft Hopf algebra:

 $T_2 = \mathbb{C}\langle g, x \rangle / (g^2 = 1, x^2 = 0, gx = -xg) = \mathbb{C}[\mathbb{Z}/2\mathbb{Z}] \hat{\otimes} \mathbb{C}[x] / (x^2).$ $T_{2}-p\mathcal{M} \text{od is a non-semis} \begin{array}{c} \text{Classical result (decat).} \\ \hline C \text{ has only finitely many simples.} \\ \text{simples}: \{S_{0}, S_{-1}\} \begin{cases} g.m = \pm m, \\ x.m = 0, \end{cases} \text{ indecomposables}: \{P_{0}, P_{-1}\}. \end{array}$ Wrong result (cat). Tensoring with the proje \mathscr{C} has only finitely many 2-simples. Intation of T_2 - $p\mathcal{M}$ od which however can be twisted by a scalar $\lambda \in \mathbb{C}$. The algebra objects are $\mathbb{C}[\mathbb{Z}/2^{\mathbb{Z}}] \cong \mathbb{C}[\mathcal{U}/(\mathcal{U}^2 - \lambda)] \xrightarrow{\text{ord}} \mathbb{C}[\mathcal{U}] \otimes \mathbb{C}[\mathcal{U}/(\mathcal{U}^2 - \lambda)].$ There can be infinitely many categorifications. This gives a one-p The decategorifications $[\mathcal{M}_i^{\lambda}]$ are all the same of T_2 -p $\mathcal{M}od$.

Back

Clifford, Munn, Ponizovskii, Green ~1942++. Finite semigroups or monoids.

Example. \mathbb{N} , $\operatorname{Aut}(\{1, 2, 3\}) = S_3 \subset T_3 = \operatorname{End}(\{1, 2, 3\})$, groups, groupoids, categories, any \cdot closed subsets of matrices, "anything you will ever meet", *etc.*

The cell orders and equivalences:

$$\begin{aligned} x \leq_L y \Leftrightarrow \exists z \colon zx = y, \quad x \sim_L y \Leftrightarrow (x \leq_L y) \land (y \leq_L x), \\ x \leq_R y \Leftrightarrow \exists z' \colon xz' = y, \quad x \sim_R y \Leftrightarrow (x \leq_R y) \land (y \leq_R x), \\ x \leq_{LR} y \Leftrightarrow \exists z, z' \colon zxz' = y, \quad x \sim_{LR} y \Leftrightarrow (x \leq_{LR} y) \land (y \leq_{LR} x). \end{aligned}$$

Left, right and two-sided cells: Equivalence classes.

Example (group-like). The unit 1 is always in the lowest cell -e.g. $1 \le_L y$ because we can take z = y. Invertible elements g are always in the lowest cell -e.g. $g \le_L y$ because we can take $z = yg^{-1}$.

Back

Clifford, Munn, Ponizovskii, Green ~1942++. Finite semigroups or monoids.

Example (the transformation semigroup T_3). Cells - left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided \mathcal{J} (big rectangles), $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$ (small rectangles).

\mathcal{J}_{lowest}	(123), (213), (132) (231), (312), (321)	2)	$\mathcal{H}\cong S_3$
\mathcal{J}_{middle}	(122), (221) (121), (212) (221), (112)	(133), (331) (313), (131) (113), (311)	(233), (322) (323), (232) (223), (332)	$\mathcal{H}\cong S_2$
$\mathcal{J}_{biggest}$	(111	.) (222) (333)	$\mathcal{H}\cong \mathcal{S}_1$

Cute facts.

- ▶ Each *H* contains precisely one idempotent *e* or none idempotent. Each *e* is contained in some *H*(*e*). (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- ▶ Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not kill it. (Apex.)

Cute facts.

- ► Each *H* contains precisely one idempotent *e* or none idempotent. Each *e* is contained in some *H*(*e*). (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- ▶ Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not kill it. (Apex.)

Cute facts.

- ► Each H contains precisely one idempotent e or none idempotent. Each e is contained in some H(e). (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- ▶ Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not kill it. (Apex.)

 contain
 Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,

 ► Each H
 quasi-hereditary algebras, cellular algebras, etc.

▶ Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not kill it. (Apex.)

Figure: The first ever "published" braid diagram. (Page 283 from Gauß' handwritten notes, volume seven, \leq 1830).

Tits \sim **1961**++**.** Gauß' braid group is the type *A* case of more general groups.

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Type $A_3 \iff$ tetrahedron \iff symmetric group S_4 . Type $B_3 \iff$ cube/octahedron \iff Weyl group $(\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$. Type $H_3 \iff$ dodecahedron/icosahedron \iff exceptional Coxeter group. For I_8 we have a 4-gon:

Idea (Coxeter ~1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type $A_3 \leftrightarrow \text{tetra}$ fact. The symmetries are given by exchanging flags. Type $B_3 \leftrightarrow \text{cube}/\text{octanedron} \leftrightarrow \text{very group} (\mathbb{Z}/2\mathbb{Z}) \times 3$. Type $H_3 \leftrightarrow \text{dodecahedron/icosahedron} \leftrightarrow \text{exceptional Coxeter group}$. For I_8 we have a 4-gon:

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Type $A_3 \iff$ tetrahedron \iff symmetric group S_4 . Type $B_3 \iff$ cube/octahedron \iff Weyl group $(\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$. Type $H_3 \iff$ dodecahedron/icosahedron \iff exceptional Coxeter group. For I_8 we have a 4-gon:

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Type $A_3 \iff$ tetrahedron \iff symmetric group S_4 . Type $B_3 \iff$ cube/octahedron \iff Weyl group $(\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$. Type $H_3 \iff$ dodecahedron/icosahedron \iff exceptional Coxeter group. For I_8 we have a 4-gon:

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Type $A_3 \iff$ tetrahedron \iff symmetric group S_4 . Type $B_3 \iff$ cube/octahedron \iff Weyl group $(\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$. Type $H_3 \iff$ dodecahedron/icosahedron \iff exceptional Coxeter group. For I_8 we have a 4-gon:

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples. Type $A_3 \iff$ tetrahedron \iff symmetric group S_4 . Type $B_3 \iff$ And the braid relation measures the angle between hyperplanes. Type $H_3 \iff$ dodecahedron/icosahedron \iff exceptional Coxeter group. For I_8 we have a 4-gon:

$$W = \langle s, t \mid s^2 = t^2 = 1, tsts = stst \rangle.$$

$$W = \{1, s, t, st, ts, sts, tst, w_0\}$$

$$H(W) = \mathbb{C}(v) \langle H_s, H_t \mid H_s^2 = (v^{-1} - v)H_s + 1, H_t^2 = (v^{-1} - v)H_t + 1, H_tH_sH_tH_s = H_sH_tH_sH_t \rangle$$

KL basis:

$$c_1 = 1, c_s = vH_s + v^2, c_t = vH_t + v^2, etc.$$

 $c_s^2 = (1 + v^2)c_s$. (Quasi-idempotent, but "positively graded".)

Example (SAGE). The Weyl group of type B_6 . Number of elements: 46080. Number of cells: 26, named 0 (lowest) to 25 (biggest).

Cell order:

Size of the cells and *a*-value:

cell	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	576	3150	650	342	62	1
а	0	1	2	3	3	4	4	5	5	6	6	6	7	9	10	10	10	15	11	16	17	12	15	25	25	36

Size of the cells and *a*-value:

cell	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	576	3150	650	342	62	1
а	0	1	2	3	3	4	4	5	5	6	6	6	7	9	10	10	10	15	11	16	17	12	15	25	25	36

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

$$c_d c_d = \ (1 + 5v^2 + 12v^4 + 18v^6 + 18v^8 + 12v^{10} + 5v^{12} + v^{14})c_d \ + (v^2 + 4v^4 + 7v^6 + 7v^8 + 4v^{10} + v^{12})c_u \ + (v^{-4} + 5v^{-2} + 11 + 14v^2 + 11v^4 + 5v^6 + v^8)c_{121232123565}$$

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

$$a_d a_d = \ (1 + 5v^2 + 12v^4 + 18v^6 + 18v^8 + 12v^{10} + 5v^{12} + v^{14})c_d \ + (v^2 + 4v^4 + 7v^6 + 7v^8 + 4v^{10} + v^{12})c_u \ + (v^{-4} + 5v^{-2} + 11 + 14v^2 + 11v^4 + 5v^6 + v^8)c_{121232123565}$$

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

$$a_{d}a_{d} = (1 + 5v^{2} + 12v^{4} + 18v^{6} + 18v^{8} + 12v^{10} + 5v^{12} + v^{14})c_{d} + (v^{2} + 4v^{4} + 7v^{6} + 7v^{8} + 4v^{10} + v^{12})c_{u} + (v^{-4} + 5v^{-2} + 11 + 14v^{2} + 11v^{4} + 5v^{6} + v^{8})c_{121232123565}$$
Bigger friends.

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$

$$a_d a_d = \ (1 + 5v^2 + 12v^4 + 18v^6 + 18v^8 + 12v^{10} + 5v^{12} + v^{14})c_d \ + (v^2 + 4v^4 + 7v^6 + 7v^8 + 4v^{10} + v^{12})c_u$$

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

$$a_{d}a_{d} = (1+5v^{2}+12v^{4}+18v^{6}+18v^{8}+12v^{10}+5v^{12}+v^{14})c_{d} + (v^{2}+4v^{4}+7v^{6}+7v^{8}+4v^{10}+v^{12})c_{u}$$

Killed in the limit $v \rightarrow 0$.

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

 $a_d a_d = a_d$

Looks much simpler.

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

Example: Hecke algebras as non-semisimple fusion rings (Lusztig \sim 1984).

	type		A		B = C	D	E ₆
WO	vorst case $A_0^{\mathcal{H}} \leadsto \mathscr{R} \operatorname{ep}(1)$				$\nleftrightarrow \mathscr{R}\mathrm{ep}(\mathbb{Z}/2\mathbb{Z}^d)$	$A_0^{\mathcal{H}} \iff \mathscr{R} \operatorname{ep}(\mathbb{Z}/2\mathbb{Z})$	$\mathbf{A}^d) \mathbf{A}^{\mathcal{H}}_0 \leftrightsquigarrow \mathscr{R}\mathrm{ep}(S_3)$
			1		I	1	I
	type		E ₇		E ₈	F ₄	G ₂
	worst case		$\mathrm{A}_0^{\mathcal{H}} \leadsto \mathscr{R} \mathrm{ep}$	(<i>S</i> ₃)	$\mathrm{A}_0^{\mathcal{H}} \leadsto \mathscr{R}\mathrm{ep}(S_5)$	$A_0^{\mathcal{H}} \iff \mathscr{R} \operatorname{ep}(S_4)$	$\mathrm{A}_0^{\mathcal{H}} \leadsto \mathscr{SO}(3)_6$

This gives a complete classification of simples for finite Weyl type Hecke algebras.

▲ Back