Cells in representation theory and categorification

Or: Classifying simples made simple

Daniel Tubbenhauer

Joint with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz, Pedro Vaz and Xiaoting Zhang

The setup in a nutshell

The setup in a nutshell

Clifford, Munn, Ponizovskī̈, Green $\sim 1942+$, Kazhdan-Lusztig ~ 1979, Graham-Lehrer ~ 1996, König-Xi ~1999, Guay-Wilcox ~ 2015, many more

A sandwich cellular algebra is an algebra together with a sandwich cellular datum:

- A partial ordered set $\Lambda=\left(\Lambda, \leq_{\Lambda}\right)$ and a set M_{λ} for all $\lambda \in \Lambda$
- an algebra B_{λ} for all $\lambda \in \Lambda$ The sandwiched algebra(s)
- a basis $\left\{c_{D, b, U}^{\lambda} \mid \lambda \in \Lambda, D, U \in M_{\lambda}, b \in B_{\lambda}\right\}$
- $c_{D, b, U}^{\lambda} \cdot a \equiv_{\leq_{\Lambda}} \sum r_{a}\left(U, D^{\prime}\right) \cdot c_{D, F, U^{\prime}}^{\lambda}$

Local intersection forms: $\frac{D^{\prime}}{U} \equiv_{\leq_{\Lambda}} r\left(U, D^{\prime}\right) \cdot b^{\prime \prime}$

Clifford, Munn, Ponizovskiĩ, Green $\sim 1942+$, Kazhdan-Lusztig ~ 1979, Graham-Lehrer ~1996, König-Xi ~1999, Guay-Wilcox ~2015, many more

A sandwich cellular algebra is an algebra together with a sandwich cellular datum:

- A partial ordered set $\Lambda=\left(\Lambda, \leq_{\Lambda}\right)$ and a set M_{λ} for all $\lambda \in \Lambda$

Computing local intersection forms is key but I mostly ignore them for this talk

$$
\text { Local intersection forms: } \frac{D^{\prime}}{U} \equiv_{\leq_{\Lambda}} r\left(U, D^{\prime}\right) \cdot b^{\prime \prime}
$$

Running example. The Bauer algebra, following Fishel-Grojnowski ~1995

- Brauer's centralizer algebra $B r_{n}(c)$:

$$
n=4 \text { example: circle evaluation: } O=c \cdot \emptyset
$$

- $\Lambda=\{n, n-2, \ldots\}$
- Down diagrams $D=$ cap configurations, up diagrams $U=$ cup configurations
- the sandwiched algebra is the symmetric group S_{λ}

$$
\begin{aligned}
& \boxed{U}= \\
& \boxed{b}= \\
& \boxed{D}=
\end{aligned}
$$

Green cells - left \mathcal{L}, right \mathcal{R}, two-sided \mathcal{J}, intersections \mathcal{H}
Fixing (colored) right, left, nothing or left-right gives:

Back to Brauer

\mathcal{J}_{2} with two through strands for $n=4$: columns are \mathcal{L}-cells, rows are \mathcal{R}-cells and the small boxes are \mathcal{H}-cells

The Clifford-Munn-Ponizovskiĩ theorem

An apex is a $\lambda \in \Lambda$ such that $\operatorname{Ann}_{A}(M)=\mathcal{J}_{>_{\wedge \lambda}}$ and $r(U, D)$ is invertible for some $D, U \in M(\lambda)$. Easy fact. Every simple has a unique associated apex

Theorem (works over any field).

- For a fixed apex $\lambda \in \Lambda$ there exists $\mathcal{H}_{\lambda, D, U} \cong B_{\lambda}$
- there is a 1:1-correspondence $\{$ simples with apex $\lambda\} \stackrel{1: 1}{\longleftrightarrow}$ \{simple B_{λ}-modules $\}$
- under this bijection the simple $L(\lambda, K)$ associated to the simple B_{λ}-module K is the head of the induced module

Simple-classification for the sandwich boils down to

> simple-classification of the sandwiched
plus apex hunting

The Clifford-Munn-Ponizovskiĩ theorem

A | Sandwiched algebra $=$ ground ring \Rightarrow cellular (without antiinvolution) |
| :---: |
| Sandwiched algebra $=$ polynomial ring \Rightarrow affine cellular (without antiinvolution) |

A sandwich datum can be sometimes made finer:

Apex hunting can be done using linear algebra (cellular pairing)
Over an algebraically closed field any finite dimensional algebra is sandwich cellular
The point is to find a "good" sandwich datum
simple-classification of the sandwiched
plus apex hunting

Theorem (works over any field).

- If $c \neq 0$, or $c=0$ and $\lambda \neq 0$ is odd, then all $\lambda \in \Lambda$ are apexes. In the remaining case, $c=0$ and $\lambda=0$ (this only happens if n is even), all $\lambda \in \Lambda-\{0\}$ are apexes, but $\lambda=0$ is not an apex
- the simple $B r_{n}(c)$-modules of apex $\lambda \in \Lambda$ are parameterized by simple S_{λ}-modules

- Generators. Twists τ_{u} and braidings β_{i}
- Relations. Typical Reidemeister relations and

Handlebo $\begin{aligned} \text { After closing. The cores correspond to cores of solid handlebodies: 1998) }\end{aligned}$

An Alexander closure:

A handlebody braid for $g=4$:

Handlebo $\sqrt{\text { After closing. The cores correspond to cores of solid handlebodies: }}$ 1998)

An Alexander closure:

Relat

core strands

Genus	type A	type C
$g=0$	Classical (Artin $\sim 1925)$	-
$g=1$	Extended affine	Classical (Brieskorn ~ 1973)
$g=2$	$?$	Affine (Allcock ~ 1999)
$g \geq 3$	$?$	$?$

- Generators. Twinand huidinur $\frac{0}{\text { Jucys-Murphy elements. }}$

$$
L_{u, i}=\overbrace{\substack{u \\-1--|-|)_{i}^{u}}}^{\underbrace{u}_{u}}, L_{u, i}^{-1}=\frac{1-|-|}{u}
$$

- Relations. Typical Reidemeister relations and

- Generators. Twinand huidinur $\frac{0}{\text { Jucys-Murphy elements. }}$

$$
L_{u, i}=\overbrace{-1-1-\mid)_{i}^{u}}^{u}, \quad L_{u, i}^{-1}=\underbrace{u}_{u}
$$

- Relations. Typical Reidemeister relations and

- Generators. Twists τ_{u} and braidings β_{i}

- Relations. Quotient of the handlebody braid group by the Skein relation

$$
Y-X=\left(q-q^{-1}\right) \cdot| |
$$

- Examples.
\triangleright For $g=0$ this is the classical Hecke algebra
\triangleright For $g=1$ this is the extended affine Hecke algebra
\triangleright For $g=1+$ a relation for twists this is the Ariki-Koike algebra

Theorem.

- Relations. Quotient of the handlebody braid group by the Skein relation

$$
Y-X=\left(q-q^{-1}\right) \cdot| |
$$

- Examples.
\triangleright For $g=0$ this is the classical Hecke algebra
\triangleright For $g=1$ this is the extended affine Hecke algebra
\triangleright For $g=1+$ a relation for twists this is the Ariki-Koike algebra

Theorem.

- Gene

$$
\begin{aligned}
& \left\{L_{u_{1}, i_{1} \ldots L_{u_{m}, i_{m}}^{a_{1}} \ldots L_{w}^{a_{m}}} H \mid\right. \\
& w \in S_{n}, m \in \mathbb{N}, \mathrm{a} \in \mathbb{Z}^{m}, \\
& \left.(u, i) \in(\{1, \ldots, g\} \times\{1, \ldots, n\})^{m}, i_{1} \leq \ldots \leq i_{m}\right\}
\end{aligned}
$$

$H_{g, n}$ has a standard basis:

Theorem.

- Relations. Quoti $H_{g, n}$ has a Murphy-type sandwich basis: the Skein relation

Theorem.

- Gene

$$
\left\{\begin{array}{l|l}
L_{u_{1}, i_{1}}^{a_{1}} \ldots L_{u_{m}, i_{m}}^{a_{m}} H_{w}
\end{array} \left\lvert\, \begin{array}{c}
w \in S_{n}, m \in \mathbb{N}, \mathrm{a} \in \mathbb{Z}^{m}, \\
(u, \mathrm{i}) \in(\{1, \ldots, g\} \times\{1, \ldots, n\})^{m}, i_{1} \leq \ldots \leq i_{m} \leq
\end{array}\right.\right\}
$$

$H_{g, n}$ has a standard basis:

Theorem.

- Relations. Quoti $H_{g, n}$ has a Murphy-type sandwich basis: he Skein relation
- Examples.

Crucial (problem?).
B_{λ} "are" (contain to be precise) free groups F_{g}

- Generators. Twists τ_{u} and braidings β_{i}

Relation $\begin{array}{r}\text { There are also other handlebody diagram algebras: } \\ \text { Temperley-Lieb, blob, Brauer/BMW etc.: }\end{array}$

$$
\text { Examplation }
$$

\triangleright For All are sandwich cellular with a version of F_{g} in the middle.
\triangleright For \quad Some same problem - the free group. ebra

Simples for $n=1$ - why one can't do much better

Let us consider $\mathbb{K}=\mathbb{C}$. Recall that sandwiching gives us:

- For $g=0$ we need to classify simples of $B_{\lambda}=\mathbb{C}\left[F_{0}\right]=\mathbb{C}$
\triangleright This is the classical case
\triangleright Simple modules of \mathbb{C} : left to the reader
- For $g=1$ we need to classify simples of $B_{\lambda}=\mathbb{C}\left[F_{1}\right]=\mathbb{C}\left[a, a^{-1}\right]$
\triangleright This is the affine case
\triangleright Simple modules of $\mathbb{C}\left[a, a^{-1}\right]$: choose an element in \mathbb{C}^{*} for a
- For $g=2$ we need to classify simples of $B_{\lambda}=\mathbb{C}\left[F_{2}\right]=\mathbb{C}\left\langle a, a^{-1}, b, b^{-1}\right\rangle$
\triangleright This is higher genus
\triangleright Simple modules of $\mathbb{C}\left\langle a, a^{-1}, b, b^{-1}\right\rangle:$ well...

Studying representation of $F_{2}=\langle a, b\rangle$ is a wild problem:
Every choice of $(A, B) \in\left(\mathbb{C}^{*}\right)^{2}$ gives a simple representation on \mathbb{C} These are non-equivalent

Every choice of eigenvalues for a, b and $a b$ gives a simple representation on \mathbb{C}^{2} Under known conditions these are non-equivalent

Every choice of $A \in \mathbb{C}^{*}$ gives a simple representation $\operatorname{Ind}_{\langle a\rangle}^{F_{2}} A$ These are non-equivalent

Beyond that you hit the realm of harmonic analysis, random walks and crazier stuff

- There are cyclotomic versions of handlebody diagram algebras, e.g.

- For these you get some nice(?) dimension formulas, e.g. For the higher genus version of the Ariki-Koike algebra one gets

$$
\operatorname{dim}_{\mathbb{K}} H_{g, n}^{\boldsymbol{d}, \boldsymbol{b}}=\left(\mathrm{BN}_{g, \boldsymbol{d}}\right)^{n} n!, \quad \mathrm{BN}_{g, \boldsymbol{d}}=\sum_{k \in \mathbb{N}} \sum_{\substack{0 \leq k_{u} \leq \min \left(k, \boldsymbol{d}_{u}-1\right) \\ k_{1}+\ldots+k_{g}=k}}\binom{k}{k_{1}, \ldots, k_{g}}
$$

This generalizes formulas from the classical and the Ariki-Koike case:

$$
\operatorname{dim}_{\mathbb{K}} H_{0, n}^{\boldsymbol{d}, \boldsymbol{b}}=n!, \quad \operatorname{dim}_{\mathbb{K}} H_{1, n}^{\boldsymbol{d}, \boldsymbol{b}}=d^{n} n!
$$

- These are all sandwich cellular with a nice sandwich datum

Clifford, Munn, Ponizowskil, Green $\sim 1942++$, Kazhdan-Lusztig ~ 1979. Graham-Lehrer \sim 1996, König-Xi \sim 1999, Guay-Wilcox ~ 2015, many more
A sandwich cellular algebra is an algebra together with 2 sandwich cellulur datum: - A partial ordered set $\Lambda-\left(\Lambda, s_{\Lambda}\right)$ and a set M_{A} for all $\lambda \in \Lambda$

- an algetra B_{s} for all $A \in A$ The sandwicted algebra(s)
- a basis $\left.\langle c \dot{b}, \mathrm{~b} u| \lambda \in A, D, U \in M_{3}, b \in B_{k}\right\}$

$$
\begin{aligned}
& \text { eg. } \left.\begin{array}{|l|}
\hline \frac{U}{D} \\
\frac{b}{D} \\
\frac{U}{b} \\
\frac{b}{D} \\
\hline
\end{array}=s_{4}+1 U, D^{\prime}\right) \stackrel{U^{\prime}}{\frac{F}{D}} \\
& \text { Local intersection forms: }\left\langle\begin{array}{|c}
\left.\frac{D^{\prime}}{U}\right\rangle
\end{array}=S \cdot r(U, D) \quad\right. \text { 回 }
\end{aligned}
$$

Running example. The Bauer algetra, following Fishel-Grojnowski ~ 1995

- Brauer's centralizer algebra Bss(c):

$$
{ }_{n-4} \text { example: circle evaluation: } \bigcirc-c \cdot b
$$

- 1 - $\langle n, n-2 \ldots|$

Down diagrams D - cap configurationss up dagrams U - cup configurations
the sandwiched algebra is the symmetric group $S \times$

$$
\begin{aligned}
& \square-\mid X \\
& \square-X \\
& \square-|X|
\end{aligned}
$$

Handlebody braids $B_{\varepsilon A}$ (H3ring-Oldenburg-Lambropoulou, Vershinin $\sim 199 \mathrm{~B}$)

- Generators. Twists ru and braidings if

$$
r_{v}-\prod_{1-1-1}^{1-1} \beta_{i}-X
$$

Relations. Typical Reidemeister redations and

Green cells - left \mathcal{C}, right R, two sided \mathcal{J}, intersections \mathcal{H}

Fixing (colored) night, left, nothing ar left-right gwes:
$\mathcal{L}(\lambda, U) \cdots+\frac{U}{D}, ~$

Back to Brauer
J_{2} with two through strands for $n=4$. columns are \mathcal{L}-cells, rows are R-cells and he small baves are H-cells

The Clifford-Munn-Ponizovskī theorem

An apecx is a $\lambda \in A$ such that $A m m_{A}(M)-J_{,}$and $r(U, D)$ is invertible for some An apex is a $\lambda \in \Lambda$ such that $\operatorname{Amm}_{A}(M)$ - J_{S}, and $r(U, D)$ is imer
$D . U \in M(\lambda)$. Easy fact. Every simple has a unique asscciated apex

Theorem (works over any firld).

- For a fixed apos $\lambda \in \Lambda$ there exists $H_{2,0, v} \simeq B_{x}$
- there is a 1:1-correspondence

$$
\left\{\text { simples with apex } \lambda \text {) } \stackrel{\text { dih }}{\leftrightarrows} \text { (simple } B_{x^{\prime}}\right. \text {-modules) }
$$

- under this bijection the simple $\mathcal{L}(\lambda, K)$ asscciated to the simple B_{3}-module K

Simple-dussification for the sandwich boils down to simple-classification of the sndwiched ples apex hunting

Brauer $\mathrm{Br}_{n}(c)$ and the symmetric group S_{s}
Theorem (works over any field).

- If $c \neq 0$, or $c-0$ and $\lambda \neq 0$ is odd, then all $\lambda \in A$ are apexes. In the remaining case, $c-0$ and $\lambda-0$ (this only happens if n is even), all $\lambda \in A-\{0\}$ are apexes, but $\lambda-0$ is not an aper
- the simple $B_{5}(c)$-modules of apex $\lambda \in A$ are parameterized by simple
S_{1}-modules
mi/K

There is still much to do...

Clifford，Munn，Ponizowskil，Green $\sim 1942++$ ，Kazhdan－Lusztig ~ 1979 ． Graham－Lehrer \sim 1996，König－Xi \sim 1999，Guay－Wilcox ~ 2015 ，many more
A sandwich cellular algebra is an algebra together with 2 sandwich cellulur datum： －A partial ordered set $A-\left(A, S_{N}\right)$ and a set M_{A} for all $\lambda \in \Lambda$
－an algetra B_{s} for all $A \in A$ The sandwicted algebra（s）
－a basis $\left.\langle c \dot{b}, \mathrm{~b} u| \lambda \in A, D, U \in M_{3}, b \in B_{k}\right\}$

$$
\begin{aligned}
& \text { eg. } \left.\begin{array}{|l|}
\hline \frac{U}{D} \\
\frac{b}{D} \\
\frac{U}{b} \\
\frac{b}{D} \\
\hline
\end{array}=s_{4}+1 U, D^{\prime}\right) \stackrel{U^{\prime}}{\frac{F}{D}} \\
& \text { Local intersection forms: }\left\langle\begin{array}{|c}
\left.\frac{D^{\prime}}{U}\right\rangle
\end{array}=S \cdot r(U, D) \quad\right. \text { 回 }
\end{aligned}
$$

Running example．The Bauer algetra，following Fishel－Grojnowshi ~ 1995
－Brauer＇s centralizer algebra $B_{s}(c):$

$$
{ }_{n-4} \text { example: circle evaluation: } \bigcirc-c \cdot b
$$

－ $1-\{n, n-2 \ldots \mid$
Down diagrams D－cap configurationss up dagrams U－cup configurations
the sandwiched algebra is the symmetric group S ．

$$
\begin{aligned}
& \square-\mid X \\
& \square-X \\
& \square-|X|
\end{aligned}
$$

Handlcobody braids $E_{\varepsilon \wedge}$（H3sing－OIdenturg－Lambropoulou，Vershinin $\sim 199 \mathrm{~B}$ ）

－Generators．Twists ru and braidings if

$$
r_{v}-\prod_{1-1-1}^{1-1} \beta_{i}-X
$$

Relations．Typical Reidemeister redations and

Green cells - left \mathcal{C} ，right R ，two sided \mathcal{J} ，intersections \mathcal{H}

Back to Brauer
J_{2} with two through strands for $n-4$ ：columns are \mathcal{C}－cells，rows are R－cells and he small baves are H－cells

The Clifford－Munn－Ponizovskif theoren

An aper is a $\lambda \in A$ such that $A m_{A}(M)-\mathcal{J}_{2}$ ，and $r(U, D)$ is imertible for some An apex is a $\lambda \in \Lambda$ such that $\operatorname{Amm}_{A}(M)$－$J_{S}$ ，and $r(U, D)$ is imer
$D . U \in M(\lambda)$ ．Easy fact．Every simple has a unique asscciated apex

Theorem（works over any firld）．
－For a fixed apes $\lambda \in \Lambda$ there exists $H_{2,0,0} \simeq B_{3}$
－there is a 1：1－correspondence

$$
\text { (simples with apex } \lambda \text {) } \stackrel{\text { dit }}{\leftrightarrows} \text { (simple } B_{x} \text {-modules) }
$$

－under this bijection the simple $\mathcal{C (\lambda , K)}$ is associatod to the simple B_{x}－module K
Simple－dussification for the sandwich boils down to simple－classification of the sndwiched ples apex hunting

Brauer $\mathrm{Br}_{n}(c)$ and the symmetric group 5.
Theorem（works over any field）．
－If $c \neq 0$ ，or $c-0$ and $\lambda \neq 0$ is odd，then all $\lambda \in A$ are apexes．In the remaining case，$c=0$ and $\lambda-0$（this only happens if n is even），all $\lambda \in A-\{0\}$ are apewes，but $\lambda-0$ is not an ape
－the simple $B_{\delta_{0}}(c)$－modules of apex $\lambda \in A$ are parameterized by simple

$$
2
$$

本

Thanks for your attention！

