Link invariants and $\mathbb{Z} / 2 \mathbb{Z}$-orbifolds

Or: What makes types ABCD special?

Daniel Tubbenhauer

Joint work in progress (take it with a grain of salt) with Catharina Stroppel and Arik Wilbert (Based on an idea of Mikhail Khovanov)

January 2018

Khovanov
 style homologies

Commutative algebra

```
Hecke algebras
```


Quantum groups

```
(Singular)
TQFTs
```


Geometry

My beloved gadget with many connections.

A quantum group of type E_{7} is type A-braided!?

Outside of type A

Outside of type A

Outside of type A

Outside of type A

Outside of type A

(1) Tangle diagrams of $\mathbb{Z} / 2 \mathbb{Z}$-orbifold tangles

- Diagrams
- Tangles in $\mathbb{Z} / 2 \mathbb{Z}$-orbifolds
(2) Topology of Artin braid groups
- The Artin braid groups: algebra
- Hyperplanes vs. configuration spaces
(3) Invariants
- Reshetikhin-Turaev-like theory for some coideals
- Polynomials and homologies for $\mathbb{Z} / 2 \mathbb{Z}$-orbifold tangles

Tangle diagrams with cone strands

Let $c \mathcal{T}$ an be the monoidal category defined as follows.

Generators. Object generators $\{+,-, c\}$, morphism generators

Relations. Redemesiter typer rations, and the $\mathbb{Z} / 2 \mathbb{Z}$-relations:

Tangle diagrams with cone strands

Tangle diagrams with cone strands

Let $c \mathcal{T}$ an be the monoidal category defined as follows.

Relations. Redemester typer ralitions, and the $\mathbb{Z} / 2 \mathbb{Z}$-relations:

Tangle diagrams with cone strands

Let $c \mathcal{T}$ an be the monoidal category defined as follows.

Relations. Redemesiser typer ralitons, and the $\mathbb{Z} / 2 \mathbb{Z}$-relations:

Tangle diagrams with cone strands

Let $c \mathcal{T}$ an be the monoidal category defined as follows.

Relations. Redemester typer ralitions, and the $\mathbb{Z} / 2 \mathbb{Z}$-relations:

Tangle diagrams with cone strands

Let $c \mathcal{T}$ an be the monoidal category defined as follows.

Relations. Redemester typer ralitions, and the $\mathbb{Z} / 2 \mathbb{Z}$-relations:

Tangle diagrams with cone strands

Let $c \mathcal{T}$ an be the monoidal category defined as follows.

Relations. Redemesiser typer ralitons, and the $\mathbb{Z} / 2 \mathbb{Z}$-relations:

Tangle diagrams with cone strands

Let $c \mathcal{T}$ an be the monoidal category defined as follows.

Relations. Redemester typer ralitions, and the $\mathbb{Z} / 2 \mathbb{Z}$-relations:

Tangle diagrams with cone strands

Let $c \mathcal{T}$ an be the monoidal category defined as follows.

Relations. Redemesiser typer ralitons, and the $\mathbb{Z} / 2 \mathbb{Z}$-relations:

Tangle diagrams with cone strands

Let $c \mathcal{T}$ an be the monoidal category defined as follows.

Exercise. The relations are actually equivalent.
Relations. Redemester typer rations, and the $\mathbb{Z} / 2 \mathbb{Z}$-relations:

$\mathbb{Z} / 2 \mathbb{Z}$-orbifolds

"Definition". An ortifod is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z} / 2 \mathbb{Z}$ acts on \mathbb{R}^{2} by rotation by π around a fixed point c :

Philosophy. c is half-way in between a regular point and a puncture:

$\mathbb{Z} / 2 \mathbb{Z}$-orbifolds

"Definition". An ortifod is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z} / 2 \mathbb{Z}$ acts on \mathbb{R}^{2} by rotation by π around a fixed point c :

Philosophy. c is half-way in between a regular point and a puncture:

$\mathbb{Z} / 2 \mathbb{Z}$-orbifolds

"Definition". An ortifod is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z} / 2 \mathbb{Z}$ acts on \mathbb{R}^{2} by rotation by π around a fixed point c :

Philosophy. c is half-way in between a regular point and a puncture:

$\mathbb{Z} / 2 \mathbb{Z}$-orbifolds

"Definition". An ortifod is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z} / 2 \mathbb{Z}$ acts on \mathbb{R}^{2} by rotation by π around a fixed point c :

Philosophy. c is half-way in between a regular point and a puncture:

$\mathbb{Z} / 2 \mathbb{Z}$-orbifolds

"Definition". An ortifod is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z} / 2 \mathbb{Z}$ acts on \mathbb{R}^{2} by rotation by π around a fixed point c :

Philosophy. c is half-way in between a regular point and a puncture:

$\mathbb{Z} / 2 \mathbb{Z}$-orbifolds

"Definition". An ortifod is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z} / 2 \mathbb{Z}$ acts on \mathbb{R}^{2} by rotation by π around a fixed point c :

Philosophy. c is half-way in between a regular point and a puncture:

$\mathbb{Z} / 2 \mathbb{Z}$-orbifolds

"Definition". An ortifod is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z} / 2 \mathbb{Z}$ acts on \mathbb{R}^{2} by rotation by π around a fixed point c :

Philosophy. c is half-way in between a regular point and a puncture:

$\mathbb{Z} / 2 \mathbb{Z}$-orbifolds

"Definition". An ortifod is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z} / 2 \mathbb{Z}$ acts on \mathbb{R}^{2} by rotation by π around a fixed point c :

Philosophy. c is half-way in between a regular point and a puncture:

$\mathbb{Z} / 2 \mathbb{Z}$-orbifolds

"Definition". An ortifod is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z} / 2 \mathbb{Z}$ acts on \mathbb{R}^{2} by rotation by π around a fixed point c :

Philosophy. c is half-way in between a regular point and a puncture:

$\mathbb{Z} / 2 \mathbb{Z}$-orbifolds

"Definition". An ortifod is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z} / 2 \mathbb{Z}$ acts on \mathbb{R}^{2} by rotation by π around a fixed point c :

Philosophy. c is half-way in between a regular point and a puncture:

$\mathbb{Z} / 2 \mathbb{Z}$-orbifolds

"Definition". An ortifod is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z} / 2 \mathbb{Z}$ acts on \mathbb{R}^{2} by rotation by π around a fixed point c :

Philosophy. c is half-way in between a regular point and a puncture:

$\mathbb{Z} / 2 \mathbb{Z}$-orbifolds

"Definition". An ortifod is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z} / 2 \mathbb{Z}$ acts on \mathbb{R}^{2} by rotation by π around a fixed point c :

Philosophy. c is half-way in between a regular point and a puncture:

$\mathbb{Z} / 2 \mathbb{Z}$-orbifolds

"Definition". An ortifod is locally modeled on the standard Euclidean space modulo an action of some finite group.
Main example. $\mathbb{Z} / 2 \mathbb{Z}$ acts

Philosophy. c is half-way in between a regular point and a puncture:

Pioneers of algebra

Let「 be a - Coxeter graph

Artin ~ 1925, Tits $\sim 1961+$. The Artin braid groups and its Coxeter group quotients are given by generators-relations:

$$
\begin{aligned}
& \mathcal{A r}_{\Gamma}=\langle b_{i} \mid \underbrace{\cdots b_{i} b_{j} b_{i}}_{m_{i j} \text { factors }}=\underbrace{\cdots b_{j} b_{i} b_{j}}_{m_{i j} \text { factors }}\rangle \\
& \not \mathcal{W}_{\Gamma}=\langle s_{i} \mid s_{i}^{2}=1, \underbrace{\cdots s_{i} s_{j} s_{i}}_{m_{i j} \text { factors }}=\underbrace{\cdots s_{j} s_{i} s_{j}}_{m_{i j} \text { factors }}\rangle
\end{aligned}
$$

Artin braid groups generalize classical braid groups, Coxeter groups Weyl groups.

We want to understand these better.

Pioneers of algebra

Let 「 be a > Coxeter graph

Artin ~ 1925, Tits $\sim 1961+$. The Artin braid groups and its Coxeter group quotients are given by generators-relations:

Only algebra:
No "interpretation" yet.

$$
\begin{aligned}
& \mathcal{A r}_{\Gamma}=\langle b_{i} \mid \underbrace{\cdots b_{i} b_{j} b_{i}}_{m_{i j} \text { factors }}=\underbrace{\cdots b_{j} b_{i} b_{j}}_{m_{i j} \text { factors }}\rangle \\
& \not \mathcal{W}_{\Gamma}=\langle s_{i} \mid s_{i}^{2}=1, \underbrace{\cdots s_{i} s_{j} s_{i}}_{m_{i j} \text { factors }}=\underbrace{\cdots s_{j} s_{i} s_{j}}_{m_{i j} \text { factors }}\rangle
\end{aligned}
$$

Artin braid groups generalize classical braid groups, Coxeter groups Weyl groups.

We want to understand these better.

I follow hyperplanes

$\mathcal{W}_{\mathrm{A}_{2}}=\langle s, t\rangle$ acts faithfully on \mathbb{R}^{2} by reflecting in hyperplanes (for each reflection):

$\mathcal{W}_{\mathrm{A}_{2}}$ acts freely on $\mathrm{M}_{\mathrm{A}_{2}}=\mathbb{R}^{2} \backslash$ hyperplanes. Set $\mathrm{N}_{\mathrm{A}_{2}}=\mathrm{M}_{\mathrm{A}_{2}} / \mathcal{W}_{\mathrm{A}_{2}}$.

I follow hyperplanes

$\mathcal{W}_{\mathrm{A}_{2}}=\langle s, t\rangle$ acts faithfully on \mathbb{R}^{2} by reflecting in hyperplanes (for each reflection):

$\mathcal{W}_{\mathrm{A}_{2}}$ acts freely on $\mathrm{M}_{\mathrm{A}_{2}}=\mathbb{R}^{2} \backslash$ hyperplanes. Set $\mathrm{N}_{\mathrm{A}_{2}}=\mathrm{M}_{\mathrm{A}_{2}} / \mathcal{W}_{\mathrm{A}_{2}}$.

I follow hyperplanes

$\mathcal{W}_{\mathrm{A}_{2}}=\langle s, t\rangle$ acts faithfully on \mathbb{R}^{2} by reflecting in hyperplanes (for each reflection):

$\mathcal{W}_{\mathrm{A}_{2}}$ acts freely on $\mathrm{M}_{\mathrm{A}_{2}}=\mathbb{R}^{2} \backslash$ hyperplanes. Set $\mathrm{N}_{\mathrm{A}_{2}}=\mathrm{M}_{\mathrm{A}_{2}} / \mathcal{W}_{\mathrm{A}_{2}}$.

I follow hyperplanes

$\mathcal{W}_{\mathrm{A}_{2}}=\langle s, t\rangle$ acts faithfully on \mathbb{R}^{2} by reflecting in hyperplanes (for each reflection):

$\mathcal{W}_{\mathrm{A}_{2}}$ acts freely on $\mathrm{M}_{\mathrm{A}_{2}}=\mathbb{R}^{2} \backslash$ hyperplanes. Set $\mathrm{N}_{\mathrm{A}_{2}}=\mathrm{M}_{\mathrm{A}_{2}} / \mathcal{W}_{\mathrm{A}_{2}}$.

I follow hyperplanes

$\mathcal{W}_{\mathrm{A}_{2}}=\langle s, t\rangle$ acts faithfully on \mathbb{R}^{2} by reflecting in hyperplanes (for each reflection):

Coxeter ~ 1934, Tits ~ 1961. This works in ridiculous generality.
(Up to some minor technicalities in the infinite case.)

$\mathcal{W}_{\mathrm{A}_{2}}$ acts freely on $\mathrm{M}_{\mathrm{A}_{2}}=\mathbb{R}^{2} \backslash$ hyperplanes. Set $\mathrm{N}_{\mathrm{A}_{2}}=\mathrm{M}_{\mathrm{A}_{2}} / \mathcal{W}_{\mathrm{A}_{2}}$.

I follow hyperplanes

$\mathcal{W}_{\mathrm{A}_{2}}=\langle s, t\rangle$ acts faithfully on \mathbb{R}^{2} by reflecting in hyperplanes (for each reflection):

$\mathcal{W}_{\mathrm{A}_{2}}$ acts freely on $\mathrm{M}_{\mathrm{A}_{2}}=\mathbb{R}^{2} \backslash$ hyperplanes. Set $\mathrm{N}_{\mathrm{A}_{2}}=\mathrm{M}_{\mathrm{A}_{2}} / \mathcal{W}_{\mathrm{A}_{2}}$.

Complexifying the action: $\mathbb{R}^{2} \rightsquigarrow \mathbb{C}^{2}, \mathrm{M}_{\mathrm{A}_{2}} \rightsquigarrow \mathrm{M}_{\mathrm{A}_{2}}^{\mathrm{C}}, \mathrm{N}_{\mathrm{A}_{2}} \rightsquigarrow \mathrm{~N}_{\mathrm{A}_{2}}^{\mathrm{C}}$. Then:

$$
\pi_{1}\left(\mathrm{~N}_{\mathrm{A}_{2}}^{\mathrm{C}}\right) \cong \mathscr{A} r_{\mathrm{A}_{2}}=\left\langle\boldsymbol{b}_{s}, b_{t} \mid b_{s} b_{t} b_{s}=\boldsymbol{b}_{t} b_{s} b_{t}\right\rangle
$$

I follow hyperplanes

$\mathcal{W}_{\mathrm{A}_{2}}=\langle s, t\rangle$ acts faithfully on \mathbb{R}^{2} by reflecting in hyperplanes (for each reflection):

$\mathcal{W}_{\mathrm{A}_{2}}$ acts freely on $\mathrm{M}_{\mathrm{A}_{2}}=\mathbb{R}^{2} \backslash$ hyperplanes. Set $\mathrm{N}_{\mathrm{A}_{2}}=\mathrm{M}_{\mathrm{A}_{2}} / \mathcal{W}_{\mathrm{A}_{2}}$.

Complexifying the action: $\mathbb{R}^{2} \rightsquigarrow \mathbb{C}^{2}, \mathrm{M}_{\mathrm{A}_{2}} \rightsquigarrow \mathrm{M}_{\mathrm{A}_{2}}^{\mathbb{C}}, \mathrm{N}_{\mathrm{A}_{2}} \rightsquigarrow \mathrm{~N}_{\mathrm{A}_{2}}^{\mathrm{C}}$. Then:

$$
\pi_{1}\left(\mathrm{~N}_{\mathrm{A}_{2}}^{\mathrm{C}}\right) \cong \mathscr{A} r_{\mathrm{A}_{2}}=\left\langle\boldsymbol{b}_{s}, b_{t} \mid b_{s} b_{t} b_{s}=\boldsymbol{b}_{t} b_{s} b_{t}\right\rangle
$$

I follow hyperplanes

$\mathcal{W}_{\mathrm{A}_{2}}=\langle s, t\rangle$ acts faithfully on \mathbb{R}^{2} by reflecting in hyperplanes (for each reflection):

$\mathcal{W}_{\mathrm{A}_{2}}$ acts freely on $\mathrm{M}_{\mathrm{A}_{2}}=\mathbb{R}^{2} \backslash$ hyperplanes. Set $\mathrm{N}_{\mathrm{A}_{2}}=\mathrm{M}_{\mathrm{A}_{2}} / \mathcal{W}_{\mathrm{A}_{2}}$.

Complexifying the action: $\mathbb{R}^{2} \rightsquigarrow \mathbb{C}^{2}, \mathrm{M}_{\mathrm{A}_{2}} \rightsquigarrow \mathrm{M}_{\mathrm{A}_{2}}^{\mathbb{C}}, \mathrm{N}_{\mathrm{A}_{2}} \rightsquigarrow \mathrm{~N}_{\mathrm{A}_{2}}^{\mathrm{C}}$. Then:

$$
\pi_{1}\left(\mathrm{~N}_{\mathrm{A}_{2}}^{\mathrm{C}}\right) \cong \mathscr{A} r_{\mathrm{A}_{2}}=\left\langle\boldsymbol{b}_{s}, b_{t} \mid b_{s} b_{t} b_{s}=\boldsymbol{b}_{t} b_{s} b_{t}\right\rangle
$$

I follow hyperplanes

$\mathcal{W}_{\mathrm{A}_{2}}=\langle s, t\rangle$ acts faithfully on \mathbb{R}^{2} by reflecting in hyperplanes (for each reflection):

$\mathcal{W}_{\mathrm{A}_{2}}$ acts freely on $\mathrm{M}_{\mathrm{A}_{2}}=\mathbb{R}^{2} \backslash$ hyperplanes. Set $\mathrm{N}_{\mathrm{A}_{2}}=\mathrm{M}_{\mathrm{A}_{2}} / \mathcal{W}_{\mathrm{A}_{2}}$.

Complexifying the action: $\mathbb{R}^{2} \rightsquigarrow \mathbb{C}^{2}, \mathrm{M}_{\mathrm{A}_{2}} \rightsquigarrow \mathrm{M}_{\mathrm{A}_{2}}^{\mathbb{C}}, \mathrm{N}_{\mathrm{A}_{2}} \rightsquigarrow \mathrm{~N}_{\mathrm{A}_{2}}^{\mathrm{C}}$. Then:

$$
\pi_{1}\left(\mathrm{~N}_{\mathrm{A}_{2}}^{\mathrm{C}}\right) \cong \mathscr{A} r_{\mathrm{A}_{2}}=\left\langle\boldsymbol{b}_{s}, b_{t} \mid b_{s} b_{t} b_{s}=\boldsymbol{b}_{t} b_{s} b_{t}\right\rangle
$$

I follow hyperplanes

$\mathcal{W}_{\mathrm{A}_{2}}=\langle s, t\rangle$ acts faithfully on \mathbb{R}^{2} by reflecting in hyperplanes (for each reflection):

Brieskorn ~ 1971, van der Lek $\boldsymbol{\sim}$ 1983. This works in ridiculous generality.
(Up to some minor technicalities in the infinite case.)
$\mathcal{W}_{\mathrm{A}_{2}}$ acts freely on $\mathrm{M}_{\mathrm{A}_{2}}=\mathbb{R}^{2} \backslash$ hyperplanes. Set $\mathrm{N}_{\mathrm{A}_{2}}=\mathrm{M}_{\mathrm{A}_{2}} / \mathcal{W}_{\mathrm{A}_{2}}$.

Complexifying the action: $\mathbb{R}^{2} \rightsquigarrow \mathbb{C}^{2}, \mathrm{M}_{\mathrm{A}_{2}} \rightsquigarrow \mathrm{M}_{\mathrm{A}_{2}}^{\mathrm{C}}, \mathrm{N}_{\mathrm{A}_{2}} \rightsquigarrow \mathrm{~N}_{\mathrm{A}_{2}}^{\mathrm{C}}$. Then:

$$
\pi_{1}\left(\mathrm{~N}_{\mathrm{A}_{2}}^{\mathrm{C}}\right) \cong \mathcal{A r}_{\mathrm{A}_{2}}=\left\langle b_{s}, b_{t} \mid b_{s} b_{t} b_{s}=b_{t} b_{s} b_{t}\right\rangle
$$

Configuration spaces

Artin ~ 1925. There is a topological model of $\mathcal{A} r_{\mathrm{A}}$ via configuration spaces.

Example. Take Conf $\mathrm{A}_{\mathrm{A}_{2}}=\left(\mathbb{R}^{2}\right)^{3} \backslash$ fat diagonal $/ \mathrm{S}_{3}$. Then $\pi_{1}\left(\operatorname{Conf}_{\mathrm{A}_{2}}\right) \cong \mathcal{A r}_{\mathrm{A}_{2}}$.

Philosophy. Having a configuration spaces is the same as having braid diagrams:

Crucial. Note that - by explicitly calculating the equations defining the hyerpanes - one can directly check that:
"Hyperplane picture equals configuration space picture."

Configuration spaces

Artin ~ 1925. There is a topological model of $\mathcal{A} r_{\mathrm{A}}$ via configuration spaces.

Crucial. Note that - by explicitly calculating the equations defining the hyperplanes

- one can directly check that:
"Hyperplane picture equals configuration space picture."

Configuration spaces

Artin ~ 1925. There is a topological model of $\mathcal{A} r_{\mathrm{A}}$ via configuration spaces.

Example.	Hope. The same works for Coxeter diagrams which are "locally type ABCD", e.g.:	${ }^{-1 r_{\mathrm{A}_{2}}}$.
Philosopr	$b_{+} \mapsto \uparrow \uparrow \text { 分 } \quad b_{c} \mapsto \uparrow \text { 分 }$	diagrams:

But we can't compute the hyperplanes..

Crucial. Note that - by explicitly calculating the equations defining the hyperplanes - one can directly check that:
"Hyperplane picture equals configuration space picture."

Configuration spaces

Artin ~ 1925. There is a topological model of $\mathcal{A} r_{\mathrm{A}}$ via configuration spaces.

	Hope. The same works for Coxeter diagrams which are "locally type ABCD", e.g.:	
Example.		$A r_{\mathrm{A}_{2}}$.
Philosopr	$\begin{array}{cc}\vdots & \vdots \\ \vdots\end{array}$	diagrams:
	$b_{+} \mapsto \uparrow \uparrow \quad b_{c} \mapsto \uparrow \uparrow \text { 年 }$	

In words: The $\mathbb{Z} / 2 \mathbb{Z}$-orbifolds provide the
Crucial. framework to study Artin braid groups of classical (affine) type- one can directly c and their "glued-generalizations".
"Hyperplane picture equals configuration space picture."

Configuration spaces

Artin ~ 1925. There is a topological model of $\mathcal{A} r_{\mathrm{A}}$ via configuration spaces.

Example. Take Conf $\mathrm{A}_{\mathrm{A}_{2}}=\left(\mathbb{R}^{2}\right)^{3} \backslash$ fat diagonal $/ \mathrm{S}_{3}$. Then $\pi_{1}\left(\operatorname{Conf}_{\mathrm{A}_{2}}\right) \cong \mathcal{A r}_{\mathrm{A}_{2}}$.

Philosophy. Having a configuration spaces is the same as having braid diagrams:
Example.

Crucial. Note that - by explicitly calculating the equations defining the hyperplanes - one can directly check that:
"Hyperplane picture equals configuration space picture."

Configuration spaces

Artin ~ 1925. There is a topological model of $\mathcal{A} r_{\mathrm{A}}$ via configuration spaces.

Example. Take Conf $\mathrm{A}_{\mathrm{A}_{2}}=\left(\mathbb{R}^{2}\right)^{3} \backslash$ fat diagonal $/ \mathrm{S}_{3}$. Then $\pi_{1}\left(\operatorname{Conf}_{\mathrm{A}_{2}}\right) \cong \mathcal{A r}_{\mathrm{A}_{2}}$.

Philosophy. Having a configuration spaces is the same as having braid diagrams: Example.

Crucial. Note that - by explicitly calculating the Cequations defining the hperpilanes - one can directly check that:
"Hyperplane picture equals configuration space picture."

Configuration spaces

Artin ~ 1925. There is a topological model of $\mathcal{A} r_{\mathrm{A}}$ via configuration spaces.

Example. Take Conf $\mathrm{A}_{\mathrm{A}_{2}}=\left(\mathbb{R}^{2}\right)^{3} \backslash$ fat diagonal $/ \mathrm{S}_{3}$. Then $\pi_{1}\left(\operatorname{Conf}_{\mathrm{A}_{2}}\right) \cong \mathcal{A r}_{\mathrm{A}_{2}}$.

Philosophy. Having a configuration spaces is the same as having braid diagrams: Example.

Crucial. Note that - by explicitly calculating the equations defining the hyperplanes - one can directly check that:
"Hyperplane picture equals configuration space picture."

Configuration spaces

Artin ~ 1925. There is a topological model of $\mathcal{A} r_{\mathrm{A}}$ via configuration spaces.

Example. Take Conf $\mathrm{A}_{\mathrm{A}_{2}}=\left(\mathbb{R}^{2}\right)^{3} \backslash$ fat diagonal $/ \mathrm{S}_{3}$. Then $\pi_{1}\left(\operatorname{Conf}_{\mathrm{A}_{2}}\right) \cong \mathcal{A r}_{\mathrm{A}_{2}}$.

Philosophy. Having a configuration spaces is the same as having braid diagrams: Example.
$b_{i} b_{i}^{\prime}=b_{i}^{\prime} b_{i}$, if

- b_{i}^{\prime}

Crucial. Note that - by explicitly calculating the Cequations defining the hperpilanes - one can directly check that:
"Hyperplane picture equals configuration space picture."

Configuration spaces

Artin ~ 1925. There is a topological model of $\mathcal{A} r_{\mathrm{A}}$ via configuration spaces.

Example. Take Conf $\mathrm{A}_{\mathrm{A}_{2}}=\left(\mathbb{R}^{2}\right)^{3} \backslash$ fat diagonal $/ \mathrm{S}_{3}$. Then $\pi_{1}\left(\operatorname{Conf}_{\mathrm{A}_{2}}\right) \cong \mathcal{A r}_{\mathrm{A}_{2}}$.

Philosophy. Having a configuration spaces is the same as having braid diagrams: Example.
$b_{i} b_{i}^{\prime}=b_{i}^{\prime} b_{i}$, if

- b_{i}^{\prime}

Crucial. Note that - by explicitly calculating the Cequations defining the hperpilanes - one can directly check that:
"Hyperplane picture equals configuration space picture."

Configuration spaces

Artin \sim 1925. There is a topological model of $\mathcal{A} r_{\mathrm{A}}$ via configuration spaces.

Example. Take Conf $\mathrm{A}_{\mathrm{A}_{2}}=\left(\mathbb{R}^{2}\right)^{3} \backslash$ fat diagonal $/ \mathrm{S}_{3}$. Then $\pi_{1}\left(\operatorname{Conf}_{\mathrm{A}_{2}}\right) \cong \mathcal{A r}_{\mathrm{A}_{2}}$.

Philosophy. Having a configuration spaces is the same as having braid diagrams: Example.
$b_{i} b_{i}^{\prime}=b_{i}^{\prime} b_{i}$, if

- b_{i}^{\prime}

Crucial. Note that - by explicitly calculating the equations defining the hyperplanes - one can directly check that:
"Hyperplane picture equals configuration space picture."

Reshetikhin-Turaev theory half-way in between

Reshetikhin-Turaev $\boldsymbol{\sim}$ 1991. Construct link and tangle invariants as functors

$$
\mathrm{u} \mathcal{R} \mathcal{T}: \mathrm{u} \mathcal{T} a n \rightarrow \text { well-behaved target category. }
$$

Today: Target categories $=\mathcal{R} e p\left(\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right)\right)$ and friends.

Question. What could the $\mathbb{Z} / 2 \mathbb{Z}$-analog be?

Reshetikhin-Turaev theory half-way in between

Reshetikhin-Turaev ~ 1991. Construct link and tangle invariants as functors $\mathrm{u} \mathcal{R} \mathcal{T}: \mathrm{u} \mathcal{T}$ an \rightarrow well-behaved target category.
Today: Target categories $=\mathcal{R} e p\left(\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right)\right)$ and friends.

Question. What could the $\mathbb{Z} / 2 \mathbb{Z}$-analog be?

Reshetikhin-Turaev theory half-way in between

Reshetikhin-Turaev ~ 1991. Construct link and tangle invariants as functors $\mathrm{u} \mathcal{R} \mathcal{T}: \mathrm{u} \mathcal{T}$ an \rightarrow well-behaved target category.
Today: Target categories $=\operatorname{Rep}\left(\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right)\right)$ and friends.

Question. What could the $\mathbb{Z} / 2 \mathbb{Z}$-analog be?

Reshetikhin-Turaev theory half-way in between

Reshetikhin-Turaev $\boldsymbol{\sim}$ 1991. Construct link and tangle invariants as functors

$$
\mathrm{u} \mathcal{R} \mathcal{T}: \mathrm{u} \mathcal{T} \text { an } \rightarrow \text { well-behaved target category. }
$$

Today: Target categories $=\mathcal{R e p}\left(\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right)\right)$ and friends.

Question. What could the $\mathbb{Z} / 2 \mathbb{Z}$-analog be?

Reshetikhin-Turaev theory half-way in between

Reshetikhin-Turaev ~ 1991. Construct link and tangle invariants as functors

$$
\mathrm{u} \mathcal{R} \mathcal{T}: \mathrm{u} \mathcal{T} \text { an } \rightarrow \text { well-behaved target category. }
$$

Today: Target categories $=\mathcal{R} e p\left(\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right)\right)$ and friends.

Question. What could the $\mathbb{Z} / 2 \mathbb{Z}$-analog be?

Reshetikhin-Turaev theory half-way in between

Reshetikhin-Turaev ~ 1991. Construct link and tangle invariants as functors

$$
\mathrm{u} \mathcal{R} \mathcal{T}: \mathrm{u} \mathcal{T} \text { an } \rightarrow \text { well-behaved target category. }
$$

Today: Target categories $=\mathcal{R e p}\left(\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right)\right)$ and friends.

Question. What could the $\mathbb{Z} / 2 \mathbb{Z}$-analog be?

Reshetikhin-Turaev theory half-way in between

Reshetikhin-Turaev ~ 1991. Construct link and tangle invariants as functors

$$
\mathrm{u} \mathcal{R} \mathcal{T}: \mathrm{u} \mathcal{T} \text { an } \rightarrow \text { well-behaved target category. }
$$

Today: Target categories $=\mathcal{R e p}\left(\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right)\right)$ and friends.

Question. What could the $\mathbb{Z} / 2 \mathbb{Z}$-analog be?

Reshetikhin-Turaev theory half-way in between

Reshetikhin-Turaev ~ 1991. Construct link and tangle invariants as functors

$$
\mathrm{u} \mathcal{R} \mathcal{T}: \mathrm{u} \mathcal{T} \text { an } \rightarrow \text { well-behaved target category. }
$$

Today: Target categories $=\mathcal{R e p}\left(\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right)\right)$ and friends.

Question. What could the $\mathbb{Z} / 2 \mathbb{Z}$-analog be?

Reshetikhin-Turaev theory half-way in between

Reshetikhin-Turaev ~ 1991. Construct link and tangle invariants as functors

$$
\mathrm{u} \mathcal{R} \mathcal{T}: \mathrm{u} \mathcal{T} a n \rightarrow \text { well-behaved target category. }
$$

Today: Target categories $=\mathcal{R e p}\left(\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right)\right)$ and friends.

Question. What could the $\mathbb{Z} / 2 \mathbb{Z}$-analog be?

Reshetikhin-Turaev theory half-way in between

Reshetikhin-Turaev ~ 1991. Construct link and tangle invariants as functors

$$
\mathrm{u} \mathcal{R} \mathcal{T}: \mathrm{u} \mathcal{T} a n \rightarrow \text { well-behaved target category. }
$$

Today: Target categories $=\mathcal{R e p}\left(\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right)\right)$ and friends.

Question. What could the $\mathbb{Z} / 2 \mathbb{Z}$-analog be?

Reshetikhin-Turaev theory half-way in between

Reshetikhin-Turaev ~ 1991. Construct link and tangle invariants as functors

$$
\mathrm{u} \mathcal{R} \mathcal{T}: \mathrm{u} \mathcal{T} \text { an } \rightarrow \text { well-behaved target category. }
$$

Today: Target categories $=\mathcal{R e p}\left(\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right)\right)$ and friends.

Question. What could the $\mathbb{Z} / 2 \mathbb{Z}$-analog be?

Reshetikhin-Turaev theory half-way in between

Reshetikhin-Turaev $\boldsymbol{\sim}$ 1991. Construct link and tangle invariants as functors

$$
\mathrm{u} \mathcal{R} \mathcal{T}: \mathrm{u} \mathcal{T} \text { an } \rightarrow \text { well-behaved target category. }
$$

Today: Target categories $=\mathcal{R e p}\left(\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right)\right)$ and friends.

Question. What could the $\mathbb{Z} / 2 \mathbb{Z}$-analog be?
Orbifold-philosophy. We need something half-way in between $\mathbb{C}(\mathrm{v})$ and \mathcal{U}_{v}.

Half－way in between trivial $\subset ? ? \subset \mathcal{U}_{v}$－part I

Kulish－Reshetikhin \sim 1981． \mathcal{U}_{v} is the associative，unital $\mathbb{C}(\mathrm{v})$－algebra generated by $\mathrm{E}, \mathrm{F}, \mathrm{K}^{ \pm 1}$ subject to the usual relations． Not really important．．．

$$
\mathrm{V}_{\mathrm{v}}: \begin{array}{llll}
\mathrm{E} v_{+}=0, & \mathrm{~F} v_{+}=v_{-}, & \mathrm{K} v_{+}=\mathrm{v} v_{+}, \\
\mathrm{E} v_{-}=v_{+}, & \mathrm{F} v_{-}=0, & \mathrm{~K} v_{-}=\mathrm{v}^{-1} v_{-} . & \begin{array}{cc}
\mathrm{K} \leadsto \mathrm{v}^{-1} & \mathrm{~K} \leadsto \mathrm{v} \\
v_{-} & \stackrel{\mathrm{F}}{\mathrm{E}}
\end{array} \underset{\sim}{\Omega} \\
\hline
\end{array}
$$

Define \mathcal{U}_{v}－intertwiners：

$$
\begin{aligned}
& \checkmark: \mathbb{C}(\mathrm{v}) \rightarrow \mathrm{V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}}, \quad 1 \mapsto v_{-} \otimes v_{+}-\mathrm{v}^{-1} v_{+} \otimes v_{-}, \\
& \cap: \mathrm{V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}} \rightarrow \mathbb{C}(\mathrm{v}), \quad \begin{cases}v_{+} \otimes v_{+} \mapsto 0, & v_{+} \otimes v_{-} \mapsto 1, \\
v_{-} \otimes v_{+} \mapsto-\mathrm{v}, & v_{-} \otimes v_{-} \mapsto 0,\end{cases} \\
& \text { ソ: } \mathrm{V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}} \rightarrow \mathrm{~V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}}, \quad \text { 久 }=\mathrm{v} \| I+\mathrm{v}^{2} \frown .
\end{aligned}
$$

Half-way in between trivial $\subset ? ? \subset \mathcal{U}_{\mathrm{v}}$ - part I

Kulish-Reshetikhin \sim 1981. \mathcal{U}_{v} is the associative, unital $\mathbb{C}(\mathrm{v})$-algebra generated by $\mathrm{E}, \mathrm{F}, \mathrm{K}^{ \pm 1}$ subject to the usual relations.

Fact. \mathcal{U}_{v} is a Hopf algebra \Rightarrow We can tensor representations.
Define \mathcal{U}_{v}-intertwiners:

$$
\begin{aligned}
& v_{:} \mathbb{C}(\mathrm{v}) \rightarrow \mathrm{V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}}, \quad 1 \mapsto v_{-} \otimes v_{+}-\mathrm{v}^{-1} v_{+} \otimes v_{-}, \\
& n: \mathrm{V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}} \rightarrow \mathbb{C}(\mathrm{v}), \quad \begin{cases}v_{+} \otimes v_{+} \mapsto 0, & v_{+} \otimes v_{-} \mapsto 1, \\
v_{-} \otimes v_{+} \mapsto-\mathrm{v}, & v_{-} \otimes v_{-} \mapsto 0,\end{cases} \\
& \text { 以: } \mathrm{V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}} \rightarrow \mathrm{~V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}}, \quad \text { 久 = vll}+\mathrm{v}^{2} \bigcup .
\end{aligned}
$$

Half-way in between trivial $\subset ? ? \subset \mathcal{U}_{\mathrm{v}}$ - part I

Kulish-Reshetikhin \sim 1981. \mathcal{U}_{v} is the associative, unital $\mathbb{C}(\mathrm{v})$-algebra generated by $\mathrm{E}, \mathrm{F}, \mathrm{K}^{ \pm 1}$ subject to the usual relations.

$$
\mathrm{V}_{\mathrm{v}}: \begin{array}{lll|l|}
\mathrm{E} \mathrm{v}_{+}=0, & \mathrm{~F} v_{+}=v_{-}, & \mathrm{K} v_{+}=\mathrm{V} v_{+}, & \mathrm{K} \rightsquigarrow \mathrm{v}^{-1} \\
\mathrm{E} \mathrm{v}_{-}=\mathrm{v}_{+}, & \mathrm{F} v_{-}=0, & \mathrm{~K} \mathrm{~N}_{-} \\
\mathrm{v}_{-}=\mathrm{v}^{-1} v_{-} . & \mathrm{F} \\
\mathrm{v}_{-} & v_{+} \\
\hline
\end{array}
$$

Example. $\left(\cap^{\circ}\right)(1)=_\left(v_{-} \otimes v_{+}\right)-\mathrm{v}^{-1} \cap\left(v_{+} \otimes v_{-}\right)=-\mathrm{v}-\mathrm{v}^{-1}$.

$$
\begin{aligned}
& : \mathbb{C}(\mathrm{v}) \rightarrow \mathrm{V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}}, \quad 1 \mapsto v_{-} \otimes v_{+}-\mathrm{v}^{-1} v_{+} \otimes v_{-}, \\
& n: \mathrm{V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}} \rightarrow \mathbb{C}(\mathrm{v}), \quad \begin{cases}v_{+} \otimes v_{+} \mapsto 0, & v_{+} \otimes v_{-} \mapsto 1, \\
v_{-} \otimes v_{+} \mapsto-\mathrm{v}, & v_{-} \otimes v_{-} \mapsto 0,\end{cases} \\
& \mathrm{Y}: \mathrm{V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}} \rightarrow \mathrm{~V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}}, \quad \text { Y }=\mathrm{v} \| I+\mathrm{v}^{2} \bigcup .
\end{aligned}
$$

Half-way in between trivial $\subset ? ? \subset \mathcal{U}_{\mathrm{v}}$ - part I

Kulish-Reshetikhin \sim 1981. \mathcal{U}_{v} is the associative, unital $\mathbb{C}(\mathrm{v})$-algebra generated by E, F, $K^{ \pm 1} \varsigma \quad$ Example. We can not see the cone strands.

Half-way in between trivial $\subset ? ? \subset \mathcal{U}_{\mathrm{v}}$ - part I

Kulish-Reshetikhin \sim 1981. \mathcal{U}_{v} is the associative, unital $\mathbb{C}(\mathrm{v})$-algebra generated by E, F, $K^{ \pm 1} \varsigma \quad$ Example. We can not see the cone strands.

Half-way in between trivial $\subset ? ? \subset \mathcal{U}_{\mathrm{v}}$ - part II

Let $\mathrm{c} \mathcal{U}_{\mathrm{v}}$ be the ${ }^{\text {coideal }}$ subalgebra of \mathcal{U}_{v} generated by $\mathrm{B}=\mathrm{v}^{-1} \mathrm{EK}^{-1}+\mathrm{F}$.

$$
\mathrm{V}_{\mathrm{v}}: \quad \mathrm{B} v_{+}=v_{-}, \quad \mathrm{B} v_{-}=v_{+} . \quad v_{-} \underset{\mathrm{B}}{\stackrel{\mathrm{~B}}{\leftrightarrows}} v_{+}
$$

Define $\subset \mathcal{U}_{\mathrm{v}}$-intertwiners:

$$
\begin{aligned}
& \dagger: \mathrm{V}_{\mathrm{v}} \rightarrow \mathrm{~V}_{\mathrm{v}}, \quad v_{+} \mapsto v_{-}, \quad v_{-} \mapsto v_{+}, \\
& \boldsymbol{\psi}: \mathbb{C}(\mathrm{v}) \rightarrow \mathrm{V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}}, \quad 1 \mapsto \mathrm{v}_{+} \otimes \mathrm{v}_{+}-\mathrm{v}^{-1} v_{-} \otimes \mathrm{v}_{-}, \\
& \boldsymbol{\mu}: \mathrm{V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}} \rightarrow \mathbb{C}(\mathrm{v}), \quad \begin{cases}v_{+} \otimes v_{+} \mapsto-\mathrm{v}, & v_{+} \otimes v_{-} \mapsto 0, \\
v_{-} \otimes v_{+} \mapsto 0, & v_{-} \otimes v_{-} \mapsto 1,\end{cases} \\
& \boldsymbol{K}=\dagger=\boldsymbol{N} \text { and } \boldsymbol{\forall}=1=\boldsymbol{N} \text {. }
\end{aligned}
$$

Aside. This drops out of a coideal version of Schur-Weyl duality.

Half-way in between trivial $\subset ? ? \subset \mathcal{U}_{\mathrm{v}}$ - part II

Let $\mathrm{c} \mathcal{U}_{\mathrm{v}}$ be the ${ }^{\text {coideal }}$ subalgebra of \mathcal{U}_{v} generated by $\mathrm{B}=\mathrm{v}^{-1} \mathrm{EK}^{-1}+\mathrm{F}$.

$$
\mathrm{V}_{\mathrm{v}}: \mathrm{B} v_{+}=v_{-}, \quad \mathrm{B} v_{-}=v_{+} . \quad v_{-} \underset{\mathrm{B}}{\stackrel{\mathrm{~B}}{\leftrightarrows}} v_{+}
$$

Define $c \mathcal{U}_{\mathrm{v}}$-intertv Observation. These are not \mathcal{U}_{v}-equivariant, but ${ }^{\cup}$ and \cap are $c \mathcal{U}_{v}$-equivariant.

$$
\boldsymbol{\psi}: \mathbb{C}(\mathrm{v}) \rightarrow \mathrm{V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}}, \quad 1 \mapsto \mathrm{v}_{+} \otimes \mathrm{v}_{+}-\mathrm{v}^{-1} \mathrm{v}_{-} \otimes \mathrm{v}_{-},
$$

$$
\boldsymbol{m}: \mathrm{V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}} \rightarrow \mathbb{C}(\mathrm{v}), \quad \begin{cases}v_{+} \otimes v_{+} \mapsto-\mathrm{v}, & v_{+} \otimes v_{-} \mapsto 0 \\ v_{-} \otimes v_{+} \mapsto 0, & v_{-} \otimes v_{-} \mapsto 1\end{cases}
$$

$$
\mathbb{K}=\dagger=\boldsymbol{N} \quad \text { and } \quad \mathbb{V}=1=\boldsymbol{N}
$$

Aside. This drops out of a coideal version of Schur-Weyl duality.

Half-way in between trivial $\subset ? ? \subset \mathcal{U}_{\mathrm{v}}$ - part II

Let $\mathrm{c} \mathcal{U}_{\mathrm{v}}$ be the ${ }^{\text {coideal }}$ subalgebra of \mathcal{U}_{v} generated by $\mathrm{B}=\mathrm{v}^{-1} \mathrm{EK}^{-1}+\mathrm{F}$.

$$
\mathrm{V}_{\mathrm{v}}: \mathrm{B} v_{+}=v_{-}, \quad \mathrm{B} v_{-}=v_{+} . \quad v_{-} \stackrel{\mathrm{B}}{\stackrel{\mathrm{~B}}{\leftrightarrows}} v_{+}
$$

Define $c^{〔}$ Example. $(\ldots \circ \smile)(1)=m\left(v_{-} \otimes v_{+}\right)-v^{-1} \rightsquigarrow\left(v_{+} \otimes v_{-}\right)=0$

$$
\begin{aligned}
& \stackrel{\perp}{\dagger} \circ+=1 \text { but }+\neq 1 \text {. } \\
& \mathrm{r}: \mathbb{C}(\mathrm{v}) \rightarrow \mathrm{v}_{\mathrm{v}} \otimes \mathrm{v}_{\mathrm{v}}, \quad 1 \mapsto \mathrm{v}_{+} \otimes \mathrm{v}_{+}-\mathrm{v} \quad \mathrm{v}_{-} \otimes \mathrm{v}_{-} \text {, } \\
& \boldsymbol{m}: \mathrm{V}_{\mathrm{v}} \otimes \mathrm{~V}_{\mathrm{v}} \rightarrow \mathbb{C}(\mathrm{v}), \quad \begin{cases}v_{+} \otimes v_{+} \mapsto-\mathrm{v}, & v_{+} \otimes v_{-} \mapsto 0, \\
v_{-} \otimes v_{+} \mapsto 0, & v_{-} \otimes v_{-} \mapsto 1,\end{cases} \\
& \boldsymbol{K}=\dagger=\boldsymbol{N} \text { and } \boldsymbol{V}=1=\boldsymbol{N} .
\end{aligned}
$$

Aside. This drops out of a coideal version of Schur-Weyl duality.

Half-way in between trivial $\subset ? ? \subset \mathcal{U}_{\mathrm{v}}$ - part II

Let $c \mathcal{U}_{\mathrm{v}}$ be the \qquad subalgebra of \mathcal{U}_{v} generated by $\mathrm{B}=\mathrm{v}^{-1} \mathrm{EK}^{-1}+\mathrm{F}$.

Aside. This drops out of a coideal vesion of Schur-Weyl duality.

Half-way in between trivial $\subset ? ? \subset \mathcal{U}_{\mathrm{v}}$ - part II

Let $\mathrm{c} \mathcal{U}_{\mathrm{v}}$ be the subalgebra of \mathcal{U}_{v} generated by $\mathrm{B}=\mathrm{v}^{-1} \mathrm{EK}^{-1}+\mathrm{F}$.

Aside. This drops out of a coideal vesion of Schur-Weyl duality.

Half-way in between trivial $\subset ? ? \subset \mathcal{U}_{\mathrm{v}}$ - part II

Let $c \mathcal{U}_{\mathrm{v}}$ be the ${ }^{\text {coideal }}$ subalgebra of \mathcal{U}_{v} generated by $\mathrm{B}=\mathrm{v}^{-1} \mathrm{EK}^{-1}+\mathrm{F}$.

Aside. This drops out of a
coideal version of Schur-Weyl duality.

Back to diagrams

Let $\mathrm{m} \mathscr{A} r \mathrm{C}$ be the monoidal category defined as follows.

Generators. Object generator $\{0\}$, morphism generators

- cups and caps

m cups and caps

markers

Relations. "Coideal" relations:

o circle removal m circle removals
men

Back to diagrams

Let $\mathrm{m} A$ Arc be the monoidal category defined as follows.

marker isotopies

A polynomial invariant à la Jones \& Kauffman

We define a monoidal functor $\left\rangle_{c}: c \mathcal{T} a n \rightarrow m \mathcal{A r c}\right.$ as follows. On objects,

$$
\langle+\rangle_{\mathrm{c}}=0, \quad\langle-\rangle_{\mathrm{c}}=0, \quad\langle\mathrm{c}\rangle_{\mathrm{c}}=\varnothing
$$

and on morphisms by

> The skein relations.

$$
\begin{aligned}
& \langle\hat{*}\rangle=q\left|1-q^{2} \bigcup \cdot\langle\lambda\rangle=-q^{2} \bigcup+a^{-2}\right| \mid \\
& \langle\boldsymbol{\langle 人}\rangle=\rangle \operatorname{mos}\langle\boldsymbol{\lambda}\rangle=\text { = } \\
& \text { adds a marker }
\end{aligned}
$$

does not add a marker

A polynomial invariant à la Jones \& Kauffman

We define a monoidal functor $\left\rangle_{c}: c \mathcal{T} a n \rightarrow m \mathcal{A r c}\right.$ as follows. On objects,

$$
\langle+\rangle_{\mathrm{c}}=0, \quad\langle-\rangle_{\mathrm{c}}=0, \quad\langle\mathrm{c}\rangle_{\mathrm{c}}=\varnothing
$$

and on morphisms by

> The skein relations.

does not add a marker

A polynomial invariant à la Jones \& Kauffman

We define a monoidal functor $\left\rangle_{c}: c \mathcal{T} a n \rightarrow m \mathcal{A r c}\right.$ as follows. On objects,

$$
\langle+\rangle_{\mathrm{c}}=0, \quad\langle-\rangle_{\mathrm{c}}=0, \quad\langle\mathrm{c}\rangle_{\mathrm{c}}=\varnothing
$$

and on morphisms by

A polynomial invariant à la Jones \& Kauffman

We define a monoidal functor $\langle-\rangle_{c}: c \mathcal{T} a n \rightarrow m \mathcal{A r c}$ as follows. On objects, $\langle+\rangle_{c}=0, \quad\langle-\rangle_{c}=0, \quad\langle c\rangle_{c}=\varnothing$

does not add a marker

A polynomial invariant à la Jones \& Kauffman

We define a monoidal functor $\langle-\rangle_{c}: c \mathcal{T} a n \rightarrow m \mathcal{A r c}$ as follows. On objects,

$$
\langle+\rangle_{c}=0, \quad\langle-\rangle_{c}=0, \quad\langle c\rangle_{c}=\varnothing
$$

Example. Here the essential Hopf link.

A polynomial invariant à la Jones \& Kauffman

We define a monoidal functor $\langle-\rangle_{c}: c \mathcal{T} a n \rightarrow m \mathcal{A r c}$ as follows. On objects,

$$
\langle+\rangle_{c}=0, \quad\langle-\rangle_{c}=0, \quad\langle c\rangle_{c}=\varnothing
$$

Example. Here the essential Hopf link.

A polynomial invariant à la Jones \& Kauffman

We define a monoidal functor $\left\rangle_{c}: c \mathcal{T} a n \rightarrow m \mathcal{A r c}\right.$ as follows. On objects,

does not add a marker

A polynomial invariant à la Jones \& Kauffman

We define a monoidal functor $\left\rangle_{c}: c \mathcal{T} a n \rightarrow m \mathcal{A r c}\right.$ as follows. On objects,

does not add a marker

A polynomial invariant à la Jones \& Kauffman

We define a monoidal functor $\left\rangle_{c}: c \mathcal{T} a n \rightarrow m \mathcal{A r c}\right.$ as follows. On objects,

$$
\langle+\rangle_{\mathrm{c}}=0, \quad\langle-\rangle_{\mathrm{c}}=0, \quad\langle\mathrm{c}\rangle_{\mathrm{c}}=\varnothing
$$

and on morphisms by

A homological invariant à la Khovanov \& Rozansky. Everything generalizes to higher ranks.
("Webs", "foams", etc.)
adds a marker
$\langle\lambda\rangle=\backslash \bmod \langle\boldsymbol{\gamma}\rangle=$ 人
does not add a marker

Tangle diagrams with cone strands

 directly check that
"Hyperplane picture equalk configuration space picture"

A version of Schur's remazklable dualitye

$$
u_{1}\left(s_{2}\right) \subset v_{1} \otimes \cdots v_{v} \circ \mathscr{r}_{(A)}
$$

$$
c u\left(\theta h_{1}\right) \underbrace{v_{0} \oplus}
$$

Ehrig-Stroppel, Bao-Wang \sim 2013. The actions of $c \mathcal{R}_{2}\left(\mathrm{pl}_{1}\right)$ and $w_{1}(\mathrm{D}) x^{2} / 2 / 2$ on $\mathrm{Y}_{\mathrm{y}}^{\mathrm{y}}$ d commute and generate each other's centralizer.

I follow hyperplanes

$W_{\mathrm{A}}-(\alpha, 1)$ acts faithfully on \mathbb{R}^{2} by reffecting in hyperplanes (for each reflection):

Complexifying the action: $\mathbb{R}^{2} \cdots \mathrm{C}^{2}, \mathbb{M}_{\Lambda_{2}} \sim \mathbb{M}_{\lambda_{2}}^{c}, \mathbb{F}_{\lambda_{2}} \cdots \mathbb{F}_{\Lambda_{1}}^{c}$. Then:

Aside. This drops out of a \longrightarrow of Schur-Weyl duality.

A polynomial invariant à la Jones \& Kauffman

There is still much to do...

Tangle diagrams with cone strands

 Crucial. Note that - by eqpicitly calculating the cac directly check that
"Hyperplane picture equals configuration space picture"

A version of Schur's remarkable duality

$$
u_{1}\left(s_{2}\right) \subset v_{1} \otimes \cdots v_{v} \circ \mathscr{r}_{(A)}
$$

$$
c u\left(\theta h_{1}\right) \underbrace{v_{0} \oplus v_{V}}_{\sin } \operatorname{rl}_{(\mathrm{D}) w^{x} / \partial z}
$$

Ehrig-Stroppel, Bao-Wang \sim 2013. The actions of $c \mathcal{H}_{3}\left(\mathrm{pl}_{1}\right)$ and $S_{1}(\mathrm{D}) x^{2} / 2 \mathrm{~L}$ on $y_{y}^{\text {Pd }}$ commute and generate each other's centralizer

A polynomial invariant à la Jones \& Kauffman
We define a monoidal functor $\{-\} ;$: cTan \rightarrow racc as follows. On objects

I follow hyperplanes

$w_{A,}-(t, 1)$ acts faithfully on \mathbb{R}^{2} by reffecting in hyperplanes (for each reflection):

$W_{A_{2}}$ acts freely on $\mathrm{K}_{\mathrm{A}_{2}}-\mathbb{R}^{2} \backslash$ hyperplanes Set $\mathrm{N}_{\mathrm{A}_{2}}-\mathrm{H}_{\mathrm{A}_{2}} / W_{\mathrm{AA}^{\prime}}$.

Aside. This drops out of a \longrightarrow of Schur-Weyl duality.
\qquad

A polynomial invariant à la Jones \& Kauffman

We define a menoidal functor (C) : c Tan \rightarrow narc as follows. On objects,

Thanks for your attention!

$$
x=Y_{n}=\frac{11}{n}
$$

$$
\in \operatorname{Hom}_{\mathrm{c} \mathcal{T} a n}(\mathrm{c}-,-\mathrm{c})
$$

I see them as diagrams - no topological interpretation intended at the moment.

$$
\left.y_{t}=\right\}_{0}=10
$$

Satake ~1956 ("V-manifold"), Thurston ~1978, Haefliger ~1990

 ("orbihedron"), etc. A triple Orb $=\left(\mathrm{X}_{0 r b}, \cup_{i} \mathrm{U}_{i}, \mathrm{G}_{i}\right)$ of a Hausdorff space $\mathrm{X}_{0 r b}$, a covering $U_{i} U_{i}$ of it (closed under finite intersections) and a collection of finite groups G_{i} is called an orbifold (of dimension m) if for each U_{i} there exists a open subset $\mathrm{V}_{i} \subset \mathbb{R}^{m}$ carrying an action of G_{i}, and some compatibility conditions.Fact. A two-dimensional ("smooth") orbifold is locally modeled on:
\triangleright Cone points \rightsquigarrow rotation action of $\mathbb{Z} / \mathbb{\mathbb { Z }}$.
\triangleright Reflector corners $u \rightarrow$ reflection action of the dihedral group.
\triangleright Mirror points \rightsquigarrow reflection action of $\mathbb{Z} / 2 \mathbb{Z}$.
Satake ~1956 ("V-manifold"), Thurston ~1978, Haefliger ~1990
("or Not super important. Only one thing to stress: , a cove Topologically an orbifold is sometimes the same as its underlying space. grou So all notions concerning orbifolds have to take this into account. pen subset $\mathrm{V}_{i} \subset \mathbb{R}^{m}$ carrying an action of G_{i}, and some compatibility conditions.

Fact. A two-dimensional ("smooth") orbifold is locally modeled on:
\triangleright Cone points \leadsto rotation action of $\mathbb{Z} / / \mathbb{\mathbb { Z }}$.
\triangleright Reflector corners $\rightsquigarrow \rightarrow$ reflection action of the dihedral group.
\triangleright Mirror points \rightsquigarrow reflection action of $\mathbb{Z} / 2 \mathbb{Z}$.

Satake ~1956 ("V-manifold"), Thurston ~1978, Haefliger ~1990

("or Not super important. Only one thing to stress: , a cove Topologically an orbifold is sometimes the same as its underlying space. grou So all notions concerning orbifolds have to take this into account. pen Quote by Thurston about the name orbifold:
"This terminology should not be blamed on me. It was obtained by a democratic process in my course of 1976-77. An orbifold is something with many folds; unfortunately, the word 'manifold' already has a different definition. I tried 'foldamani', which was quickly displaced by the suggestion of 'manifolded'. After two months of patiently saying 'no, not a manifold, a manifoldead,' we held a vote, and 'orbifold' won."

Satake ~1956 ("V-manifold"), Thurston ~1978, Haefliger ~1990

 ("orbihedron"), etc. A triple Orb $=\left(\mathrm{X}_{0 r b}, \cup_{i} \mathrm{U}_{i}, \mathrm{G}_{i}\right)$ of a Hausdorff space $\mathrm{X}_{0 r b}$, a covering $U_{i} U_{i}$ of it (closed under finite intersections) and a collection of finite groups G_{i} is called an orbifold (of dimension m) if for each U_{i} there exists a open subset $\mathrm{V}_{i} \subset \mathbb{R}^{m}$ carrying an action of G_{i}, and some compatibility conditions.Fact. A two-dimensional ("smooth") orbifold is locally modeled on:
\triangleright Cone points \rightsquigarrow rotation action of $\mathbb{Z} / \mathbb{\mathbb { Z }}$.
\triangleright Reflector corners $u \rightarrow$ reflection action of the dihedral group.
\triangleright Mirror points \rightsquigarrow reflection action of $\mathbb{Z} / 2 \mathbb{Z}$.

Figure: The Coxeter graphs of finite type.

Example. The type A family is given by the symmetric groups using the simple transpositions as generators.
(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Figure: The Coxeter graphs of finite type.

Example. The type A family is given by the symmetric groups using the simple transpositions as generators.
(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Example. The type A family is given by the symmetric groups using the simple transpositions as generators.
(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Example. The type A family is given by the symmetric groups using the simple transpositions al want to answer ??? in this case, and partially in general.
(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Figure: The Coxeter graphs of affine type.
Example. The type $\widetilde{\mathrm{A}}_{n}$ corresponds to the affine Weyl group for $\mathfrak{s l}_{n}$.
(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

positive root	$\alpha_{1}=(1,-1,0)$	$\alpha_{2}=(0,1,-1)$	$\alpha_{1}+\alpha_{2}=(1,0,-1)$
reflection action	$x_{1} \leftrightarrow x_{2}$	$x_{2} \leftrightarrow x_{3}$	$x_{1} \leftrightarrow x_{3}$
-hyperplane	$\{(x, x, 0)\}$	$\{(0, y, y)\}$	$\{(z, 0, z)\}$

Hyperplane equations: $\left\{(x, y, z) \in\left(\mathbb{R}^{2}\right)^{3} \mid x=y\right.$ or $y=z$ or $\left.x=z\right\}$
This is $\mathfrak{g l}$-notation.

positive root	$\alpha_{1}=(1,-1,0)$	$\alpha_{2}=(0,1,-1)$	$\alpha_{1}+\alpha_{2}=(1,0,-1)$
reflection action	$x_{1} \leftrightarrow x_{2}$	$x_{2} \leftrightarrow x_{3}$	$x_{1} \leftrightarrow x_{3}$
\perp-hyperplane	$\{(x, x, 0)\}$	$\{(0, y, y)\}$	$\{(z, 0, z)\}$

Hyperplane equations: $\left\{(x, y, z) \in\left(\mathbb{R}^{2}\right)^{3} \mid x=y\right.$ or $y=z$ or $\left.x=z\right\}$
Observe that this matches the diagonal of the configuration space picture.

positive root	$\alpha_{1}=(1,-1,0)$	$\alpha_{2}=(0,1,-1)$	$\alpha_{1}+\alpha_{2}=(1,0,-1)$
reflection action	$x_{1} \leftrightarrow x_{2}$	$x_{2} \leftrightarrow x_{3}$	$x_{1} \leftrightarrow x_{3}$
\perp-hyperplane	$\{(x, x, 0)\}$	$\{(0, y, y)\}$	$\{(z, 0, z)\}$

Hyperplane equations: $\left\{(x, y, z) \in\left(\mathbb{R}^{2}\right)^{3} \mid x=y\right.$ or $y=z$ or $\left.x=z\right\}$

positive root	$\alpha_{1}^{\prime}=(1,1,0)$	$\alpha_{1}=(1,-1,0)$	more "type A -like"
reflection action	$x_{1}^{\prime}, x_{1} \leftrightarrow-x_{1}^{\prime},-x_{1}$	$x_{1} \leftrightarrow x_{2}$	more "type A-like"
\perp-hyperplane	$\{(x,-x, 0,0)\}$	$\{(x, x, 0,0)\}$	more "type A-like"

Hyperplane equations: $\left\{(x, y, z, w) \in \mathbb{C}^{4} \mid x= \pm y\right.$ etc. $\}$

positive root	$\alpha_{1}=(1,-1,0)$	$\alpha_{2}=(0,1,-1)$	$\alpha_{1}+\alpha_{2}=(1,0,-1)$
reflection action	$x_{1} \leftrightarrow x_{2}$	$x_{2} \leftrightarrow x_{3}$	$x_{1} \leftrightarrow x_{3}$
\perp-hyperplane	$\{(x, x, 0)\}$	$\{(0, y, y)\}$	$\{(z, 0, z)\}$

Hyperplane equations: $\left\{(x, y, z) \in\left(\mathbb{R}^{2}\right)^{3} \mid x=y\right.$ or $y=z$ or $\left.x=z\right\}$

Observe that this matches the diagonal of the configuration space picture up to a 2-fold covering $(x, y, z, w) \mapsto\left(x^{2}, y^{2}, z^{2}, w^{2}\right)$.

positive root	$\alpha_{1}^{\prime}=(1,1,0)$	$\alpha_{1}=(1,-1,0)$	more "type A -like"
reflection action	$x_{1}^{\prime}, x_{1} \leftrightarrow-x_{1}^{\prime},-x_{1}$	$x_{1} \leftrightarrow x_{2}$	more "type A -like"
\perp-hyperplane	$\{(x,-x, 0,0)\}$	$\{(x, x, 0,0)\}$	more "type A -like"

Hyperplane equations: $\left\{(x, y, z, w) \in \mathbb{C}^{4} \mid x= \pm y\right.$ etc. $\}$

positive root	$\alpha_{1}=(1,-1,0)$	$\alpha_{2}=(0,1,-1)$	$\alpha_{1}+\alpha_{2}=(1,0,-1)$
reflection action	$x_{1} \leftrightarrow x_{2}$	$x_{2} \leftrightarrow x_{3}$	$x_{1} \leftrightarrow x_{3}$
\perp-hyperplane	$\{(x, x, 0)\}$	$\{(0, y, y)\}$	$\{(z, 0, z)\}$

Hyperplane equations: $\left\{(x, y, z) \in\left(\mathbb{R}^{2}\right)^{3} \mid x=y\right.$ or $y=z$ or $\left.x=z\right\}$

positive root	$\alpha_{1}^{\prime}=(1,1,0)$	$\alpha_{1}=(1,-1,0)$	more "type A-like"
reflection action	$x_{1}^{\prime}, x_{1} \leftrightarrow-x_{1}^{\prime},-x_{1}$	$x_{1} \leftrightarrow x_{2}$	more "type A-like"
\perp-hyperplane	$\{(x,-x, 0,0)\}$	$\{(x, x, 0,0)\}$	more "type A-like"

Hyperplane equations: $\left\{(x, y, z, w) \in \mathbb{C}^{4} \mid x= \pm y\right.$ etc. $\}$

Noumi-Sugitani $\boldsymbol{\sim 1 9 9 4}$, Letzter ~ 1999. Quantum groups have few Hopf subalgebras, but plenty of coideal subalgebras.
${ }^{c} \mathcal{U}_{\mathrm{v}}$ is not a Hopf algebra, but rather a right coideal (subalgebra) of \mathcal{U}_{v} :

$$
\Delta(\mathrm{B})=\mathrm{B} \otimes \underbrace{\mathrm{~K}^{-1}}_{\notin \mathcal{U}_{\mathrm{v}}}+1 \otimes \mathrm{~B} \in \mathrm{c} \mathcal{U}_{\mathrm{v}} \otimes \mathcal{U}_{\mathrm{v}},
$$

which gives $\mathbb{R e p}\left(c \mathcal{U}_{\mathrm{v}}\right)$ the structure of a right $\mathbb{R e p}\left(\mathcal{U}_{\mathrm{v}}\right)$-category \Rightarrow right handedness of diagrams, e.g.:

Noumi-Sugitani $\boldsymbol{\sim 1 9 9 4}$, Letzter ~ 1999. Quantum groups have few Hopf subalgebras, but plenty of coideal subalgebras.
$c \mathcal{U}_{\mathrm{v}}$ is not a Hopf algebra, but rather a right coideal (subalgebra) of \mathcal{U}_{v} :
Example. The vector representations of $\mathfrak{g l}_{n}, \mathfrak{s o}_{n}$ and $\mathfrak{s p}_{n}$ all agree, and indeed

$$
\mathfrak{s o}_{n} \hookrightarrow \mathfrak{g l}_{n} \text { and } \mathfrak{s p}_{n} \hookrightarrow \mathfrak{g l}_{n}
$$

But the quantum vector representations do not agree, i.e.

$$
\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s o}_{n}\right) \nrightarrow \mathcal{U}_{\mathrm{v}}\left(\mathfrak{g l}_{n}\right) \text { and } \mathcal{U}_{\mathrm{v}}\left(\mathfrak{s p}_{n}\right) \nLeftarrow \mathcal{U}_{\mathrm{v}}\left(\mathfrak{g l}_{n}\right) \text {. }
$$

This is bad. Idea: Invent new quantizations such that

$$
\mathcal{U}_{\mathrm{v}}^{\prime}\left(\mathfrak{s o}_{n}\right) \hookrightarrow \mathcal{U}_{\mathrm{v}}\left(\mathfrak{g l}_{n}\right) \text { and } \mathcal{U v}_{\mathrm{v}}^{\prime}\left(\mathfrak{s p}_{n}\right) \hookrightarrow \mathcal{U}_{\mathrm{v}}\left(\mathfrak{g l}_{n}\right) \text {. }
$$

Not ok from this picture

Noumi-Sugitani $\boldsymbol{\sim 1 9 9 4}$, Letzter ~ 1999. Quantum groups have few Hopf subalgebras, but plenty of coideal subalgebras.
$c \mathcal{U}_{\mathrm{v}}$ is not a Hopf algebra, but rather a right coideal (subalgebra) of \mathcal{U}_{v} :
Example. The vector representations of $\mathfrak{g l}_{n}, \mathfrak{s o}_{n}$ and $\mathfrak{s p}_{n}$ all agree, and indeed

$$
\mathfrak{s o}_{n} \hookrightarrow \mathfrak{g l}_{n} \text { and } \mathfrak{s p}_{n} \hookrightarrow \mathfrak{g l}_{n}
$$

But the quantum vector representations do not agree, i.e.

$$
\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s o}_{n}\right) \nLeftarrow \mathcal{U}_{\mathrm{v}}\left(\mathfrak{g l}_{n}\right) \text { and } \mathcal{U}_{\mathrm{v}}\left(\mathfrak{s p}_{n}\right) \nLeftarrow \mathcal{U}_{\mathrm{v}}\left(\mathfrak{g l}_{n}\right) \text {. }
$$

This is bad. Idea: Invent new quantizations such that

Observation. This happens repeatedly.

Noumi-Sugitani $\boldsymbol{\sim 1 9 9 4}$, Letzter ~ 1999. Quantum groups have few Hopf subalgebras, but plenty of coideal subalgebras.
${ }^{c} \mathcal{U}_{\mathrm{v}}$ is not a Hopf algebra, but rather a right coideal (subalgebra) of \mathcal{U}_{v} :

$$
\Delta(\mathrm{B})=\mathrm{B} \otimes \underbrace{\mathrm{~K}^{-1}}_{\notin c \mathcal{U}_{\mathrm{v}}}+1 \otimes \mathrm{~B} \in \mathrm{c} \mathcal{U}_{\mathrm{v}} \otimes \mathcal{U}_{\mathrm{v}},
$$

which gives :This happens really often. In our case we have basically right handedness :

$$
\mathfrak{g l}_{1} \hookrightarrow \mathfrak{s l}_{2},(t) \mapsto\left(\begin{array}{ll}
0 & t \\
t & 0
\end{array}\right)
$$

which does not quantize properly... ! 1.
Observation. This happens repeatedly.

A version of Schur's remarkable duality.
Plain old $\mathfrak{s l}_{2}$: The symmetric group:
Acts by matrices.
Acts by permutation.

$$
\mathcal{U}_{1}\left(\mathfrak{s l}_{2}\right) \odot \underbrace{\mathrm{V}_{1} \otimes \cdots \otimes \mathrm{~V}_{1}}_{d \text { times }} \wp \mathcal{H}_{1}(\mathrm{~A})
$$

Schur ~ 1901. The natural actions of $\mathcal{U}_{1}\left(\mathfrak{F l}_{2}\right)$ and $\mathscr{H}_{1}(\mathrm{~A})$
on $V_{1}^{\otimes d}=\left(\mathbb{C}^{2}\right)^{\otimes d}$ commute and generate each other's centralizer.

A version of Schur's remarkable duality.

$$
\begin{gathered}
\mathcal{U}_{1}\left(\mathfrak{s l}_{2}\right) \odot \mathrm{V}_{1} \otimes \cdots \otimes \mathrm{~V}_{1} \oslash \mathcal{H}_{1}(\mathrm{~A}) \\
\| \\
\underbrace{\mathrm{V}_{1} \otimes \cdots \otimes \mathrm{~V}_{1}}_{d \text { times }}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{U}_{1}\left(\mathfrak{s l}_{2}\right) \subset \mathrm{V}_{1} \otimes \cdots \otimes \mathrm{~V}_{1} \mapsto \mathcal{H}_{1}(\mathrm{~A}) \\
\|
\end{gathered}
$$

$$
\underbrace{\mathrm{V}_{1} \otimes \cdots \otimes \mathrm{~V}_{1}}_{d \text { times }} \quad \underset{\text { Ignore the component }}{\mathcal{H}_{1}(\mathrm{D}) \rtimes^{\mathbb{Z}} / 2 \mathbb{Z}}
$$

$$
\text { group } \mathbb{Z} / 2 \mathrm{z} \text {. }
$$

A version of Schur's remarkable duality.

$$
\begin{aligned}
& \mathcal{U}_{1}\left(\mathfrak{s l}_{2}\right) \subset \mathrm{V}_{1} \otimes \cdots \otimes \mathrm{~V}_{1} \bigcirc \mathcal{H}_{1}(\mathrm{~A}) \\
& \text { II } \\
& \cap \\
& \underbrace{\mathrm{V}_{1} \otimes \cdots \otimes \mathrm{~V}_{1}}_{d \text { times }} \ominus \mathcal{H}_{\text {Acts by signed }}^{\mathcal{H}_{1}(\mathrm{D}) \rtimes^{\mathbb{Z}} / 2 \mathbb{Z}} \\
& \text { permutations. }
\end{aligned}
$$

A version of Schur's remarkable duality.

$$
\begin{array}{cc}
\mathcal{U}_{1}\left(\mathfrak{s}_{2}\right) \subset & \mathrm{V}_{1} \otimes \cdots \otimes \mathrm{~V}_{1} \oslash \mathcal{H}_{1}(\mathrm{~A}) \\
\cup & \| \\
? ? & \subset \underbrace{\mathrm{~V}_{1} \otimes \cdots \otimes \mathrm{~V}_{1}}_{d \text { times }} \oslash \mathscr{H}_{1}(\mathrm{D}) \rtimes \mathbb{Z} / 2 \mathbb{Z}
\end{array}
$$

A version of Schur's remarkable duality.

$$
\begin{aligned}
& \text { The antidiagonal embedding: } \mathcal{U}_{1}\left(\mathfrak{s l}_{2}\right) \subset \mathrm{V}_{1} \otimes \cdots \otimes \mathrm{~V}_{1} \emptyset \mathscr{H}_{1}(\mathrm{~A}) \\
& \mathfrak{g l}_{1} \hookrightarrow \mathfrak{s l}_{2},(t) \mapsto\left(\begin{array}{cc}
0 & t \\
t & 0
\end{array}\right) \underset{\mathcal{U}_{1}\left(\mathfrak{g l}_{1}\right)}{\cup} \subset \underbrace{\mathrm{V}_{1} \otimes \cdots \otimes \mathrm{~V}_{1}}_{\text {Acts by restriction. }} \oslash \underbrace{\|}_{d \text { times }} \stackrel{\mathcal{H}_{1}(\mathrm{D}) \rtimes \mathbb{Z} / 2 \mathbb{Z}}{ }
\end{aligned}
$$

Regev \sim 1983. The actions of $\mathcal{U}_{1}\left(\mathfrak{g l}_{1}\right)$ and $\mathcal{H}_{1}(\mathrm{D}) \rtimes^{\mathbb{Z}} / 2 \mathbb{Z}$ on $V_{1}^{\otimes d}$ commute and generate each other's centralizer.

A version of Schur's remarkable duality.

$$
\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right) \subset \mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}} \oslash \mathcal{H}_{\mathrm{v}}(\mathrm{~A})
$$

Jimbo ~ 1985. The natural actions of $\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right)$ and $\mathcal{H}_{\mathrm{v}}(\mathrm{A})$
on $\mathrm{V}_{\mathrm{v}}^{\otimes d}=\left(\mathbb{C}(\mathrm{v})^{2}\right)^{\otimes d}$ commute and generate each other's centralizer.

A version of Schur's remarkable duality.

$$
\begin{gathered}
\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right) \bigcirc \mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}} \oslash \mathcal{H}_{\mathrm{v}}(\mathrm{~A}) \\
\\
\underbrace{\mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}}}_{d \text { times }}
\end{gathered}
$$

A version of Schur's remarkable duality.

$$
\begin{aligned}
\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right) \subset & \mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}} \\
& \mathcal{H}_{\mathrm{v}}(\mathrm{~A}) \\
& \underbrace{\mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}}}_{d \text { times }}
\end{aligned}
$$

A version of Schur's remarkable duality.

$$
\begin{aligned}
\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right) \subset & \mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}} \\
\| & \underbrace{\mathcal{H}_{\mathrm{v}}(\mathrm{~A})}_{d \text { times }} \\
& \cap
\end{aligned}
$$

A version of Schur's remarkable duality.

$$
\begin{array}{cc}
\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right) \subset \mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}} \oslash \mathcal{H}_{\mathrm{v}}(\mathrm{~A}) \\
\cup & \| \\
? ? & \subset \underbrace{\mathrm{~V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}}}_{d \text { times }} \oslash \mathscr{H}_{\mathrm{v}}(\mathrm{D}) \rtimes \mathbb{Z} / 2 \mathbb{Z}
\end{array}
$$

A version of Schur's remarkable duality.

$$
\begin{gathered}
\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right) \subset \mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}} \oslash \mathcal{H}_{\mathrm{v}}(\mathrm{~A}) \\
\cup \\
\cup \\
\mathcal{U}_{\mathrm{v}}\left(\mathfrak{g l}_{1}\right) \subset \underbrace{\mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}}}_{d \text { times }} \oslash \mathcal{H}_{\mathrm{v}}(\mathrm{D}) \rtimes \mathbb{Z} / 2 \mathbb{Z}
\end{gathered}
$$

A version of Schur's remarkable duality.

$$
\begin{aligned}
& \mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right) \subset \mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}} \bigcirc \mathscr{H}_{\mathrm{v}}(\mathrm{~A}) \\
& \underset{\substack{\text { Does not } \\
\text { embed. }}}{ } \forall \quad \| \quad \cap \\
& \mathcal{U}_{\mathrm{v}}\left(\mathfrak{g l}_{1}\right) \subset \underbrace{\mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}}}_{d \text { times }} \oslash \mathscr{H}_{\mathrm{v}}(\mathrm{D}) \rtimes \mathbb{Z} / 2 \mathbb{Z}
\end{aligned}
$$

A version of Schur's remarkable duality.

A version of Schur's remarkable duality.

$$
\begin{aligned}
& \mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right) \subset \mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}} \ominus \mathscr{H}_{\mathrm{v}}(\mathrm{~A})
\end{aligned}
$$

A version of Schur's remarkable duality.

$$
\begin{gathered}
\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right) \bigcirc \mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}} \mapsto \mathcal{H}_{\mathrm{v}}(\mathrm{~A}) \\
\| \\
\mathrm{C} \mathcal{U}_{\mathrm{v}}\left(\mathfrak{g l}_{1}\right) \quad \underbrace{\mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}}}_{d \text { times }} \oslash \mathscr{H}_{\mathrm{v}}(\mathrm{D}) \rtimes^{\mathbb{Z}} / 2 \mathbb{Z}
\end{gathered}
$$

A version of Schur's remarkable duality.

A version of Schur's remarkable duality.

$$
\begin{aligned}
& \mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right) \subset \mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}} \bigcirc \mathcal{H}_{\mathrm{v}}(\mathrm{~A}) \\
& \cup \quad \| \quad \cap \\
& \mathrm{c} \mathcal{U l}_{\mathrm{v}}\left(\mathfrak{g l}_{1}\right) \subset \underbrace{\mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}}}_{\begin{array}{c}
\text { Act by } \\
\text { restriction. }
\end{array}} \underbrace{}_{\text {times }} \bigcirc \mathcal{H}_{\mathrm{v}}(\mathrm{D}) \rtimes \mathbb{\mathbb { Z }} / 2 \mathbb{Z}
\end{aligned}
$$

A version of Schur's remarkable duality.

$$
\begin{gathered}
\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right) \subset \mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}} \oslash \mathcal{H}_{\mathrm{v}}(\mathrm{~A}) \\
\cup \\
\mathrm{U} \\
\mathrm{C} \mathcal{U}_{\mathrm{v}}\left(\mathfrak{g l}_{1}\right) \subset \underbrace{\mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}}}_{d \text { times }} \oslash \mathcal{H}_{\mathrm{v}}(\mathrm{D}) \rtimes^{\mathbb{Z}} / 2 \mathbb{Z}
\end{gathered}
$$

4 Back
Ehrig-Stroppel, Bao-Wang ~2013. The actions of $c \mathcal{U}_{\mathrm{v}}\left(\mathfrak{g l}_{1}\right)$ and $\mathcal{H}_{\mathrm{v}}(\mathrm{D}) \rtimes \mathbb{Z} / 2 \mathbb{Z}$ on $\mathrm{V}_{\mathrm{v}}^{\otimes d}$ commute and generate each other's centralizer.

A version of Schur's remarkable duality.

A version of Schur's remarkable duality.

$$
\begin{gathered}
\mathcal{U}_{\mathrm{v}}\left(\mathfrak{s l}_{2}\right) \subset \\
\cup \\
\mathrm{V} \mathrm{~V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}} \oslash \mathcal{H}_{\mathrm{v}}(\mathrm{~A}) \\
\mathrm{C} \mathcal{U}_{\mathrm{v}}\left(\mathfrak{g l}_{1}\right) \subset \underbrace{\mathrm{V}_{\mathrm{v}} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{v}}}_{d \text { times }} \oslash \mathcal{H}_{\mathrm{v}}(\mathrm{D}) \rtimes \mathbb{Z} / 2 \mathbb{Z}
\end{gathered}
$$

Message to take away. Coideal naturally appear in Schur-Weyl-like games.
And these pull the strings from the background for tangle and link invariants.

