Fusion rules for SL_{2}

Or: A toy example of modular representation theory

Daniel Tubbenhauer

Joint with Lousie Sutton, Paul Wedrich, Jieru Zhu July 2021

Question. What can we say about finite-dimensional modules of $\mathrm{SL}_{2} \ldots$

- ...in the context of representations of classical groups? \rightsquigarrow The modules and their structure.
- ...in the context of representations of Hopf algebras? \rightsquigarrow Object fusion rules i.e. tensor products rules.
- ...in the context of categories? \rightsquigarrow Morphisms of representations and their structure.
If the characteristic of the underlying field $\mathbb{K}=\overline{\mathbb{K}}$ of $\mathrm{SL}_{2}=\mathrm{SL}_{2}(\mathbb{K})$ is finite we will see inverse fractals, e.g.

Question. What can we say about finite-dimensional modules of $\mathrm{SL}_{2} \ldots$

- in tho contovt of ronrocontationc of rlacciral orounc? w Tho moduloc and Spoiler. What will be the take away?

In some sense modular (char $p<\infty$) representation theory as i.e. is much harder than the classical one (char ∞ a.k.a. char 0 a.k.a. generically) because secretly we are doing fractal geometry.

In my toy example SL_{2} everything is explicit.
If the characteristic of the undertying treld $\mathbb{K}=\mathbb{K}$ OT $S L_{2}=S L_{2}(\mathbb{K})$ is tinite we will see inverse fractals, e.g.

Weyl \sim 1923. The SL_{2} (dual) Weyl modules $\Delta(v-1)$.

$$
\begin{aligned}
& \Delta(1-1) \\
& \Delta(2-1) \\
& x^{1} y^{0} \quad x^{0} y^{1} \\
& \Delta(3-1) \\
& x^{2} y^{0} \quad x^{1} y^{1} \quad x^{0} y^{2} \\
& \Delta(4-1) \\
& x^{3} y^{0} \quad x^{2} y^{1} \quad x^{1} y^{2} \quad x^{0} y^{3} \\
& x^{4} y^{0} \quad x^{3} y^{1} \quad x^{2} y^{2} \quad x^{1} y^{3} \quad x^{0} y^{4} \\
& \Delta(6-1) \quad x^{5} y^{0} \quad x^{4} y^{1} \quad x^{3} y^{2} \quad x^{2} y^{3} \quad x^{1} y^{4} \quad x^{0} y^{5} \\
& \Delta(7-1) \quad x^{6} y^{0} \quad x^{5} y^{1} \quad x^{4} y^{2} \quad x^{3} y^{3} \quad x^{2} y^{4} \quad x^{1} y^{5} \quad x^{0} y^{6}
\end{aligned}
$$

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto$ matrix who's rows are expansions of $(a X+c Y)^{v-i}(b X+d Y)^{i-1}$.

Weyl ~ 1923. The SL_{2} simples $\mathrm{L}(v-1)$ in $\Delta(v-1)$ for $p=5$.

$$
\Delta(1-1)
$$

$x^{0} y^{0}$

$$
L(1-1)
$$

$$
\Delta(2-1)
$$

$$
x^{2} y^{0} x^{1} y^{1} x^{0} y^{2}
$$

$$
L(3-1)
$$

$$
\Delta(4-1)
$$

$$
x^{3} y^{0} x^{2} y^{1} x^{1} y^{2} \quad x^{0} y^{3}
$$

$$
L(4-1)
$$

$$
\Delta(5-1)
$$

$$
\begin{array}{|l|l|}
\hline x^{4} y^{0} & x^{3} y^{1} \\
\hline
\end{array}
$$

$$
L(5-1)
$$

$$
\Delta(6-1)
$$

$\square$$x^{2} y^{3}$$x^{1} y^{4}$

$$
x^{0} y^{5}
$$

$$
L(6-1)
$$

$$
\Delta(7-1)
$$

$\Delta(7-1)$ has (its head) $\mathrm{L}(7-1)$ and $\mathrm{L}(3-1)$ as factors.

Weyl ~ 1923. The SL_{2} simples $\mathrm{L}(v-1)$ in $\Delta(v-1)$ for $p=5$.

Weyl \sim 1923. The SL_{2} (dual) Weyl modules $\Delta(v-1)$.

$$
\begin{aligned}
& \Delta(1-1) \\
& \Delta(2-1) \\
& x^{1} y^{0} \quad x^{0} y^{1} \\
& \Delta(3-1) \\
& x^{2} y^{0} \quad x^{1} y^{1} \quad x^{0} y^{2} \\
& \Delta(4-1) \\
& x^{3} y^{0} \quad x^{2} y^{1} \quad x^{1} y^{2} \quad x^{0} y^{3} \\
& x^{4} y^{0} \quad x^{3} y^{1} \quad x^{2} y^{2} \quad x^{1} y^{3} \quad x^{0} y^{4} \\
& \Delta(6-1) \quad x^{5} y^{0} \quad x^{4} y^{1} \quad x^{3} y^{2} \quad x^{2} y^{3} \quad x^{1} y^{4} \quad x^{0} y^{5} \\
& \Delta(7-1) \quad x^{6} y^{0} \quad x^{5} y^{1} \quad x^{4} y^{2} \quad x^{3} y^{3} \quad x^{2} y^{4} \quad x^{1} y^{5} \quad x^{0} y^{6}
\end{aligned}
$$

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto$ matrix who's rows are expansions of $(a X+c Y)^{v-i}(b X+d Y)^{i-1}$.

Weyl ~1923. The SL_{2} (dual) Weyl modules $\Delta(v-1)$.

$$
\text { Example } \Delta(7-1)=\mathbb{K} X^{6} Y^{0} \oplus \cdots \oplus \mathbb{K} X^{0} Y^{6}
$$

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ acts as

a^{6}	$6 a^{5} c$	$15 \mathrm{a}^{4} \mathrm{c}^{2}$	$20 a^{3} c^{3}$	$15 a^{2} c^{4}$	6 a c ${ }^{5}$	c^{6}
$a^{5} b$	$5 a^{4} b c+a^{5} d$	$a^{3} b c^{2}+5 a^{4} c d$	$10 a^{2} b c^{3}+10 a^{3} c^{2} d$	$5 \mathrm{abc}{ }^{4}+10 \mathrm{a}^{2} \mathrm{c}^{3} \mathrm{~d}$	$b c^{5}+5 a c^{4} d$	$c^{5} \mathrm{~d}$
$a^{4} b^{2}$	$4 a^{3} b^{2} c+2 a^{4} b d$	$6 a^{2} b^{2} c^{2}+8 a^{3} b c d+a^{4} d^{2}$	$b^{2} c^{3}+12 a^{2} b c^{2} d+4 a^{3} c$	$c^{4}+8 a b c^{3} d+6 a^{2} c^{2} d^{2}$	$b c^{4} d+4 a c^{3} d^{2}$	$c^{4} d^{2}$
$a^{3} b^{3}$	$a^{2} b^{3} c+3 a^{3} b^{2} d$	$a b^{3} c^{2}+9 a^{2} b^{2} c d+3 a^{3} b d^{2}$	$c^{3}+9 a b^{2} c^{2} d+9 a^{2} b c d^{2}+a^{3} d^{3}$	$3 b^{2} c^{3} d+9 a b c^{2} d^{2}+3 a^{2} c d^{3}$	$3 b c^{3} d^{2}+3 a c^{2} d^{3}$	$c^{3} d^{3}$
$a^{2} b$	$b^{4} c+4 a^{2} b^{3} d$	$c^{2}+8 a b^{3} c d+6 a^{2} b^{2} d^{2}$	$b^{3} c^{2} d+12 a b^{2} c d^{2}+4 a^{2} \boldsymbol{b} d^{3}$	$6 \mathbf{b}^{2} c^{2} d^{2}+8 \boldsymbol{a b c} c d^{3}+\mathbf{a}^{2} d^{4}$	$4 b c^{2} d^{3}+2 a c d^{4}$	$c^{2} d^{4}$
$a b^{5}$	$b^{5} c+5 a b^{4} d$	$b^{4} c d+10 a b^{3} d^{2}$	$10 b^{3} c d^{2}+10 a b^{2} d^{3}$	$10 b^{2} c d^{3}+5 a b d^{4}$	$5 b c d^{4}+a d^{5}$	$c d^{5}$
b^{6}	$6 \mathrm{~b}^{5} \mathrm{~d}$	$15 \mathrm{~b}^{4} \mathrm{~d}^{2}$	$20 \mathrm{~b}^{3} \mathrm{~d}^{3}$	$15 \mathrm{~b}^{2} \mathrm{~d}^{4}$	$6 \mathrm{~b} \mathrm{~d}^{5}$	d^{6}

The rows are expansions of $(a X+c Y)^{7-i}(b X+d Y)^{i-1}$. Binomials!

$$
\Delta(4-1)
$$

$$
x^{3} y^{0} \quad x^{2} y^{1} \quad x^{1} y^{2} \quad x^{0} y^{3}
$$

$$
\Delta(5-1)
$$

$$
x^{4} y^{0} \quad x^{3} y^{1}
$$

$$
X^{2} Y^{2}
$$

$$
x^{1} y^{3} \quad x^{0} y^{4}
$$

$$
\Delta(6-1)
$$

$$
X^{5} Y^{0}
$$

$$
x^{4} y^{1}
$$

$$
x^{3} Y^{2}
$$

$$
x^{2} y^{3}
$$

$$
X^{1} y^{4}
$$

$$
\Delta(7-1)
$$

$$
x^{6} y^{0}
$$

$$
X^{5} Y^{1}
$$

$$
X^{4} Y^{2}
$$

$$
X^{3} y^{3}
$$

$$
x^{2} y^{4}
$$

$$
x^{0} y^{5}
$$

$$
X^{1} Y^{5}
$$

$$
x^{0} y^{6}
$$

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto$ matrix who's rows are expansions of $(a X+c Y) v-i(b X+d Y)$

Weyl ~1923. The SL_{2} (dual) Weyl modules $\Delta(v-1)$.

$$
\text { Example } \Delta(7-1)=\mathbb{K} X^{6} Y^{0} \oplus \cdots \oplus \mathbb{K} X^{0} Y^{6}
$$

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ acts as

The rows are expansions of $(a X+c Y)^{7-i}(b X+d Y)^{i-1}$. Binomials!

Example $\Delta(7-1)$, characteristic 0 .
No common eigensystem $\Rightarrow \Delta(7-1)$ simple.
Example $\Delta(7-1)$, characteristic 2.
\(\left(\begin{array}{ll}a \& b

c \& d\end{array}\right)\) acts aS | $a^{4} b^{2}$ | 0 | $a^{4} d^{2}$ | 0 | $b^{2} c^{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $a^{3} b^{3}$ | $a^{2} b^{3} c+a^{3} b^{2} d a b^{3} c^{2}+a^{2} b^{2} c d+a^{3} b d^{2} b^{3} c^{3}+a b^{2} c^{2} d+a^{2} b c d^{2}+a^{3} d^{3} b^{2} c^{3} d+a b c^{2} d^{2}+a^{2} c d^{3} b c^{3} d^{2}+a c^{2} d^{3} c^{3} d^{3}$ | | | |
| $a^{2} b^{4}$ | 0 | $b^{4} c^{2}$ | 0 | $a^{2} d^{4}$ |
| $a b^{5}$ | $b^{5} c+a b^{4} d$ | $b^{4} c d$ | 0 | $0 \quad d^{4}$ |
| b^{6} | 0 | $b^{4} d^{2}$ | 0 | d^{4} |

$(0,0,0,1,0,0,0)$ is a common eigenvector, so we found a submodule.

Weyl \sim 1923. The SL_{2} (dual) Weyl modules $\Delta(v-1)$.

When is $\Delta(v-1)$ simple?
$x^{0} y^{0}$

$$
\begin{gathered}
\Delta(v-1) \text { is simple } \\
\Leftrightarrow \\
\binom{v-1}{w-1} \neq 0 \text { for all } w \leq v \\
\Leftrightarrow(\text { Lucas' theorem }) \\
v=\left[a_{r}, 0, \ldots, 0\right]_{\rho} .
\end{gathered}
$$

$$
x^{1} y^{0} \quad x^{0} y^{1}
$$

$$
\begin{gathered}
\text { Lucas } \sim \mathbf{1 8 7 8} . \\
x^{2} r \text { "Binomials mod } p \text { are the product of }
\end{gathered}
$$ binomials of the p -adic digits":

$$
\binom{a}{b}=\prod_{i=0}^{r}\binom{a_{i}}{b_{i}} \bmod p,
$$

$$
\text { where } a=\left[a_{r}, \ldots, a_{0}\right]_{p}=\sum_{i=0}^{r} a_{i} p^{i} \text { etc. }
$$

$$
x^{3} y^{1} \quad x^{2} y^{2} \quad x^{1} y^{3} \quad x^{0} y^{4}
$$

Ringel, Donkin \sim 1991. There is a class of indecomposables $\mathrm{T}(v-1)$ indexed by \mathbb{N}. They are a bit tricky to define, but:

- They have Δ - and ∇ filtrations, which look the same if you tilt your head:

- Play the role of projective modules.
- $\mathrm{T}(v-1) \cong \mathrm{L}(v-1) \cong \Delta(v-1) \cong \nabla(v-1)$ generically.
- They are a bit better behaved than simples.

Ringel, Donkin \sim 1991. There is a class of indecomposables $\mathrm{T}(v-1)$ indexed by \mathbb{N}. They are a bit tricky to define, but:

- They have Δ - and ∇ filtrations, which look the same if you tilt your head:

- They are a bit better behaved than simples.

Ringel, Donkin ~ 1991. There is a class of indecomposables $\mathrm{T}(v-1)$ indexed by \mathbb{N}. They are a bit tricky to define, but:

\# Weyl factors of $\mathrm{T}(v-1)$ is 2^{k} where

$$
k=\max \left\{\nu_{p}\left(\binom{v-1}{w-1}\right), w \leq v\right\} .\left(\text { Order of vanishing of }\binom{v-1}{w-1} .\right)
$$

determined by (Lucas's theorem)
non-zero non-leading digits of $v=\left[a_{r}, a_{r-1}, \ldots, a_{0}\right]_{p}$.

$$
\begin{aligned}
& \text { Example. } \mathrm{T}(220540-1) \text { for } p=11 ? \\
& \qquad v=220540=[1,4,0,7,7,1]_{11} ;
\end{aligned}
$$

Maximal vanishing for $w=75594=[0,5,1,8,8,2]_{11}$;

- Play the ro
- $\mathrm{T}(v-1) \cong$

$$
\left.\begin{array}{l}
\text { - } \mathrm{T}(v-1) \cong \\
\text { - They are a }
\end{array} \begin{array}{c}
v-1 \\
w-1
\end{array}\right)=(\text { HUGE })=[\ldots, \neq 0,0,0,0,0]_{11} .
$$

Ringel, Donkin \sim 1991. There is a class of indecomposables $\mathrm{T}(v-1)$ indexed by \mathbb{N}. They are a bit tricky to define, but:

- They have Δ - and ∇ filtrations, which look the same if you tilt your head:

Which Weyl factors does $\mathrm{T}(v-1)$ have a.k.a. the negative digits game?

> Weyl factors of $\mathrm{T}(v-1)$ are
> $\Delta\left(\left[a_{r}, \pm a_{r-1}, \ldots, \pm a_{0}\right]_{p}-1\right)$ where $v=\left[a_{r}, \ldots, a_{0}\right]_{p}$ (appearing exactly once).

Example. $\mathrm{T}(220540-1)$ for $p=11$?

$$
v=220540=[1,4,0,7,7,1]_{11}
$$

has Weyl factors $[1, \pm 4,0, \pm 7, \pm 7, \pm 1]_{11}$;

- Play the ro
- $\mathrm{T}(v-1) \cong$ e.g. $\Delta\left(218690=[1,4,0,-7,-7,-1]_{11}-1\right)$ appears.
- They are a bit better behaved than simples.

Ringel, Donkin ~ 1991. There is a class of indecomposables $\mathrm{T}(v-1)$ indexed by \mathbb{N}. They are a bit tricky to define, but:

- They hav The tilting-Cartan matrix a.k.a. $(\mathrm{T}(v-1): \Delta(w-1))$. t your head:
- Play the
- $\mathrm{T}(v-1)=$
- They are

This is characteristic 3.

Ringel, Donkin ~ 1991. There is a class of indecomposables $\mathrm{T}(v-1)$ indexed by \mathbb{N}. They are a bit tricky to define, but:

$$
(\mathrm{T}(v-1): \Delta(w-1)) \text { vs. }[\Delta(v-1): \mathrm{L}(w-1)] \text { - flawed reciprocity. }
$$

Tilting modules form a braided monoidal category \mathcal{T} ilt.

Simple \otimes simple \neq simple, Weyl \otimes Weyl \neq Weyl, but tilting \otimes tilting $=$ tilting
The Grothendieck algebra [\mathcal{T} ilt] of \mathcal{T} ilt is a commutative algebra with basis [$\mathrm{T}(v-1)]$. So what I would like to answer on the object level, i.e. for [$\mathcal{T} \mathrm{ilt}]$:

- What are the fusion rules? I start here - fusion for $T(1)$
- Find the $N_{v, w}^{x} \in \mathbb{N}_{0}$ in $\mathrm{T}(v-1) \otimes \mathrm{T}(w-1) \cong \bigoplus_{x} N_{v, w}^{x} \mathrm{~T}(x-1)$.
\triangleright For [\mathcal{T} ilt] this means finding the structure constants.
This appears to be tricky and I do not have an answer
- What are the thick \otimes-ideals?
\triangleright For [\mathcal{T} ilt $]$ this means finding the ideals. This is discussed second

Fusion graphs.

The fusion graph $\Gamma_{v}=\Gamma_{T(v-1)}$ of $T(v-1)$ is:

- Vertices of Γ_{v} are $w \in \mathbb{N}$, and identified with $\mathrm{T}(w-1)$.
- k edges $w \xrightarrow{k} x$ if $\mathrm{T}(x-1)$ appears k times in $\mathrm{T}(v-1) \otimes \mathrm{T}(w-1)$.
- $\mathrm{T}(v-1)$ is a \otimes-generator if Γ_{v} is strongly connected.
- This works for any reasonable monoidal category, with vertices being indecomposable objects and edges count multiplicities in \otimes-products.

Baby example. Assume that we have two indecomposable objects $\mathbb{1}$ and X , with $\mathrm{X}^{\otimes 2}=\mathbb{1} \oplus \mathrm{X}$. Then:

$$
\begin{gathered}
\Gamma_{\mathbb{1}}=\subset \mathbb{1} \quad \mathrm{X} P \\
\text { not a } \otimes \text {-generator }
\end{gathered}, \quad \begin{gathered}
\Gamma_{\mathrm{x}}=\mathbb{1} \rightleftarrows \mathrm{X} \longmapsto \\
\text { a } \otimes \text {-generator }
\end{gathered}
$$

Fusion graphs for $T(1)$: char 3 vs. generic.

$\mathrm{T}(1)$'s fusion graph via a Bratteli-type diagram

Formulas, for friends of formulas

Let $v=\left[a_{j}, \ldots, a_{0}\right]_{p}$. We have
$\mathrm{T}(v-1) \otimes \mathrm{T}(1) \cong \mathrm{T}(v) \oplus \bigoplus_{i=0}^{t /} \mathrm{T}\left(v-2 p^{i}\right)^{\oplus x_{i}}, x_{i}= \begin{cases}0 & \text { if } a_{i}=0 \text { or } i=j \text { and } a_{j}=1, \\ 2 & \text { if } a_{i}=1, \\ 1 & \text { if } a_{i}>1 .\end{cases}$
t =tail length $=$ length of $[\ldots, \neq p-1, p-1, p-1, \ldots, p-1]_{p}$
Proof strategy.

- Feed the problem into a machine;
- let it do a lot of calculations;
- guess the formula;
- prove the formula using character computations.

Tilting modules form a braided monoidal category \mathcal{T} ilt.

Simple \otimes simple \neq simple, Weyl \otimes Weyl \neq Weyl, but tilting \otimes tilting $=$ tilting
The Grothendieck algebra [\mathcal{T} ilt] of \mathcal{T} ilt is a commutative algebra with basis [$\mathrm{T}(v-1)]$. So what I would like to answer on the object level, i.e. for [$\mathcal{T} \mathrm{ilt}]$:

- What are the fusion rules? I start here - fusion for $T(1)$
- Find the $N_{v, w}^{x} \in \mathbb{N}_{0}$ in $\mathrm{T}(v-1) \otimes \mathrm{T}(w-1) \cong \bigoplus_{x} N_{v, w}^{x} \mathrm{~T}(x-1)$.
\triangleright For $[\mathcal{T}$ ilt $]$ this means finding the structure constants.
This appears to be tricky and I do not have an answer
- What are the thick \otimes-ideals?
\triangleright For [\mathcal{T} ilt $]$ this means finding the ideals. This is discussed second

\otimes-ideals of \mathcal{T} ilt are indexed by prime powers.

- Every \otimes-ideal is thick, and any non-zero thick \otimes-ideal is of the form $\mathcal{J}_{p^{k}}=\left\{\mathrm{T}(v-1) \mid v \geq p^{k}\right\}$.
- There is a chain of \otimes-ideals \mathcal{T} ilt $=\mathcal{J}_{1} \supset \mathcal{J}_{p} \supset \mathcal{J}_{p^{2}} \supset \ldots$. The cells, i.e. $\mathcal{J}_{p^{k}} / \mathcal{J}_{p^{k+1}}$, are the strongly connected components of Γ_{1}.

Example ($p=3$).

\otimes-ide Prime power Verlinde categories.

The ideal $\mathcal{J}_{p^{k}} \subset \mathcal{T}$ ilt $/ \mathcal{J}_{p^{k+1}}$ is the cell of projectives.
The abelianizations $\mathcal{V} \operatorname{er}_{p^{k}}$ of \mathcal{T} ilt $/ \mathcal{J}_{p^{k+1}}$ are called Verlinde categories.
The Cartan matrix of $\mathcal{V} \mathrm{er}_{p^{k}}$ is a $p^{k}-p^{k-1}$-square matrix

- T with entries given by the common Weyl factors of $\mathrm{T}(v-1)$ and $\mathrm{T}(w-1)$.

Example ($p=3$).
Example (Cartan matrix of $\mathcal{V e r}_{3^{4}}$).

Rumer-Teller-Weyl \sim 1932, Temperley-Lieb ~ 1971, Kauffman ~ 1987.

The category $\mathcal{T} \mathcal{L}$ is the monoidal \mathbb{Z}-linear category monoidally generated by object generators : \bullet, \quad morphism generators : $\cap: \mathbb{1} \rightarrow \bullet^{\otimes 2}, \cup: \bullet^{\otimes 2} \rightarrow \mathbb{1}$,

$$
\text { relations : } \bigcirc=-2, \quad \bigcup=\mid=\bigcap .
$$

Rumer-Teller-Weyl ~1932, Temperley-Lieb ~1971, Kauffman ~ 1987.
The category $\mathcal{T} \mathcal{L}$ is the monoidal \mathbb{Z}-linear category monoidally generated by

$$
\begin{gathered}
\text { Theorem (folklore). } \\
\mathcal{L} \text { is an integral model of } \mathcal{T} \text { ilt, i.e. fixing } \mathbb{K}, \\
\mathcal{T} \mathcal{L} \rightarrow \mathcal{T} \text { ilt, } \quad \bullet \mapsto \mathrm{T}(1)
\end{gathered} \quad{ }^{\otimes 2} \rightarrow \mathbb{1},
$$

induces an equivalence upon additive, idempotent completion.

The category $\mathcal{T} \mathcal{L}$ is the monoidal \mathbb{Z}-linear category monoidally generated by

induces an equivalence upon additive, idempotent completion.

The category $\mathcal{T} \mathcal{L}$ is the monoidal \mathbb{Z}-linear category monoidally generated by
Theorem (folklore).

\[\)| $\mathcal{T} \mathcal{L} \text { is an integral model of } \mathcal{T} \text { ilt, i.e. fixing } \mathbb{K},$ |
| :---: |
| $\mathcal{T} \mathcal{L} \rightarrow \mathcal{T} \text { ilt, } \bullet \mapsto \mathrm{T}(1)$ |\(\quad{ }^{\otimes 2} \rightarrow \mathbb{1},

\] induces an equivalence upon additive, idempotent completion.

Generically, using classical Jones-Wenzl projector (white boxes):

$$
\begin{gathered}
\Delta(v-1) \otimes \Delta(1) \cong \Delta(v) \oplus \Delta(v-2) \\
\Longleftrightarrow \\
\hline v-1 \\
\\
\hline v-\frac{v-1}{v} \cdot{ }_{v-1}^{v-1}
\end{gathered}
$$

In characteristic p using purple boxes, e.g.:

$$
\mathrm{T}(v-1) \otimes \mathrm{T}(1) \cong \mathrm{T}(v) \oplus \mathrm{T}(v-2)
$$

Yes we can!

Let $v=\left[a_{j}, \ldots, a_{0}\right]_{p}$. We have

$$
\begin{gathered}
\mathrm{T}(v-1) \otimes \mathrm{T}(1) \cong \mathrm{T}(v) \oplus \bigoplus_{i=0}^{t /} \mathrm{T}\left(v-2 p^{i}\right)^{\oplus x_{i}}, x_{i}= \begin{cases}0 & \text { if } a_{i}=0 \text { or } i=j \text { and } a_{j}=1, \\
2 & \text { if } a_{i}=1, \\
1 & \text { if } a_{i}>1 .\end{cases} \\
\Longleftrightarrow \\
\quad v-1=\square v+\sum_{i=0}^{t /} P_{v}^{i} \text { where } P_{v}^{i}= \begin{cases}0 & \text { if } a_{i}=0, \\
\text { explicit diagrams } & \text { if } a_{i}=1, \\
\text { other explicit diagrams } & \text { if } a_{i}>1 .\end{cases}
\end{gathered}
$$

Proof strategy.

- Feed the problem into a machine;
- let it do a lot of calculations;
- guess the formula;
- prove the formula using a huge inductive argument.

Yes we can!

Let $v=\left[a_{j}, \ldots, a_{0}\right]_{p}$. We have

- Feed the problem into a machine;
- let it do a lot of calculations;
- guess the formula;
- prove the formula using a huge inductive argument. Not so easy
-... in the context of representations of classical grocups? - The modules and
-

...in the contert of representations of Hopf algebras? mobject fusion rules i.e.
tensar products niles.
-..in the context of categgies? m Mopphisms of representations and their
If the characteristic of the undertying field $\mathrm{K}-\mathbb{K}$ of $\mathrm{SL}_{2}=\mathrm{SL}_{2}(\mathrm{~K})$ is finite we will see inverse fractase. e. 8

Weyl \sim 1923. The SLL 2 (duai) Weyl modules $\Delta(v-1)$.

$(\mathrm{a} \dot{\mathrm{d}} \mathrm{d}) \rightarrow$ matrix who's rows are expansions of $(a X+c Y)^{-i}(b X+d Y)^{i-}$

Q-ideals of \mathcal{T} Ilt are indexed by prime powers.

- Every ©.ideal is thick, and any non-zero thick s-ideal is of the form $J_{\mathrm{p} t}=\left\{\tau(v-1) \mid v \geq \rho^{\lambda}\right\}$.
- There is a chain of ©-ideals $\tau_{\text {ult }}-\mathcal{J}_{1} \supset J_{\rho} \supset J_{\mu} \supset \ldots$.... The cells, ie

Generically, using classical Jones-Wenal projector (ntite boxes):
$\Delta(v-1) \otimes \Delta(1) \simeq \Delta(v) \oplus \Delta(v-2)$
|v-1 |- $\square-\frac{v-1}{v}$
In characteristic p using purple bowes, eg.
$\mathrm{T}(\mathrm{v}-1) \otimes \mathrm{T}(1) \approx \mathrm{T}(\mathrm{v}) \oplus \mathrm{T}(\mathrm{v}-2)$

There is still much to do...
-... in the context of representations of classical grocups? - The modules and
-
...in the contert of representations of Hopf algebras? - Object fusion rules i.e.
tensar products niles.

- .in the context of categoies? \cdots Moxphisms of representations and their

If the characteristic of the undertying field $\mathrm{K}-\mathbb{K}$ of $\mathrm{SL}_{2}=\mathrm{SL}_{2}(\mathrm{~K})$ is finite we will see inverse fractase. e. 8

Weyl ~ 1923. The SLL ${ }_{2}$ (duai) Weyl modules $\Delta(v-1)$.

$\binom{\mathrm{d}}{\mathrm{d}} \mapsto$ matrix who's rows are expansions of $(a X+c Y)^{n-1}(b X+d Y)^{)^{-1}}$

Q-ideals of \mathcal{T} Ilt are indexed by prime powers.

- Every \&-ideal is thick, and any non-zero thick s-ideal is of the form $J_{\mathrm{p}}+\left\{\tau(v-1) \mid v \geq \rho^{\lambda}\right\}$
- There is a chain of ©-ideals $\tau_{\text {ult }}-J_{1} \supset J_{\rho} \supset J_{\mu} \supset$... The cells, i.e
- Thereis a chain of eideals $T_{1 / 2}-\mathcal{J}_{1} \supset J_{p} \supset J_{p} \supset \ldots$... The cells, i.e.

Generically, using classical Jones-Wenal projector (ntite boxes):
$\Delta(v-1) \otimes \Delta(1) \simeq \Delta(v) \oplus \Delta(v-2)$
$|v-1|-\square-\frac{v-1}{v}$
In characterstic p using purple bowes, eg.

Thanks for your attention!

