Fusion rules for SL_2

Or: A toy example of modular representation theory

Daniel Tubbenhauer

$$T(v-1)\otimes T(1)\cong T(v)\oplus T(v-2)$$

Joint with Lousie Sutton, Paul Wedrich, Jieru Zhu July 2021

Question. What can we say about finite-dimensional modules of SL_2 ...

- ...in the context of representations of classical groups? \rightsquigarrow The modules and their structure.
- ...in the context of representations of Hopf algebras? \rightsquigarrow Object fusion rules *i.e.* tensor products rules.
- ...in the context of categories? → Morphisms of representations and their structure.

If the characteristic of the underlying field $\mathbb{K}=\overline{\mathbb{K}}$ of $\mathrm{SL}_2=\mathrm{SL}_2(\mathbb{K})$ is finite we will

Question. What can we say about finite-dimensional modules of SL_2 ...

Daniel Tubbenhauer

Fusion rules for SL₂

Weyl ~1923. The SL_2 (dual) Weyl modules $\Delta(\nu{-}1).$

Weyl ~1923. The SL₂ simples L(v-1) in $\Delta(v-1)$ for p = 5.

Weyl ~1923. The SL₂ simples L(v-1) in $\Delta(v-1)$ for p = 5.

Weyl ~1923. The SL_2 (dual) Weyl modules $\Delta(\nu{-}1).$

Weyl ~1923. The SL₂ (dual) Weyl modules $\Delta(v-1)$.

Example $\Delta(7-1) = \mathbb{K}X^6Y^0 \oplus \cdots \oplus \mathbb{K}X^0Y^6$.

$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ acts as	$\begin{array}{cccc} a^{4} & b^{2} & 4 & a^{3} & b^{2} & c + 2 & a^{4} & b & d \\ a^{3} & b^{3} & 3 & a^{2} & b^{3} & c + 3 & a^{3} & b^{2} & d \\ a^{2} & b^{4} & 2 & a & b^{4} & c + 4 & a^{2} & b^{3} & d \\ a & b^{5} & b^{5} & c + 5 & a & b^{4} & d \end{array}$	$\begin{array}{l} 6 \ a^2 \ b^2 \ c^2 + 8 \ a^3 \ b \ c \ d + a^4 \ d^2 \\ 3 \ a \ b^3 \ c^2 + 9 \ a^2 \ b^2 \ c \ d + 3 \ a^3 \ b \ d^2 \\ b^4 \ c^2 + 8 \ a \ b^3 \ c \ d + 6 \ a^2 \ b^2 \ d^2 \\ 5 \ b^4 \ c \ d + 10 \ a \ b^3 \ d^2 \end{array}$	$28 a^{3} c^{3}$ $10 a^{2} b c^{3} \cdot 10 a^{3} c^{2} d$ $4 a b^{2} c^{3} + 12 a^{2} b c^{2} d + 4 a^{3} c d^{2}$ $4 b^{3} c^{3} + 3 a b^{2} c^{2} d - 9 a^{3} b c^{2} d + a^{3} d d^{3}$ $4 b^{3} c^{2} d - 12 a b^{2} c^{2} \cdot 4 a^{2} b d^{3}$ $10 b^{3} c d^{2} + 10 a b^{2} d^{3}$	$\begin{array}{c} b^2 \ c^4 + 8 \ a \ b \ c^3 \ d + 6 \ a^2 \ c^2 \ d^2 \\ 3 \ b^2 \ c^3 \ d + 9 \ a \ b \ c^2 \ d^2 + 3 \ a^2 \ c \ d^3 \\ 6 \ b^2 \ c^2 \ d^2 + 8 \ a \ b \ c \ d^3 + a^2 \ d^4 \\ 10 \ b^2 \ c \ d^3 + 5 \ a \ b \ d^4 \end{array}$	$\begin{array}{c} 2 \ b \ c^4 \ d+4 \ a \ c^3 \ d^2 \ c\\ 3 \ b \ c^3 \ d^2 + 3 \ a \ c^2 \ d^3 \ c\\ 4 \ b \ c^2 \ d^3 + 2 \ a \ c \ d^4 \ c\\ 5 \ b \ c \ d^4 + a \ d^5 \end{array}$	c ⁴ d ² c ³ d ³
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

 $\Delta(6-1) \qquad \qquad \chi^5 \gamma^0 \qquad \chi^4 \gamma^1 \qquad \chi^3 \gamma^2 \qquad \chi^2 \gamma^3 \qquad \chi^1 \gamma^4 \qquad \chi^0 \gamma^5$

 $\begin{array}{c|c} & & \\ \hline & & \\ \Delta_{(7-1)} & x^{6} Y^{0} & x^{5} Y^{1} & x^{4} Y^{2} & x^{3} Y^{3} & x^{2} Y^{4} & x^{1} Y^{5} & x^{0} Y^{6} \\ \hline & & \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \text{matrix who's rows are expansions of } (aX + cY)^{v-i} (bX + dY)^{i-1}. \end{array}$

Weyl ~1923. The SL₂ (dual) Weyl modules $\Delta(v-1)$.

Example $\Delta(7-1) = \mathbb{K}X^6Y^0 \oplus \cdots \oplus \mathbb{K}X^0Y^6$.

$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ acts as	$a^4 b^2$ $a^3 b^3$ $a^2 b^4$ $a b^5$	$5 a^4 b c + a^5 d 4 a^3 b^2 c + 2 a^4 b d 3 a^2 b^3 c + 3 a^3 b^2 d 2 a b^4 c + 4 a^2 b^3 d b^5 c + 5 a b^4 d$	$\begin{array}{c} 6 \ a^2 \ b^2 \ c^2 + 8 \ a^3 \ b \ c \ d + a^4 \ d^2 \\ 3 \ a \ b^3 \ c^2 + 9 \ a^2 \ b^2 \ c \ d + 3 \ a^3 \ b \ d^2 \\ b^4 \ c^2 + 8 \ a \ b^3 \ c \ d + 6 \ a^2 \ b^2 \ d^2 \end{array}$	$\begin{array}{c} 20 \ a^3 \ c^3 \\ 10 \ a^2 \ b^2 + 10 \ a^3 \ c^3 \\ 4 \ a^3 \ c^2 + 12 \ a^3 \ b^2 \ c^3 + 12 \ a^3 \ c^3 \\ b^3 \ c^3 \ + 9 \ a^3 \ b^2 \ c^3 + 12 \ a^3 \ c^3 \\ 4 \ b^3 \ c^2 \ d + 12 \ a^3 \ c^3 \ c^2 \ c^3 + 12 \ a^3 \ c^3 \\ 10 \ b^3 \ c^3 \ c^3 + 12 \ a^3 \ c^3 \\ 10 \ b^3 \ c^3 \ c^3 + 10 \ a^3 \ c^3 \\ 10 \ b^3 \ c^3 \ c^3 + 10 \ a^3 \ c^3 \\ 20 \ b^3 \ d^3 \end{array}$	$\begin{array}{c} 5 \ a \ b \ c^{4} + 10 \ a^{2} \ c^{3} \ d \\ b^{2} \ c^{4} + 8 \ a \ b \ c^{3} \ d + 6 \ a^{2} \ c^{2} \ d^{2} \\ 3 \ b^{2} \ c^{3} \ d + 9 \ a \ b \ c^{2} \ d^{2} + 3 \ a^{2} \ c \ d^{3} \\ 6 \ b^{2} \ c^{2} \ d^{2} + 8 \ a \ b \ c \ d^{3} + a^{2} \ d^{4} \end{array}$	$\begin{array}{c} 2 \ b \ c^4 \ d + 4 \ a \ c^3 \ d^2 \\ 3 \ b \ c^3 \ d^2 + 3 \ a \ c^2 \ d^3 \\ 4 \ b \ c^2 \ d^3 + 2 \ a \ c \ d^4 \end{array}$	$c^{5} d$ $c^{4} d^{2}$ $c^{3} d^{3}$ $c^{2} d^{4}$
The rows are expansions of $(aX + cY)^{7-i}(bX + dY)^{i-1}$. Binomials!							

Weyl ~**1923.** The SL₂ (dual) Weyl modules $\Delta(v-1)$.

• They have Δ - and ∇ filtrations, which look the same if you tilt your head:

- Play the role of projective modules.
- $T(v-1) \cong L(v-1) \cong \Delta(v-1) \cong \nabla(v-1)$ generically.
- They are a bit better behaved than simples.

• They have Δ - and ∇ filtrations, which look the same if you tilt your head:

• They are a bit better behaved than simples.

• They have Λ and ∇ filtrations, which look the same if you tilt your head:

How many Weyl factors does
$$T(v-1)$$
 have?

Weyl factors of T(v-1) is 2^k where

 $k = \max\{\nu_p(\binom{v-1}{w-1}), w \le v\}.$ (Order of vanishing of $\binom{v-1}{w-1}$.)

determined by (Lucas's theorem)

ymmetry"

non-zero non-leading digits of
$$v = [a_r, a_{r-1}, ..., a_0]_p$$
.

Example. T(220540-1) for p = 11?

 $v = 220540 = [1, 4, 0, 7, 7, 1]_{11};$

Maximal vanishing for $w = 75594 = [0, 5, 1, 8, 8, 2]_{11};$

Play the ro
 T(v−1) ≅

$$\binom{\nu-1}{w-1} = (HUGE) = [..., \neq 0, 0, 0, 0, 0]_{11}.$$

• They are a
$$\Rightarrow$$
 T(220540–1) has 2⁴ Weyl factors.

• They have Δ - and ∇ filtrations, which look the same if you tilt your head:

They are a bit better behaved than simples.

Tilting modules form a braided monoidal category Tilt. Simple \otimes simple \neq simple, Weyl \otimes Weyl \neq Weyl, but tilting \otimes tilting=tilting.

The Grothendieck algebra [Tilt] of Tilt is a commutative algebra with basis [T(v-1)]. So what I would like to answer on the object level, *i.e.* for [Tilt]:

- What are the fusion rules? I start here fusion for T(1)
- Find the $N_{\nu,w}^x \in \mathbb{N}_0$ in $T(\nu-1) \otimes T(w-1) \cong \bigoplus_x N_{\nu,w}^x T(x-1)$.

 $\triangleright\;$ For $[\mathcal{T}\mathrm{ilt}]$ this means finding the structure constants.

This appears to be tricky and I do not have an answer

• What are the thick \otimes -ideals?

 \triangleright For [Tilt] this means finding the ideals. This is discussed second

General. These facts hold in general, and tilting modules form the "nicest possible" monoidal subcategory.

Fusion graphs.

The fusion graph $\Gamma_{\nu} = \Gamma_{T(\nu-1)}$ of $T(\nu-1)$ is:

- Vertices of Γ_v are $w \in \mathbb{N}$, and identified with T(w-1).
- k edges $w \xrightarrow{k} x$ if T(x-1) appears k times in $T(v-1) \otimes T(w-1)$.
- T(v-1) is a \otimes -generator if Γ_v is strongly connected.
- This works for any reasonable monoidal category, with vertices being indecomposable objects and edges count multiplicities in ⊗-products.

Baby example. Assume that we have two indecomposable objects 1 and X, with $X^{\otimes 2}=1\oplus X.$ Then:

$$\begin{array}{cccc} \Gamma_1 = \ & \sub{I} & X \ & \swarrow & \\ \text{not a } \otimes \text{-generator} & & \mathbf{X} & \bigcirc & \\ \end{array} \begin{array}{c} \Gamma_X = & 1 & \overleftarrow{\longrightarrow} & X \ & \bigcirc \\ & \mathbf{a} \otimes \text{-generator} \end{array}$$

Fusion graphs for T(1): char 3 vs. generic.

T(1)'s fusion graph via a Bratteli-type diagram

Let $v = [a_j, ..., a_0]_p$. We have

$$\mathbf{T}(\mathbf{v}-1)\otimes\mathbf{T}(1)\cong\mathbf{T}(\mathbf{v})\oplus\bigoplus_{i=0}^{t/}\mathbf{T}(\mathbf{v}-2p^i)^{\oplus x_i}, x_i = \begin{cases} 0 & \text{if } a_i=0 \text{ or } i=j \text{ and } a_j=1, \\ 2 & \text{if } a_i=1, \\ 1 & \text{if } a_i>1. \end{cases}$$

tl=tail length=length of $[...,\neq p-1,p-1,p-1,...,p-1]_p$

Proof strategy.

- Feed the problem into a machine;
- let it do a lot of calculations;
- guess the formula;
- prove the formula using character computations. Easy

Tilting modules form a braided monoidal category Tilt. Simple \otimes simple \neq simple, Weyl \otimes Weyl \neq Weyl, but tilting \otimes tilting=tilting.

The Grothendieck algebra [Tilt] of Tilt is a commutative algebra with basis [T(v-1)]. So what I would like to answer on the object level, *i.e.* for [Tilt]:

- What are the fusion rules? I start here fusion for T(1)
- Find the $N_{\nu,w}^x \in \mathbb{N}_0$ in $T(\nu-1) \otimes T(w-1) \cong \bigoplus_x N_{\nu,w}^x T(x-1)$.

 \triangleright For $[\mathcal{T}ilt]$ this means finding the structure constants.

This appears to be tricky and I do not have an answer

• What are the thick \otimes -ideals?

 \triangleright For [\mathcal{T} ilt] this means finding the ideals. This is discussed second

- Every \otimes -ideal is thick, and any non-zero thick \otimes -ideal is of the form $\mathcal{J}_{p^k} = \{T(v-1) \mid v \ge p^k\}.$
- There is a chain of \otimes -ideals $\mathcal{T}ilt = \mathcal{J}_1 \supset \mathcal{J}_p \supset \mathcal{J}_{p^2} \supset$ The cells, *i.e.* $\mathcal{J}_{p^k}/\mathcal{J}_{p^{k+1}}$, are the strongly connected components of Γ_1 .

Daniel Tubbenhauer

Fusion rules for SL₂

Rumer–Teller–Weyl \sim 1932, Temperley–Lieb \sim 1971, Kauffman \sim 1987.

The category \mathcal{TL} is the monoidal $\mathbb Z\text{-linear}$ category monoidally generated by

object generators : •, morphism generators : \bigcirc : $\mathbb{1} \to \bullet^{\otimes 2}, \bigcup$: $\bullet^{\otimes 2} \to \mathbb{1}$,

relations :
$$\bigcirc = -2$$
, $\bigcirc = = \bigcirc$.

The category \mathcal{TL} is the monoidal \mathbb{Z} -linear category monoidally generated by

The category \mathcal{TL} is the monoidal \mathbb{Z} -linear category monoidally generated by

The category \mathcal{TL} is the monoidal \mathbb{Z} -linear category monoidally generated by

Generically, using classical Jones-Wenzl projector (white boxes):

$$\Delta(v-1) \otimes \Delta(1) \cong \Delta(v) \oplus \Delta(v-2)$$

$$\iff$$

$$v-1 = v - \frac{v-1}{v} \cdot \frac{v-1}{v-1}$$

In characteristic p using purple boxes, e.g.:

$$T(v-1) \otimes T(1) \cong T(v) \oplus T(v-2)$$

$$\iff$$

$$\left(-\frac{v-1}{v} \cdot \underbrace{\frac{v-1}{v-2}}_{v-1} - \underbrace{\text{explicit scalar}}_{\text{nilpotent correction term}}\right)$$

Yes we can!

Let $v = [a_i, ..., a_0]_p$. We have

 $T(v-1) \otimes T(1) \cong T(v) \oplus \bigoplus_{i=0}^{t^{i}} T(v-2p^{i})^{\oplus x_{i}}, x_{i} = \begin{cases} 0 & \text{if } a_{i} = 0 \text{ or } i = j \text{ and } a_{j} = 1, \\ 2 & \text{if } a_{i} = 1, \\ 1 & \text{if } a_{i} > 1. \end{cases}$ \longleftrightarrow $v-1 = v + \sum_{i=0}^{t^{i}} P_{v}^{i} \text{ where } P_{v}^{i} = \begin{cases} 0 & \text{if } a_{i} = 0, \\ explicit \text{ diagrams} & \text{if } a_{i} = 0, \\ explicit \text{ diagrams} & \text{if } a_{i} = 1, \\ \text{other explicit diagrams} & \text{if } a_{i} > 1. \end{cases}$

Proof strategy.

- Feed the problem into a machine;
- let it do a lot of calculations;
- guess the formula;
- prove the formula using a huge inductive argument. Not so easy

Yes we can!

Proof strategy.

- Feed the problem into a machine;
- let it do a lot of calculations;
- guess the formula;
- prove the formula using a huge inductive argument. Not so easy

- ...in the context of representations of classical groups? → The modules and their structure.
- ...in the context of representations of Hopf algebras? --- Object fusion rules i.e.
- ...in the context of categories? → Morphisms of representations and their
- If the characteristic of the underlying field $\mathbb{K} = \overline{\mathbb{K}}$ of $SL_2 = SL_2(\mathbb{K})$ is finite we will see inverse fractals, e.g.

Ringel, Dankin ~1991. There is a class of indecomposables $T(\nu-1)$ indexed by

They have Δ- and ∇ filtrations, which look the same if you tilt your head

N. They are a bit tricky to define, but:

T(v - 1) = ----

Failer rate for this Ringel, Donkin ~1991. There is a class of indecomposables T(y-1) indexed by

> aample, T(4-1) in characteristic 3 $Y^1 \xrightarrow{2} X^1Y$

Ady 2681 3,76

Then the state is provided by the state on the state of t

Ady 2681 5.75

Generically, using classical Jones-Wenzl projector (white boxes):

 $\Delta(v - 1) \odot \Delta(1) \cong \Delta(v) \odot \Delta(v - 2)$

In characteristic *p* using purple boxes, e.g.:

Parties Labor for Bug There is still much to do...

Adj 2015 5/5

Paula Tublechaur

Basia Tutkanhaan Fasia sala Ke Ke

- ...in the context of representations of classical groups? \rightarrow The modules and their structure.
- ...in the context of representations of Hopf algebras? --- Object fusion rules i.e.
- ...in the context of categories? → Morphisms of representations and their structure.
- If the characteristic of the underlying field $\mathbb{K} = \overline{\mathbb{K}}$ of $SL_2 = SL_2(\mathbb{K})$ is finite we will see inverse fractals, e.g.

Ringel, Dankin ~1991. There is a class of indecomposables $T(\nu-1)$ indexed by

They have Δ- and ∇ filtrations, which look the same if you tilt your head

N. They are a bit tricky to define, but:

T(v - 1) = ---

Fui

Ringel, Donkin ~1991. There is a class of indecomposables T(v-1) indexed by

aample, T(4-1) in characteristic 3 $a_{Y^1} \xrightarrow{2} X^1Y$

Adv 2681 1.76

free grand - protect is matter as the

Ady 2681 5.75

Example ($\rho = 3$).

Rusid Tableshour

Generically, using classical Jones-Wenzl projector (white boxes):

 $\Delta(v - 1) \odot \Delta(1) \cong \Delta(v) \odot \Delta(v - 2)$

In characteristic p using purple boxes, e.g.:

Parison Laboration Tax and Thanks for your attention!

• Play the role of grajection models: • $\pi(v-1) \equiv L(v-1) \equiv \overline{\nabla}(v-1)$ generically. • $\pi(v-1)$ the barber balanced than simple.	$\begin{array}{c} Play \mbox{ the } \\ \bullet \ Play \mbox{ the } \\ \bullet \ (\gamma(-1) \equiv L(\nu-1) \equiv \Delta(\nu-1) \equiv \Delta(\nu-1) \equiv D(\nu-1) \mbox{ gravitally}. \\ \bullet \ They are a \mbox{ the behaved than simplex}. \end{array}$			
inside Tortherhouse ${\cal F}$ define takes for ${\cal S}_{\frac{1}{2}}$, and ${\cal H}({\cal S}_{-})$, ${\cal L}_{2}$	Bania Makadawar Awim yaka ke Baj			
usion graphs for T(1): char 3 vs. generic.	-ideals of Tilt are indexed by prime powers.	provide by the first or any		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<ul> <li>Every ⊗-ideal is thick, and any non-zero thick ⊗-ideal is <i>J_μ</i> = {π[ν − 1]   ν ≥ ρ^k}.     </li> <li>There is a chain of ⊗-ideals <i>T</i>lit = <i>J</i>₁ ⊃ <i>J_μ</i> ⊃ <i>J_μ</i> ⊃ <i>J_μ</i>   <i>J_μ</i>_{μ→n}, are the strongly connected components of Γ_μ <i>J_μ</i></li> </ul>	. The cells, i.e.		

Adj 2015 5/5



Busin Tellumbaan Fasian rata for Sky