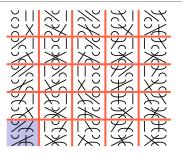
Cells in representation theory and categorification

Or: Classifying simples made simple

Daniel Tubbenhauer



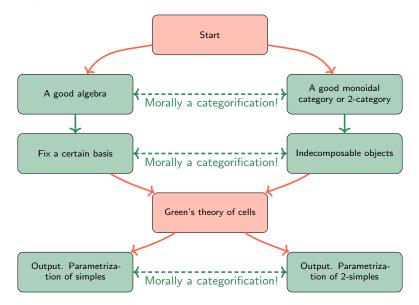
Joint with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz, Pedro Vaz and Xiaoting Zhang

July 2021

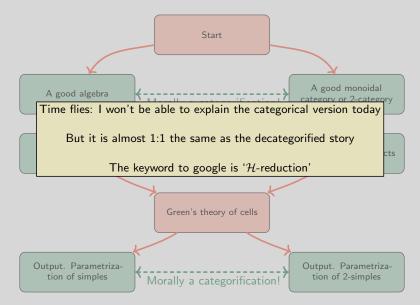
Daniel Tubbenhauer

Cells in representation theory and categorification

The setup in a nutshell



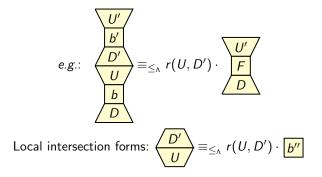
The setup in a nutshell



Clifford, Munn, Ponizovskii, Green ${\sim}1942+\!\!+$, Kazhdan–Lusztig ${\sim}1979$, Graham–Lehrer ${\sim}1996$, König–Xi ${\sim}1999$, Guay–Wilcox ${\sim}2015$, many more

A sandwich cellular algebra is an algebra together with a sandwich cellular datum:

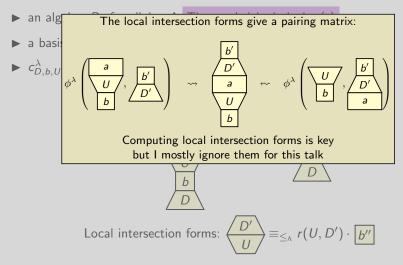
- ▶ A partial ordered set $\Lambda = (\Lambda, \leq_{\Lambda})$ and a set M_{λ} for all $\lambda \in \Lambda$
- ▶ an algebra B_{λ} for all $\lambda \in \Lambda$ The sandwiched algebra(s)
- ▶ a basis $\{c_{D,b,U}^{\lambda} \mid \lambda \in \Lambda, D, U \in M_{\lambda}, b \in B_{\lambda}\}$
- $\blacktriangleright c_{D,b,U}^{\lambda} \cdot a \equiv_{\leq_{\Lambda}} \sum r_{a}(U,D') \cdot c_{D,F,U'}^{\lambda}$



Clifford, Munn, Ponizovskii, Green ${\sim}1942+\!\!+$, Kazhdan–Lusztig ${\sim}1979$, Graham–Lehrer ${\sim}1996$, König–Xi ${\sim}1999$, Guay–Wilcox ${\sim}2015$, many more

A sandwich cellular algebra is an algebra together with a sandwich cellular datum:

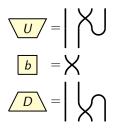
▶ A partial ordered set $\Lambda = (\Lambda, \leq_{\Lambda})$ and a set M_{λ} for all $\lambda \in \Lambda$



• Brauer's centralizer algebra $Br_n(c)$:

$$n = 4$$
 example: \bigcirc , circle evaluation: $\bigcirc = c \cdot \emptyset$

- ► $\Lambda = \{n, n-2, ...\}$
- ▶ Down diagrams D = cap configurations, up diagrams U = cup configurations
- ▶ the sandwiched algebra is the symmetric group S_{λ}



Green cells – left \mathcal{L} , right \mathcal{R} , two-sided \mathcal{J} , intersections \mathcal{H}

Fixing (colored) right, left, nothing or left-right gives:

$$\mathcal{L}(\lambda, U) \longleftrightarrow \bigcup_{D}^{U}, \quad \mathcal{R}(\lambda, D) \longleftrightarrow \bigcup_{D}^{U}, \quad \mathcal{J}_{\lambda} \longleftrightarrow \bigcup_{D}^{U}, \quad \mathcal{H}_{\lambda, D, U} \longleftrightarrow \bigcup_{D}^{U}$$

$$\mathcal{J}_{\lambda} \qquad \qquad \mathcal{L}(\lambda, U_{3})$$

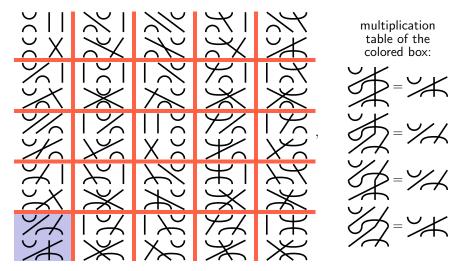
$$\mathcal{I}_{\lambda} \qquad \qquad \mathcal{I}_{\lambda, D, U} \longleftrightarrow \bigcup_{D}^{U}, \quad \mathcal{H}_{\lambda, D, U} \longleftrightarrow \bigcup_{D}^{U}$$

$$\mathcal{I}_{\lambda, D, U} \leftarrow \bigcup_{D}^{U}, \quad \mathcal{I}_{\lambda, U_{3}} \leftarrow \mathcal{I}_{\lambda$$

Daniel Tubbenhauer

Back to Brauer

 \mathcal{J}_2 with two through strands for n = 4: columns are \mathcal{L} -cells, rows are \mathcal{R} -cells and the small boxes are \mathcal{H} -cells



An apex is a $\lambda \in \Lambda$ such that $\operatorname{Ann}_{A}(M) = \mathcal{J}_{>_{\Lambda}\lambda}$ and r(U, D) is invertible for some $D, U \in M(\lambda)$. Easy fact. Every simple has a unique associated apex

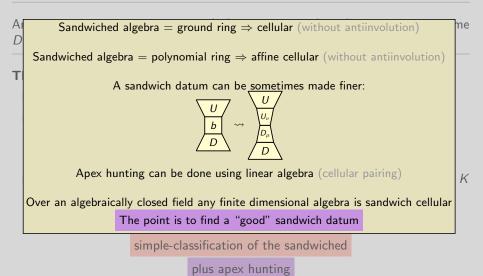
Theorem (works over any field).

- ▶ For a fixed apex $\lambda \in \Lambda$ there exists $\mathcal{H}_{\lambda,D,U} \cong B_{\lambda}$
- ► there is a 1:1-correspondence

{simples with apex λ } \longleftrightarrow {simple B_{λ} -modules}

► under this bijection the simple L(\u03c0, K) associated to the simple B_{\u03c0}-module K is the head of the induced module

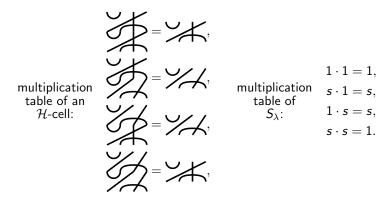
Simple-classification for the sandwich boils down to simple-classification of the sandwiched plus apex hunting



Daniel Tubbenhauer

Theorem (works over any field).

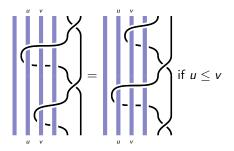
- If c ≠ 0, or c = 0 and λ ≠ 0 is odd, then all λ ∈ Λ are apexes. In the remaining case, c = 0 and λ = 0 (this only happens if n is even), all λ ∈ Λ − {0} are apexes, but λ = 0 is not an apex
- ► the simple $Br_n(c)$ -modules of apex $\lambda \in \Lambda$ are parameterized by simple S_{λ} -modules

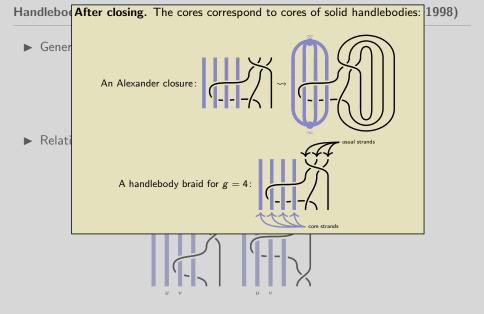


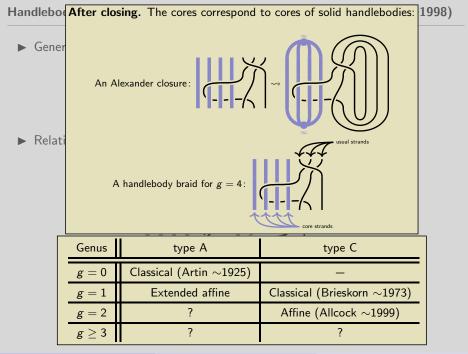
• Generators. Twists τ_u and braidings β_i

$$\tau_{u} = \prod_{1 \ u-1 \ u}^{1 \ u-1 \ u} \prod_{u=1}^{u-1} \prod_{u=1}^{u-1} \prod_{j=1}^{u-1} \prod_{j$$

► Relations. Typical Reidemeister relations and

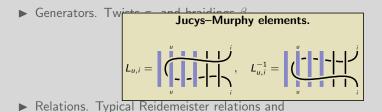


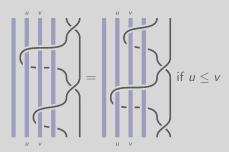




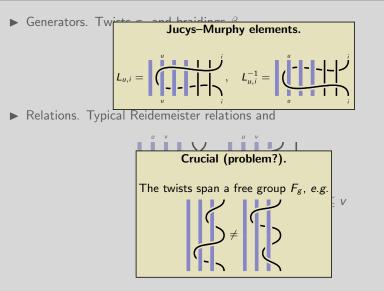
Daniel Tubbenhauer

Handlebody braids $B_{g,n}$ (Häring-Oldenburg–Lambropoulou, Vershinin ~1998)





Handlebody braids $B_{g,n}$ (Häring-Oldenburg–Lambropoulou, Vershinin ~1998)



Handlebody Hecke algebras $H_{g,n}$

• Generators. Twists τ_u and braidings β_i

▶ Relations. Quotient of the handlebody braid group by the Skein relation

$$X - X = (q - q^{-1}) \cdot |$$

► Examples.

 \triangleright For g = 0 this is the classical Hecke algebra

 \triangleright For g = 1 this is the extended affine Hecke algebra

 \triangleright For g = 1 + a relation for twists this is the Ariki–Koike algebra

▶ Relations. Quotient of the handlebody braid group by the Skein relation

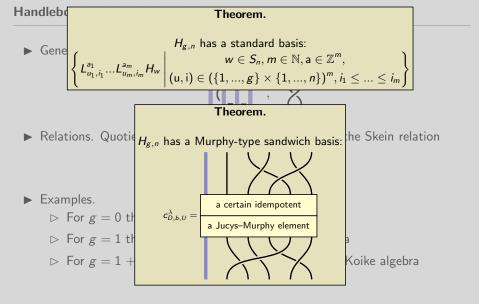
$$X - X = (q - q^{-1}) \cdot |$$

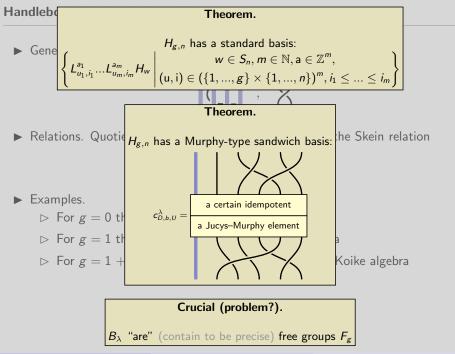
Examples.

 \triangleright For g = 0 this is the classical Hecke algebra

 \triangleright For g = 1 this is the extended affine Hecke algebra

 \triangleright For g = 1 + a relation for twists this is the Ariki–Koike algebra



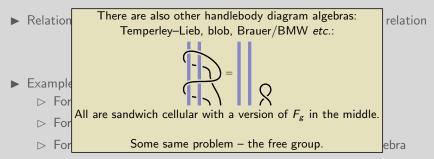


Daniel Tubbenhauer

Cells in representation theory and categorification

Handlebody Hecke algebras $H_{g,n}$

• Generators. Twists τ_u and braidings β_i



Let us consider $\mathbb{K} = \mathbb{C}$. Recall that sandwiching gives us:

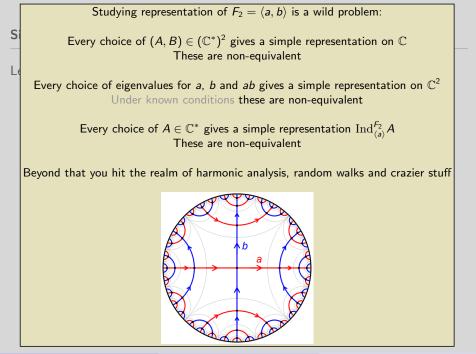
For g = 0 we need to classify simples of B_λ = C[F₀] = C
 ▷ This is the classical case

 \triangleright Simple modules of \mathbb{C} : left to the reader

For g = 1 we need to classify simples of B_λ = C[F₁] = C[a, a⁻¹]
 ▷ This is the affine case

 \triangleright Simple modules of $\mathbb{C}[a, a^{-1}]$: choose an element in \mathbb{C}^* for a

- For g = 2 we need to classify simples of B_λ = C[F₂] = C⟨a, a⁻¹, b, b⁻¹⟩
 ▷ This is higher genus
 - \triangleright Simple modules of $\mathbb{C}\langle a, a^{-1}, b, b^{-1} \rangle$: well...



▶ There are cyclotomic versions of handlebody diagram algebras, e.g.

► For these you get some nice(?) dimension formulas, *e.g.* For the higher genus version of the Ariki–Koike algebra one gets

$$\dim_{\mathbb{K}} H_{g,n}^{\boldsymbol{d},\boldsymbol{b}} = (\mathtt{BN}_{g,\boldsymbol{d}})^n n!, \quad \mathtt{BN}_{g,\boldsymbol{d}} = \sum_{k \in \mathbb{N}} \sum_{\substack{0 \leq k_u \leq \min(k, \boldsymbol{d}_u - 1) \\ k_1 + \ldots + k_g = k}} \binom{k}{k_1, \ldots, k_g}$$

This generalizes formulas from the classical and the Ariki-Koike case:

$$\dim_{\mathbb{K}} H_{0,n}^{\boldsymbol{d},\boldsymbol{b}} = n!, \quad \dim_{\mathbb{K}} H_{1,n}^{\boldsymbol{d},\boldsymbol{b}} = d^{n}n!$$

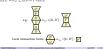
▶ These are all sandwich cellular with a nice sandwich datum

Clifford, Munn, Ponizovskii, Green ~1942++, Kazhdan-Lusztig ~1979, Graham-Lehrer ~1996, König-Xi ~1999, Guay-Wilcox ~2015, many more

A sandwich cellular algebra is an algebra together with a sandwich cellular datum:

- an algebra B_{λ} for all $\lambda \in \Lambda$. The sandwiched algebra(s)
- ▶ a basis $\{c_{D,b,U}^{\lambda} | \lambda \in \Lambda, D, U \in M_3, b \in B_{\lambda}\}$

► $c_{D,k,U}^{\lambda} \cdot a = \sum_{j \in V} r_a(U, D') \cdot c_{D,F,U'}^{\lambda}$



Running example. The Bauer algebra, following Fishel-Grojnowski ~1995

Brauer's centralizer algebra Br_a(c):

= 4 example:
$$\bigvee$$
, circle evaluation: $O = c \cdot \emptyset$

- ▶ Λ = {n, n − 2, ...}
- ▶ Down diagrams D = cap configurations, up diagrams U = cup configurations
- \blacktriangleright the sandwiched algebra is the symmetric group S_λ

Handlebody braids Beer (Häring-Oldenburg-Lambropoulou, Venhinin ~1998)

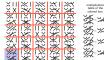
 \blacktriangleright Generators. Twists $\tau_{\rm s}$ and braidings $\beta_{\rm r}$

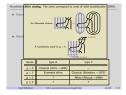
Resid Tolkashaar Columpaniation Roay and competitionics

Aug 2001 1/10

Back to Brauer

 \mathcal{J}_2 with two through strands for n=4: columns are $\mathcal{L}\text{-cells},$ rows are $\mathcal{R}\text{-cells}$ and the small boxes are $\mathcal{H}\text{-cells}$





The Clifford-Munn-Ponizovskil theorem

An apex is a $\lambda \in \Lambda$ such that $\operatorname{Ann}_{\Lambda}(M) = \mathcal{J}_{>_{0}\lambda}$ and r(U, D) is invertible for some $D, U \in M(\lambda)$. Easy fact. Every simple has a unique associated apex

Theorem (works over any field),

- For a fixed apex λ ∈ Λ there exists H_{λ,D,U} ≅ B_λ.
- there is a 1:1-correspondence

{simples with apex λ } $\stackrel{13}{\leftrightarrow}$ {simple B_{λ} -modules}

► under this bijection the simple L(\(\lambda, K\)) associated to the simple B_{\(\lambda\)}-module K is the head of the induced module

Simple-classification for the sandwich boils down to simple-classification of the sandwiched plus apec hunting

Basid Saturbaan Satu is representation theory and nongetiveries Adj. 2010 2/13

Brauer Br_a(c) and the symmetric group S₂

- Theorem (works over any field).
- ▶ If $c \neq 0$, or c = 0 and $\lambda \neq 0$ is odd, then all $\lambda \in \Lambda$ are approx. In the remaining case, c = 0 and $\lambda = 0$ (this only happens if σ is even), all $\lambda \in \Lambda \{0\}$ are approxe, but $\lambda = 0$ is not an approx
- \blacktriangleright the simple $Br_n(c)$ -modules of apex $\lambda\in\Lambda$ are parameterized by simple S_n -modules

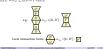
There is still much to do ...

Clifford, Munn, Ponizovskii, Green ~1942++, Kazhdan-Lusztig ~1979, Graham-Lehrer ~1996, König-Xi ~1999, Guay-Wilcox ~2015, many more

A sandwich cellular algebra is an algebra together with a sandwich cellular datum:

- ▶ an algebra B_{λ} for all $\lambda \in \Lambda$ The sandwiched algebra(s)
- ▶ a basis $\{c_{D,b,U}^{\lambda} | \lambda \in \Lambda, D, U \in M_{\lambda}, b \in B_{\lambda}\}$

▶ $c_{D,k,U}^{\lambda} \cdot a = \sum_{j \in V} r_a(U, D') \cdot c_{D,F,U'}^{\lambda}$



Running example. The Bauer algebra, following Fishel-Grojnowski ~1995

Brauer's centralizer algebra Br_a(c):

= 4 example:
$$\bigvee$$
, circle evaluation: $O = c \cdot \theta$

- ▶ Λ = {n, n − 2, ...}
- ▶ Down diagrams D = cap configurations, up diagrams U = cup configurations
- \blacktriangleright the sandwiched algebra is the symmetric group S_λ

Handlebody braids Beer (Häring-Oldenburg-Lambropoulou, Venhinin ~1998)

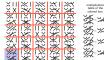
 \blacktriangleright Generators. Twists $\tau_{\rm s}$ and braidings $\beta_{\rm r}$

Resid Tolkashaar Columpaniation Roay and competitionics

Aug 2001 1/10

Back to Brauer

 \mathcal{J}_2 with two through strands for n=4: columns are $\mathcal L$ -cells, rows are $\mathcal R$ -cells and the small boxes are $\mathcal H$ -cells



The Clifford-Munn-Ponizovskil theorem

An apex is a $\lambda \in \Lambda$ such that $\operatorname{Ann}_{A}(M) = \mathcal{J}_{>_{0}\lambda}$ and r(U,D) is invertible for some $D, U \in M(\lambda)$. Easy fact. Every simple has a unique associated apex

Theorem (works over any field),

- For a fixed apex λ ∈ Λ there exists H_{λ,D,U} ≅ B_λ.
- there is a 1:1-correspondence

{simples with apex λ } $\stackrel{14}{\leftrightarrow}$ {simple B_{λ} -modules}

► under this bijection the simple L(\(\lambda, K\)) associated to the simple B_{\(\lambda\)}-module K is the head of the induced module

Simple-classification for the sandwich boils down to simple-classification of the sandwiched plus apec hunting

Basist Satissitaan Satis is separatelise theory and compatibulies Adj 2010 2/13

Brauer Br_a(c) and the symmetric group S₂

- Theorem (works over any field).
- ▶ If $c \neq 0$, or c = 0 and $\lambda \neq 0$ is odd, then all $\lambda \in \Lambda$ are approx. In the remaining case, c = 0 and $\lambda = 0$ (this only happens if σ is even), all $\lambda \in \Lambda \{0\}$ are approxe, but $\lambda = 0$ is not an approx
- \blacktriangleright the simple $Br_{\rm o}({\rm c})$ -modules of apex $\lambda\in\Lambda$ are parameterized by simple S_3 -modules

Thanks for your attention!