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The setup in a nutshell

Start

A good algebra
A good monoidal

category or 2-category

Fix a certain basis Indecomposable objects

Green’s theory of cells

Output. Parametriza-
tion of simples

Output. Parametriza-
tion of 2-simples

Morally a categorification!

Morally a categorification!

Morally a categorification!

Time flies: I won’t be able to explain the categorical version today

But it is almost 1:1 the same as the decategorified story

The keyword to google is ‘H-reduction’
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Clifford, Munn, Ponizovskĭı, Green ∼1942++, Kazhdan–Lusztig ∼1979,
Graham–Lehrer ∼1996, König–Xi ∼1999, Guay–Wilcox ∼2015, many more

A sandwich cellular algebra is an algebra together with a sandwich cellular datum:
I A partial ordered set Λ = (Λ,≤Λ) and a set Mλ for all λ ∈ Λ

I an algebra Bλ for all λ ∈ Λ The sandwiched algebra(s)

I a basis {cλD,b,U | λ ∈ Λ,D,U ∈ Mλ, b ∈ Bλ}
I cλD,b,U · a ≡≤Λ

∑
ra(U,D ′) · cλD,F ,U′

e.g.:

D

U

b

D ′

U ′

b′

≡≤Λ
r(U,D ′) ·

D

U ′

F

Local intersection forms:
U

D ′ ≡≤Λ
r(U,D ′) · b′′

The local intersection forms give a pairing matrix:

φλ


 U

b

a

,
D ′
b′


  

U

b

a

D ′
b′

 φλ




U

b
,

a

D ′
b′




Computing local intersection forms is key
but I mostly ignore them for this talk
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Running example. The Bauer algebra, following Fishel–Grojnowski ∼1995

I Brauer’s centralizer algebra Brn(c):

n = 4 example: , circle evaluation: = c · ∅

I Λ = {n, n − 2, ...}
I Down diagrams D = cap configurations, up diagrams U = cup configurations

I the sandwiched algebra is the symmetric group Sλ

U =

b =

D =
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Green cells – left L, right R, two-sided J , intersections H

Fixing (colored) right, left, nothing or left-right gives:

L(λ,U)!
D

U

b , R(λ,D)!
D

U

b , Jλ!
D

U

b , Hλ,D,U !
D

U

b

cD1∗U1 cD1∗U2 cD1∗U3 cD1∗U4 ...

cD2∗U1 cD2∗U2 cD2∗U3 cD2∗U4

. . .

cD3∗U1 cD3∗U2 cD3∗U3 cD3∗U4

. . .

cD4∗U1 cD4∗U2 cD4∗U3 cD4∗U4

. . .

...
. . .

. . .
. . .

. . .

R(λ,D3)

L(λ,U3)Jλ

Hλ,D3,U3

Hλ,D2,U3
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Back to Brauer

J2 with two through strands for n = 4: columns are L-cells, rows are R-cells and
the small boxes are H-cells

,

multiplication
table of the
colored box:

=

=

=

=
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The Clifford–Munn–Ponizovskĭı theorem

An apex is a λ ∈ Λ such that AnnA(M) = J>Λλ and r(U,D) is invertible for some
D,U ∈ M(λ). Easy fact. Every simple has a unique associated apex

Theorem (works over any field).

I For a fixed apex λ ∈ Λ there exists Hλ,D,U ∼= Bλ

I there is a 1:1-correspondence

{simples with apex λ} 1:1←→ {simple Bλ-modules}

I under this bijection the simple L(λ,K ) associated to the simple Bλ-module K
is the head of the induced module

Simple-classification for the sandwich boils down to

simple-classification of the sandwiched

plus apex hunting

Sandwiched algebra = ground ring ⇒ cellular (without antiinvolution)

Sandwiched algebra = polynomial ring ⇒ affine cellular (without antiinvolution)

A sandwich datum can be sometimes made finer:

D

U

b  

D

U

Dµ

Uν

Apex hunting can be done using linear algebra (cellular pairing)

Over an algebraically closed field any finite dimensional algebra is sandwich cellular

The point is to find a “good” sandwich datum
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Brauer Brn(c) and the symmetric group Sλ

Theorem (works over any field).
I If c 6= 0, or c = 0 and λ 6= 0 is odd, then all λ ∈ Λ are apexes. In the

remaining case, c = 0 and λ = 0 (this only happens if n is even), all
λ ∈ Λ− {0} are apexes, but λ = 0 is not an apex

I the simple Brn(c)-modules of apex λ ∈ Λ are parameterized by simple
Sλ-modules

multiplication
table of an
H-cell:

= ,

= ,

= ,

= ,

multiplication
table of
Sλ:

1 · 1 = 1,

s · 1 = s,

1 · s = s,

s · s = 1.
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Handlebody braids Bg ,n (Häring-Oldenburg–Lambropoulou, Vershinin ∼1998)

I Generators. Twists τu and braidings βi

τu =

1u−1

u−1

1

1

u+1

u+1

g

g

u

u 1

...... , βi =
i+1

i

i

i+1

I Relations. Typical Reidemeister relations and

vu

u v

=

u v

vu

if u ≤ v

After closing. The cores correspond to cores of solid handlebodies:

An Alexander closure :  

•∞

•∞

A handlebody braid for g = 4:

core strands

usual strands

Genus type A type C

g = 0 Classical (Artin ∼1925) −
g = 1 Extended affine Classical (Brieskorn ∼1973)

g = 2 ? Affine (Allcock ∼1999)

g ≥ 3 ? ?

Jucys–Murphy elements.

Lu,i =

iu

u i

, L−1
u,i =

i

u

u

i

Crucial (problem?).

The twists span a free group Fg , e.g.

6=
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Handlebody braids Bg ,n (Häring-Oldenburg–Lambropoulou, Vershinin ∼1998)

I Generators. Twists τu and braidings βi

τu =

1u−1

u−1

1

1

u+1

u+1

g

g

u

u 1

...... , βi =
i+1

i

i

i+1

I Relations. Typical Reidemeister relations and

vu

u v

=

u v

vu

if u ≤ v

After closing. The cores correspond to cores of solid handlebodies:

An Alexander closure :  

•∞

•∞

A handlebody braid for g = 4:

core strands

usual strands

Genus type A type C

g = 0 Classical (Artin ∼1925) −
g = 1 Extended affine Classical (Brieskorn ∼1973)

g = 2 ? Affine (Allcock ∼1999)

g ≥ 3 ? ?

Jucys–Murphy elements.

Lu,i =

iu

u i

, L−1
u,i =

i

u

u

i

Crucial (problem?).

The twists span a free group Fg , e.g.

6=

Daniel Tubbenhauer Cells in representation theory and categorification July 2021 9 / 13
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Handlebody Hecke algebras Hg ,n

I Generators. Twists τu and braidings βi

,

I Relations. Quotient of the handlebody braid group by the Skein relation

− = (q − q−1) ·

I Examples.

B For g = 0 this is the classical Hecke algebra

B For g = 1 this is the extended affine Hecke algebra

B For g = 1 + a relation for twists this is the Ariki–Koike algebra

Theorem.

Hg,n has a standard basis:{
La1
u1,i1

...Lam
um,im

Hw

∣∣∣∣∣
w ∈ Sn,m ∈ N, a ∈ Zm,

(u, i) ∈ ({1, ..., g} × {1, ..., n})m, i1 ≤ ... ≤ im

}

Theorem.

Hg,n has a Murphy-type sandwich basis:

cλD,b,U =
a certain idempotent

a Jucys–Murphy element

Crucial (problem?).

Bλ “are” (contain to be precise) free groups Fg

There are also other handlebody diagram algebras:
Temperley–Lieb, blob, Brauer/BMW etc.:

=

All are sandwich cellular with a version of Fg in the middle.

Some same problem – the free group.
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Simples for n = 1 – why one can’t do much better

Let us consider K = C. Recall that sandwiching gives us:

I For g = 0 we need to classify simples of Bλ = C[F0] = C
B This is the classical case

B Simple modules of C: left to the reader

I For g = 1 we need to classify simples of Bλ = C[F1] = C[a, a−1]

B This is the affine case

B Simple modules of C[a, a−1]: choose an element in C∗ for a

I For g = 2 we need to classify simples of Bλ = C[F2] = C〈a, a−1, b, b−1〉
B This is higher genus

B Simple modules of C〈a, a−1, b, b−1〉: well...

Studying representation of F2 = 〈a, b〉 is a wild problem:

Every choice of (A,B) ∈ (C∗)2 gives a simple representation on C
These are non-equivalent

Every choice of eigenvalues for a, b and ab gives a simple representation on C2

Under known conditions these are non-equivalent

Every choice of A ∈ C∗ gives a simple representation IndF2
〈a〉A

These are non-equivalent

Beyond that you hit the realm of harmonic analysis, random walks and crazier stuff
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This is the last slide, I promise

I There are cyclotomic versions of handlebody diagram algebras, e.g.

=

I For these you get some nice(?) dimension formulas, e.g. For the higher genus
version of the Ariki–Koike algebra one gets

dimK Hd ,b
g ,n = (BNg ,d )nn!, BNg ,d =

∑

k∈N

∑

0≤ku≤min(k,d u−1)
k1+...+kg=k

(
k

k1, ..., kg

)

This generalizes formulas from the classical and the Ariki–Koike case:

dimK Hd ,b
0,n = n!, dimK Hd ,b

1,n = dnn!

I These are all sandwich cellular with a nice sandwich datum
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Clifford, Munn, Ponizovskĭı, Green ∼1942++, Kazhdan–Lusztig ∼1979,
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A sandwich cellular algebra is an algebra together with a sandwich cellular datum:
I A partial ordered set Λ = (Λ,≤Λ) and a set Mλ for all λ ∈ Λ

I an algebra Bλ for all λ ∈ Λ The sandwiched algebra(s)

I a basis {cλD,b,U | λ ∈ Λ,D,U ∈ Mλ, b ∈ Bλ}
I cλD,b,U · a ≡≤Λ

∑
ra(U,D ′) · cλD,F ,U′

e.g.:

D

U

b

D ′

U ′

b′

≡≤Λ
r(U,D ′) ·

D

U ′

F

Local intersection forms:
U

D ′ ≡≤Λ
r(U,D ′) · b′′

The local intersection forms give a pairing matrix:

φλ


 U

b

a

,
D ′
b′


  

U

b

a

D ′
b′

 φλ




U

b
,

a

D ′
b′




Computing local intersection forms is key
but I mostly ignore them for this talk
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Green cells – left L, right R, two-sided J , intersections H

Fixing (colored) right, left, nothing or left-right gives:

L(λ,U)!
D

U

b , R(λ,D)!
D

U

b , Jλ!
D

U

b , Hλ,D,U !
D

U

b

cD1∗U1 cD1∗U2 cD1∗U3 cD1∗U4 ...

cD2∗U1 cD2∗U2 cD2∗U3 cD2∗U4

. . .

cD3∗U1 cD3∗U2 cD3∗U3 cD3∗U4

. . .

cD4∗U1 cD4∗U2 cD4∗U3 cD4∗U4

. . .

...
. . .

. . .
. . .

. . .

R(λ,D3)

L(λ,U3)Jλ

Hλ,D3,U3

Hλ,D2,U3
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The Clifford–Munn–Ponizovskĭı theorem

An apex is a λ ∈ Λ such that AnnA(M) = J>Λλ and r(U,D) is invertible for some
D,U ∈ M(λ). Easy fact. Every simple has a unique associated apex

Theorem (works over any field).

I For a fixed apex λ ∈ Λ there exists Hλ,D,U ∼= Bλ

I there is a 1:1-correspondence

{simples with apex λ} 1:1←→ {simple Bλ-modules}

I under this bijection the simple L(λ,K ) associated to the simple Bλ-module K
is the head of the induced module

Simple-classification for the sandwich boils down to

simple-classification of the sandwiched

plus apex hunting

Sandwiched algebra = ground ring ⇒ cellular (without antiinvolution)

Sandwiched algebra = polynomial ring ⇒ affine cellular (without antiinvolution)

A sandwich datum can be sometimes made finer:

D

U

b  

D

U

Dµ

Uν

Apex hunting can be done using linear algebra (cellular pairing)

Over an algebraically closed field any finite dimensional algebra is sandwich cellular

The point is to find a “good” sandwich datum
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Running example. The Bauer algebra, following Fishel–Grojnowski ∼1995

I Brauer’s centralizer algebra Brn(c):

n = 4 example: , circle evaluation: = c · ∅

I Λ = {n, n − 2, ...}
I Down diagrams D = cap configurations, up diagrams U = cup configurations

I the sandwiched algebra is the symmetric group Sλ

U =

b =

D =
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Back to Brauer

J2 with two through strands for n = 4: columns are L-cells, rows are R-cells and
the small boxes are H-cells

,

multiplication
table of the
colored box:

=

=

=

=
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Brauer Brn(c) and the symmetric group Sλ

Theorem (works over any field).
I If c 6= 0, or c = 0 and λ 6= 0 is odd, then all λ ∈ Λ are apexes. In the

remaining case, c = 0 and λ = 0 (this only happens if n is even), all
λ ∈ Λ− {0} are apexes, but λ = 0 is not an apex

I the simple Brn(c)-modules of apex λ ∈ Λ are parameterized by simple
Sλ-modules

multiplication
table of an
H-cell:

= ,

= ,

= ,

= ,

multiplication
table of
Sλ:

1 · 1 = 1,

s · 1 = s,

1 · s = s,

s · s = 1.
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Handlebody braids Bg ,n (Häring-Oldenburg–Lambropoulou, Vershinin ∼1998)

I Generators. Twists τu and braidings βi

τu =

1u−1

u−1

1

1

u+1

u+1

g

g

u

u 1

...... , βi =
i+1

i

i

i+1

I Relations. Typical Reidemeister relations and

vu

u v

=

u v

vu

if u ≤ v

After closing. The cores correspond to cores of solid handlebodies:

An Alexander closure :  

•∞

•∞

A handlebody braid for g = 4:

core strands

usual strands

Genus type A type C

g = 0 Classical (Artin ∼1925) −
g = 1 Extended affine Classical (Brieskorn ∼1973)

g = 2 ? Affine (Allcock ∼1999)

g ≥ 3 ? ?

Jucys–Murphy elements.

Lu,i =

iu

u i

, L−1
u,i =

i

u

u

i

Crucial (problem?).

The twists span a free group Fg , e.g.

6=
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Simples for n = 1 – why one can’t do much better

Let us consider K = C. Recall that sandwiching gives us:

I For g = 0 we need to classify simples of Bλ = C[F0] = C
B This is the classical case

B Simple modules of C: left to the reader

I For g = 1 we need to classify simples of Bλ = C[F1] = C[a, a−1]

B This is the affine case

B Simple modules of C[a, a−1]: choose an element in C∗ for a

I For g = 2 we need to classify simples of Bλ = C[F2] = C〈a, a−1, b, b−1〉
B This is higher genus

B Simple modules of C〈a, a−1, b, b−1〉: well...

Studying representation of F2 = 〈a, b〉 is a wild problem:

Every choice of (A,B) ∈ (C∗)2 gives a simple representation on C
These are non-equivalent

Every choice of eigenvalues for a, b and ab gives a simple representation on C2

Under known conditions these are non-equivalent

Every choice of A ∈ C∗ gives a simple representation IndF2
〈a〉A

These are non-equivalent

Beyond that you hit the realm of harmonic analysis, random walks and crazier stuff
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There is still much to do...

Thanks for your attention!
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Clifford, Munn, Ponizovskĭı, Green ∼1942++, Kazhdan–Lusztig ∼1979,
Graham–Lehrer ∼1996, König–Xi ∼1999, Guay–Wilcox ∼2015, many more

A sandwich cellular algebra is an algebra together with a sandwich cellular datum:
I A partial ordered set Λ = (Λ,≤Λ) and a set Mλ for all λ ∈ Λ

I an algebra Bλ for all λ ∈ Λ The sandwiched algebra(s)

I a basis {cλD,b,U | λ ∈ Λ,D,U ∈ Mλ, b ∈ Bλ}
I cλD,b,U · a ≡≤Λ

∑
ra(U,D ′) · cλD,F ,U′

e.g.:

D

U

b

D ′

U ′

b′

≡≤Λ
r(U,D ′) ·

D

U ′

F

Local intersection forms:
U

D ′ ≡≤Λ
r(U,D ′) · b′′

The local intersection forms give a pairing matrix:

φλ


 U

b

a

,
D ′
b′


  

U

b

a

D ′
b′

 φλ




U

b
,

a

D ′
b′




Computing local intersection forms is key
but I mostly ignore them for this talk
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Green cells – left L, right R, two-sided J , intersections H

Fixing (colored) right, left, nothing or left-right gives:

L(λ,U)!
D

U

b , R(λ,D)!
D

U

b , Jλ!
D

U

b , Hλ,D,U !
D

U

b

cD1∗U1 cD1∗U2 cD1∗U3 cD1∗U4 ...

cD2∗U1 cD2∗U2 cD2∗U3 cD2∗U4

. . .

cD3∗U1 cD3∗U2 cD3∗U3 cD3∗U4

. . .

cD4∗U1 cD4∗U2 cD4∗U3 cD4∗U4

. . .

...
. . .

. . .
. . .

. . .

R(λ,D3)

L(λ,U3)Jλ

Hλ,D3,U3

Hλ,D2,U3
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The Clifford–Munn–Ponizovskĭı theorem

An apex is a λ ∈ Λ such that AnnA(M) = J>Λλ and r(U,D) is invertible for some
D,U ∈ M(λ). Easy fact. Every simple has a unique associated apex

Theorem (works over any field).

I For a fixed apex λ ∈ Λ there exists Hλ,D,U ∼= Bλ

I there is a 1:1-correspondence

{simples with apex λ} 1:1←→ {simple Bλ-modules}

I under this bijection the simple L(λ,K ) associated to the simple Bλ-module K
is the head of the induced module

Simple-classification for the sandwich boils down to

simple-classification of the sandwiched

plus apex hunting

Sandwiched algebra = ground ring ⇒ cellular (without antiinvolution)

Sandwiched algebra = polynomial ring ⇒ affine cellular (without antiinvolution)

A sandwich datum can be sometimes made finer:

D

U

b  

D

U

Dµ

Uν

Apex hunting can be done using linear algebra (cellular pairing)

Over an algebraically closed field any finite dimensional algebra is sandwich cellular

The point is to find a “good” sandwich datum
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Running example. The Bauer algebra, following Fishel–Grojnowski ∼1995
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Back to Brauer
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Brauer Brn(c) and the symmetric group Sλ

Theorem (works over any field).
I If c 6= 0, or c = 0 and λ 6= 0 is odd, then all λ ∈ Λ are apexes. In the

remaining case, c = 0 and λ = 0 (this only happens if n is even), all
λ ∈ Λ− {0} are apexes, but λ = 0 is not an apex

I the simple Brn(c)-modules of apex λ ∈ Λ are parameterized by simple
Sλ-modules

multiplication
table of an
H-cell:

= ,

= ,

= ,

= ,

multiplication
table of
Sλ:

1 · 1 = 1,

s · 1 = s,

1 · s = s,

s · s = 1.
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I Relations. Typical Reidemeister relations and
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u v

=

u v
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if u ≤ v

After closing. The cores correspond to cores of solid handlebodies:

An Alexander closure :  

•∞

•∞

A handlebody braid for g = 4:

core strands

usual strands

Genus type A type C

g = 0 Classical (Artin ∼1925) −
g = 1 Extended affine Classical (Brieskorn ∼1973)

g = 2 ? Affine (Allcock ∼1999)

g ≥ 3 ? ?

Jucys–Murphy elements.

Lu,i =

iu

u i

, L−1
u,i =

i

u

u

i

Crucial (problem?).

The twists span a free group Fg , e.g.
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There is still much to do...

Thanks for your attention!
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