All I know about Artin–Tits groups

Or: Why type A is so much easier...

(Page 283 from Gauß' handwritten notes, volume seven, ≤1830).

Joint with David Rose

March 2020

Artin ∼1925, Tits ∼1961 $+$. The (Gauß–)Artin–Tits group and its Coxeter group quotient are given by generators-relations:

Artin–Tits groups [generalize](#page-15-0) classical braid groups, Coxeter groups ℓ generalize polyhedron groups.

Question. How does this help to study Artin–Tits groups?

Here (killing idempotents for the last row):

- Hecke algebra $\mathcal{H}^{\mathbf{q}}(\Gamma)$, homotopy category of Soergel bimodules $\mathcal{K}^b(\mathscr{S}^{\mathbf{q}}(\Gamma))$.
- \blacktriangleright Hecke action $\lceil _ \rceil$, Rouquier complex $\lceil _ \rceil$.
- ► Burau representation $\mathcal{B}^q(\Gamma)$, homotopy category of representations of zigzag algebras $\mathcal{K}^{b}(\mathscr{Z}^{\mathbf{q}}(\Gamma)).$

Rouquier ~2004. The 2-braid group $\mathcal{AT}(\Gamma)$ is $\mathsf{im}([\![_]\!]) \subset \mathcal{K}^b(\mathscr{S}^{\mathbf{q}}_s(\Gamma)).$

 $\Gamma = A, C, \tilde{C} \rightsquigarrow$ category of braid cobordisms $\mathscr{B}_{\text{cob}}(\Gamma)$ in four space. **Fact (well-known?).** For Γ of type A, $B = C$ or affine type C we have

 $\mathcal{AT}(\Gamma) = inv(\mathscr{B}_{coh}(\Gamma)).$

Corollary (strictness). We have a categorical action

 $\textsf{inv}(\mathscr{B}_{\textup{coh}}(g,n)) \curvearrowright \mathcal{K}^b(\mathscr{S}^{\mathbf{q}}(\Gamma)), \mathscr{B} \mapsto \llbracket \mathscr{A}_\textup{coh} \mapsto \llbracket \mathscr{E}_\textup{coh} \rrbracket.$

Question (functoriality). Can we lift $\llbracket _ \rrbracket$ to a categorical action

 $\mathscr{B}_{\mathrm{cob}}(g,n) \curvearrowright \mathcal{K}^b(\mathscr{S}^{\mathbf{q}}(\Gamma))$?

Question (functoriality). Can we lift \mathbb{I} to a categorical action

 $\mathscr{B}_{\mathrm{cob}}(g,n) \curvearrowright \mathcal{K}^b(\mathscr{S}^{\mathbf{q}}(\Gamma))$?

Question (functoriality). Can we lift $\llbracket _ \rrbracket$ to a categorical action

Theorem (well-known?).

The Rouquier complex is functorial in types $A, B = C$ and affine C.

Rouquier ~2004. The 2-braid group $\mathcal{AT}(\Gamma)$ is $\text{im}([\![-]\!]) \subset \mathcal{K}^b(\mathcal{S}_s^{\mathbf{q}}(\Gamma)).$

Question (functoriality). Can we lift $\llbracket _ \rrbracket$ to a categorical action

 $\mathscr{B}_{\mathrm{cob}}(g,n) \curvearrowright \mathcal{K}^b(\mathscr{S}^{\mathbf{q}}(\Gamma))$?

Rouquier ~2004. The 2-braid group $\mathcal{AT}(\Gamma)$ is $\text{im}([\![-]\!]) \subset \mathcal{K}^b(\mathcal{S}_s^{\mathbf{q}}(\Gamma)).$

There is still much to do...

Thanks for your attention!

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Type A₃ \leftrightarrow tetrahedron \leftrightarrow symmetric group S_4 .

Type $\mathsf{B}_3 \leftrightsquigarrow$ cube/octahedron \leftrightsquigarrow Weyl group $(\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3.$

Type $H_3 \leftrightarrow$ dodecahedron/icosahedron \leftrightarrow exceptional Coxeter group.

For $I_2(4)$ we have a 4-gon:

Idea (Coxeter ∼1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Type $\mathsf{A}_3 \leftrightsquigarrow$ tetra $\mathsf{Fact.}$ The symmetries are given by exchanging flags. Type $\mathsf{B}_3 \leftrightsquigarrow$ cube/octahedron \leftrightsquigarrow Weyl group $(\mathbb{Z}/2\mathbb{Z})^\sigma \ltimes S_3$. Type $H_3 \leftrightarrow$ dodecahedron/icosahedron \leftrightarrow exceptional Coxeter group. For $I_2(4)$ we have a 4-gon:

Fix a flag F .

Idea (Coxeter ∼1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Type A₃ \leftrightarrow tetrahedron \leftrightarrow symmetric group S_4 .

Type $\mathsf{B}_3 \leftrightsquigarrow$ cube/octahedron \leftrightsquigarrow Weyl group $(\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3.$

Type $H_3 \leftrightarrow$ dodecahedron/icosahedron \leftrightarrow exceptional Coxeter group.

For $I_2(4)$ we have a 4-gon:

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Type A₃ \leftrightarrow tetrahedron \leftrightarrow symmetric group S_4 .

Type $\mathsf{B}_3 \leftrightsquigarrow$ cube/octahedron \leftrightsquigarrow Weyl group $(\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3.$

Type $H_3 \leftrightarrow$ dodecahedron/icosahedron \leftrightarrow exceptional Coxeter group.

For $I_2(4)$ we have a 4-gon:

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Type A₃ \leftrightarrow tetrahedron \leftrightarrow symmetric group S_4 .

Type $\mathsf{B}_3 \leftrightsquigarrow$ cube/octahedron \leftrightsquigarrow Weyl group $(\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3.$

Type $H_3 \leftrightarrow$ dodecahedron/icosahedron \leftrightarrow exceptional Coxeter group.

For $I_2(4)$ we have a 4-gon:

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Lawrence ∼1989, Krammer ∼2000, Bigelow ∼2000 (Cohen–Wales ∼2000, **Digne** \sim 2000). Let Γ be of finite type. There exists a faithful action of AT(Γ) on a finite-dimensional vector space.

Upshot: One can ask a computer program questions about braids!

Lawrence ∼1989, Krammer ∼2000, Bigelow ∼2000 (Cohen–Wales ∼2000, **Digne ∼2000).** Let Γ be of finite type. There exists a faithful action of AT(Γ) on a finite-dimensional vector space.

Crisp–Paris ∼2000 (Tits conjecture). For all $m > 1$, the subgroup $\langle \ell_i^m \rangle \subset \mathrm{AT}(\Gamma)$ is free (up to "obvious commutation").

In finite type this is a consequence of LKB; in type A it is clear:

This should have told me something: I will come back to this later.

Recall. Right-angled means $m_{ij} \in \{2, \infty\}$.

Fact (well-known?). Let Γ be of right-angled type. There exists a faithful action of $AT(\Gamma)$ on a finite-dimensional $\mathbb R$ -vector space.

Example. $\Gamma = I_2(\infty)$, the infinite dihedral group.

$$
\begin{matrix} \infty \\ \infty \\ \infty \end{matrix} \quad \rightsquigarrow \quad \infty \quad \begin{matrix} \infty \\ \infty \\ \infty \\ \infty \end{matrix}
$$

Define a map

$$
AT(\Gamma) \to W(\Gamma'), s \mapsto ss, t \mapsto tt.
$$

Crazy fact: This is an embedding, and actually

$$
W(\Gamma') \cong AT(\Gamma) \rtimes (\mathbb{Z}/2\mathbb{Z})^2.
$$

Thus, via Tits' reflection representation, it follows that $AT(\Gamma)$ is linear.

Recall. Right-angled means $m_{ij} \in \{2, \infty\}$.

Fact (well-known?). Let Γ be of right-angled type. There exists a faithful action

Thus, via Tits' reflection representation, it follows that $AT(\Gamma)$ is linear.

Generators. Braid and twist generators

$$
\mathcal{B}_i \leftrightarrow \left[\dots \left\lfloor \bigcap_{1 \leq j \leq 1}^{1 \leq j \leq 1} \overbrace{1 \cdots \left\lfloor \bigcap_{i=1}^{i+1} \overbrace{1 \cdots \left\lfloor \bigcap_{i=1}^{i} \overline{1 \cdots \left\lfloor \bigcap
$$

Relations. Reidemeister braid relations, type C relations and special relations, e.g.

Two types of braidings, the usual ones and "winding around cores", e.g.

The Alexander closure on $\mathscr{B}_{r}(q,\infty)$ is given by merging core strands at infinity.

This is different from the classical Alexander closure.

This is different from the classical Alexander closure.

 $\cos(\pi/3)$ on a line:

type
$$
A_{n-1}
$$
: 1 — 2 — ... — n-2 — n-1

The classical case. Consider the map

$$
\beta_i \mapsto \left\lceil \dots \bigtimes_{i=1}^{i=1} \dots \right\rceil \quad \text{braid rel.}: \left\lceil \bigtimes_{i=1}^{i=1} \dots \bigtimes_{i=1}
$$

Artin ∼1925. This gives an isomorphism of groups $\mathrm{AT}(\mathsf{A}_{n-1}) \stackrel{\cong}{\rightarrow} \mathscr{B}\mathrm{r}(0,n)$.

 $\cos(\pi/4)$ on a line:

type
$$
C_n
$$
: $0 \stackrel{4}{\longrightarrow} 1 \longrightarrow 2 \longrightarrow ... \longrightarrow n-1 \longrightarrow n$

The semi-classical case. Consider the map

Brieskorn \sim 1973. This gives an isomorphism of groups $\mathrm{AT}(\mathsf{C}_n) \xrightarrow{\cong} \mathscr{B}\mathrm{r}(1,n)$.

Twice $\cos(\pi/4)$ on a line:

type
$$
\tilde{C}_n
$$
: $0^1 \stackrel{4}{\longrightarrow} 1 \longrightarrow 2 \longrightarrow \dots \longrightarrow n-1 \longrightarrow n \stackrel{4}{\longrightarrow} 0^2$

Affine adds genus. Consider the map

Allcock \sim 1999. This gives an isomorphism of groups $\mathrm{AT}(\tilde{\mathsf{C}}_n) \stackrel{\cong}{\rightarrow} \mathscr{B}\mathrm{r}(2,n)$.

Allcock \sim **1999.** This gives an isomorphism of groups $\mathrm{AT}(\tilde{\mathsf{C}}_n) \stackrel{\cong}{\rightarrow} \mathscr{B}\mathrm{r}(2,n)$.

Allcock \sim **1999.** This gives an isomorphism of groups $\mathrm{AT}(\tilde{\mathsf{C}}_n) \stackrel{\cong}{\rightarrow} \mathscr{B}\mathrm{r}(2,n)$.

