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Let Γ be a Coxeter graph.

Artin ∼1925, Tits ∼1961++. The (Gauß–)Artin–Tits group and its Coxeter
group quotient are given by generators-relations:

AT(Γ) = 〈bi | · · ·bibjbi︸ ︷︷ ︸
mij factors

= · · ·bjbibj︸ ︷︷ ︸
mij factors

〉

W(Γ) = 〈σi | σ2
i = 1, · · ·σiσjσi︸ ︷︷ ︸

mij factors

= · · ·σjσiσj︸ ︷︷ ︸
mij factors

〉

Artin–Tits groups generalize classical braid groups, Coxeter groups generalize

polyhedron groups.
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Many open
problems, e.g. the

word problem.

Flavor one. Finite
and affine types

Example

helps

Flavor two. Con-
figuration spaces

Example

helps

Flavor three. Map-
ping class groups

Example

helps

Flavor four. Right
angled groups

Example

helps

Artin–Tits
(braid) groups

Vanilla fla-
vor. ?????.

?

My failure. What I would like to understand, but I do not.

Artin–Tits groups come in four main flavors.
Question: What happens in general type?

Maybe some categorical considerations help?
In particular, what can Artin–Tits groups tell you about flavor two?

Please stop!
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Let Γ be a Coxeter graph. The following commuting diagram exists in any type:

AT(Γ) AT(Γ)

Kb(S q(Γ)) Hq(Γ)

Kb(Z q(Γ)) Bq(Γ)

decat.

decat.

J−K [−]

Question. How does this help to study Artin–Tits groups?

Here (killing idempotents for the last row):

I Hecke algebra Hq(Γ), homotopy category of Soergel bimodules Kb(S q(Γ)).
I Hecke action [−], Rouquier complex J−K.
I Burau representation Bq(Γ), homotopy category of representations of zigzag

algebras Kb(Z q(Γ)).

Faithfulness?

The Hecke action is known to be faithful in very few cases, e.g. for Γ of rank 1, 2.
But there is “no way” to prove faithfulness in general.

Example (seems to work). Hecke distinguishes the braids where Burau failed:

Faithfulness?

Rouquier’s action is known to be faithful in quite a few cases:
finite type (Khovanov–Seidel, Brav–Thomas),

affine type A (Gadbled–Thiel–Wagner), affine type C (handlebody).

Example (the whole point). Zigzag already distinguishes braids:

Theorem (handlebody faithfulness).

For all g, n, Rouquier’s action J−K gives rise to a family of faithful actions

ℬr(g, n) y Kb(S q(Γ)),b 7→ JbKM.

Theorem (handlebody HOMFLYPT homology).

This action extends to a HOMFLYPT invariant for handlebody links.
Mnemonic:

b = & JbKM =

M

M

kM

M k

& JbKℋ2
=

M kM

M M k

Please stop!
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Rouquier ∼2004. The 2-braid group AT (Γ) is im(J−K) ⊂ Kb(S q
s (Γ)).

Γ = A,C, C̃  category of braid cobordisms ℬcob(Γ) in four space.

Fact (well-known?). For Γ of type A, B = C or affine type C we have

AT (Γ) = inv(ℬcob(Γ)).

Corollary (strictness). We have a categorical action

inv(ℬcob(g, n)) y Kb(S q(Γ)),b 7→ JbK ,bcob 7→ JbcobK .

Question (functoriality). Can we lift J−K to a categorical action

ℬcob(g, n) y Kb(S q(Γ))?

Example (type A).

Braid cobordisms are movies of braids. E.g. some generators are

,

group

invertible

& ,

monoid

invertible

& , :
isotopy−−−→ −−−−−−→

birth

non-invertible

Invertible ones encode isotopies, non-invertible ones “more interesting” topology.

Theorem (well-known?).

The Rouquier complex is functorial in types
A, B = C and affine C.

Theorem (handlebody functoriality).

For all g, n, Rouquier’s action J−K gives rise to a family of functorial actions

ℬcob(g, n) y Kb(S q(Γ)),b 7→ JbKM ,bcob 7→ JbcobKM.

(ℬcob(g, n) is the 2-category of handlebody braid cobordisms.)

Final observation.

In all (non-trivial) cases I know
“faithful ⇔ functorial”.

Is there a general statement?
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Many open
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and affine types
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Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
For I2(4) we have a 4-gon:

•
cos(π/4)

4• •

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi.

Connect i, j by an n-edge for
Hi, Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.

Lawrence ∼1989, Krammer ∼2000, Bigelow ∼2000 (Cohen–Wales ∼2000,
Digne ∼2000). Let Γ be of finite type. There exists a faithful action of AT(Γ)
on a finite-dimensional vector space.

Upshot: One can ask a computer program questions about braids!

Figure: SAGE in action: The Burau (TL) action is not faithful, the LKB is.

Back

Proof?

Uses root combinatorics of ADE diagrams
and the fact that each AT(Γ) of finite
type can be embedded in types ADE.

Example. Type B “unfolds” into type A:

4
0 1 2  

21

0

-1 -2

b0 7→ and b1 7→ and b2 7→

But there is also a different way, discussed later.

Example. In the dihedral case these (un)foldings correspond to bicolorings:

7

I2(7)

 
A6

and 8

I2(8)

 
A7

and 9

I2(9)

 
A8

etc.

Fact.
This gives AT(I2(n)) ↪→ AT(Γ)

⇔
Γ = ADE for n =Coxeter number.

Example (SAGE; n = 9). LKB says it is true:

Crisp–Paris ∼2000 (Tits conjecture). For all m > 1, the subgroup
〈bm

i 〉 ⊂ AT(Γ) is free (up to “obvious commutation”).

In finite type this is a consequence of LKB; in type A it is clear:

=

the only “obvious commutation”

& 6=

no relation

This should have told me something: I will come back to this later.

Back

Proof?

Essentially: Relate the problem to the mapping class ℳ(Σ) group of a surface Σ,
which acts on π1(Σ, boundary) via Dehn twist.

Then 〈bm
i 〉 ↪→ AT(Γ)→ℳ(Σ) y π1(Σ, boundary) acts faithfully.

Example. The surface Σ is built from Γ by gluing annuli Ani:

i→j: ∗ ∗Ani
•

+ ∗ ∗Anj
•

=
∗ ∗Ani

•

∗

∗

Anj•

Dehn twist along the orchid curve:

∗ ∗ 7→ ∗ ∗

Let Br(g, n) be the group defined as follows.

Generators. Braid and twist generators

bi!
1

1

g

g

1

1

i+1

i

i

i+1

n

n

... ... ... & ti!
1

1

g

g

1i

i 1

2

2

n

n

...

...

...

...
...

Relations. Reidemeister braid relations, type C relations and special relations, e.g.

=

b1t2b1t2 = t2b1t2b1

& =

(b1t2b
−1
1 )t3 = t3(b1t2b

−1
1 )

Involves three players and inverses!

Example.

The “full wrap”.

=

Fact (type A embedding).

Br(g, n) is a subgroup of the usual braid group ℬr(g+n).

= 7→ =

A visualization exercise.

The group ℬr(g, n) of braid in a g-times punctures disk D 2
g × [0, 1]:

Two types of braidings, the usual ones and “winding around cores”, e.g.

D2
3 × [0, 1]

&

D2
3 × [0, 1]

Theorem (Häring-Oldenburg–Lambropoulou ∼2002, Vershinin ∼1998).

The map

7→

7→

is an isomorphism of groups Br(g, n)→ ℬr(g, n).

From this perspective the type A embedding
is just shrinking holes to points!

shrink

Note.

For the proof it is crucial that D 2
g and the boundary points of the braids •

are only defined up to isotopy, e.g.

•

•D2
3

∼ • •
D2

3

⇒ one can always “conjugate cores to the left”.

This is useful to define ℬr(g,∞).

The Alexander closure on ℬr(g,∞) is given by merging core strands at infinity.

wrong closure correct closure

This is different from the classical Alexander closure.

Theorem (Lambropoulou ∼1993).

For any link l in the genus g handlebody ℋg there is a
braid in ℬr(g,∞) whose (correct!) closure is isotopic to l.

Fact.

ℋg is given by a complement in the 3-sphere S 3 by an open tubular
neighborhood of the embedded graph obtained

by gluing g + 1 unknotted “core” edges to two vertices.

S3

the 3-ball ℋ0 = D 3

S3

a torus ℋ1

S3

ℋ2

The Alexander closure on ℬr(g,∞) is given by merging core strands at infinity.

wrong closure correct closure

This is different from the classical Alexander closure.

Theorem (Lambropoulou ∼1993).

For any link l in the genus g handlebody ℋg there is a
braid in ℬr(g,∞) whose (correct!) closure is isotopic to l.

Fact.

ℋg is given by a complement in the 3-sphere S 3 by an open tubular
neighborhood of the embedded graph obtained

by gluing g + 1 unknotted “core” edges to two vertices.

S3

the 3-ball ℋ0 = D 3

S3

a torus ℋ1

S3

ℋ2

Twice cos(π/4) on a line:

type C̃n : 01 1 2 . . . n−1 n 02
4 4

Affine adds genus. Consider the map

β01 7→
11

1 1

n

n

2

2

...

...

& βi 7→
i+1

i

i

i+1

& β02 7→
n

2

2

n1

1

1

1

...

...

Allcock ∼1999. This gives an isomorphism of groups AT(C̃n)
∼=−→ℬr(2, n).

This case is strange – it only arises under conjugation:

1 21

...

n

1 21

...

n

b 7→

1 1

...

n2

1 1
...

n2

b

By a miracle, one can avoid the special relation

=

This relation

involves three

players and inverses.

Bad!

Currently, not much seems to be known, but I think the same story works.

However, this is where it seems to end, e.g. genus g = 3 wants to be

01

02 1 2 . . . n−1 n

03

∞

∞

∞

In some sense this can not work; remember Tits’ conjecture.

Currently known (to the best of my knowledge).

Genus type A type C

g = 0 ℬr(n) ∼= AT(An−1)

g = 1 ℬr(1, n) ∼= Z n AT(Ãn−1) ∼= AT(Ân−1) ℬr(1, n) ∼= AT(Cn)

g = 2 ℬr(2, n) ∼= AT(C̃n)

g ≥ 3

And some Z/2Z-orbifolds (Z/∞Z =puncture):

Genus type D type B

g = 0

g = 1 ℬr(1, n)Z/2Z ∼= AT(Dn) ℬr(1, n)Z/∞Z ∼= AT(Bn)

g = 2 ℬr(2, n)Z/2Z×Z/2Z ∼= AT(D̃n) ℬr(2, n)Z/∞Z×Z/2Z ∼= AT(B̃n)

g ≥ 3

(For orbifolds “genus” is just an analogy.)

Example.

type B̃n n−1

0 1 2 . . . n−2

n

4

!

••• Z/2Z“Z/∞Z”

D2
3

!

1

1

order ∞ order 2

n

n

Back

There is still much to do...

Thanks for your attention!
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ping class groups

Example

helps

Flavor four. Right
angled groups

Example

helps

Artin–Tits
(braid) groups

Vanilla fla-
vor. ?????.

?

My failure. What I would like to understand, but I do not.

Artin–Tits groups come in four main flavors.
Question: What happens in general type?

Maybe some categorical considerations help?
In particular, what can Artin–Tits groups tell you about flavor two?

Please stop!
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Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
For I2(4) we have a 4-gon:

•
cos(π/4)

4• •

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi.

Connect i, j by an n-edge for
Hi, Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.
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Digne ∼2000). Let Γ be of finite type. There exists a faithful action of AT(Γ)
on a finite-dimensional vector space.
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Example (SAGE; n = 9). LKB says it is true:

Crisp–Paris ∼2000 (Tits conjecture). For all m > 1, the subgroup
〈bm

i 〉 ⊂ AT(Γ) is free (up to “obvious commutation”).

In finite type this is a consequence of LKB; in type A it is clear:

=

the only “obvious commutation”

& 6=

no relation

This should have told me something: I will come back to this later.

Back

Proof?

Essentially: Relate the problem to the mapping class ℳ(Σ) group of a surface Σ,
which acts on π1(Σ, boundary) via Dehn twist.

Then 〈bm
i 〉 ↪→ AT(Γ)→ℳ(Σ) y π1(Σ, boundary) acts faithfully.

Example. The surface Σ is built from Γ by gluing annuli Ani:

i→j: ∗ ∗Ani
•

+ ∗ ∗Anj
•

=
∗ ∗Ani

•

∗

∗

Anj•

Dehn twist along the orchid curve:

∗ ∗ 7→ ∗ ∗

Let Br(g, n) be the group defined as follows.

Generators. Braid and twist generators

bi!
1

1

g

g

1

1

i+1

i

i

i+1

n

n

... ... ... & ti!
1

1

g

g

1i

i 1
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2

n

n

...
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Relations. Reidemeister braid relations, type C relations and special relations, e.g.

=

b1t2b1t2 = t2b1t2b1

& =

(b1t2b
−1
1 )t3 = t3(b1t2b

−1
1 )

Involves three players and inverses!

Example.

The “full wrap”.

=

Fact (type A embedding).

Br(g, n) is a subgroup of the usual braid group ℬr(g+n).

= 7→ =

A visualization exercise.

The group ℬr(g, n) of braid in a g-times punctures disk D 2
g × [0, 1]:

Two types of braidings, the usual ones and “winding around cores”, e.g.

D2
3 × [0, 1]

&

D2
3 × [0, 1]

Theorem (Häring-Oldenburg–Lambropoulou ∼2002, Vershinin ∼1998).

The map

7→

7→

is an isomorphism of groups Br(g, n)→ ℬr(g, n).

From this perspective the type A embedding
is just shrinking holes to points!

shrink

Note.

For the proof it is crucial that D 2
g and the boundary points of the braids •

are only defined up to isotopy, e.g.

•

•D2
3

∼ • •
D2

3

⇒ one can always “conjugate cores to the left”.

This is useful to define ℬr(g,∞).

The Alexander closure on ℬr(g,∞) is given by merging core strands at infinity.

wrong closure correct closure

This is different from the classical Alexander closure.

Theorem (Lambropoulou ∼1993).

For any link l in the genus g handlebody ℋg there is a
braid in ℬr(g,∞) whose (correct!) closure is isotopic to l.

Fact.

ℋg is given by a complement in the 3-sphere S 3 by an open tubular
neighborhood of the embedded graph obtained

by gluing g + 1 unknotted “core” edges to two vertices.

S3

the 3-ball ℋ0 = D 3

S3

a torus ℋ1

S3

ℋ2
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Twice cos(π/4) on a line:

type C̃n : 01 1 2 . . . n−1 n 02
4 4

Affine adds genus. Consider the map

β01 7→
11

1 1

n

n

2

2

...

...

& βi 7→
i+1

i

i

i+1

& β02 7→
n

2

2

n1

1

1

1

...

...

Allcock ∼1999. This gives an isomorphism of groups AT(C̃n)
∼=−→ℬr(2, n).

This case is strange – it only arises under conjugation:

1 21

...

n

1 21

...

n

b 7→

1 1

...

n2

1 1
...

n2

b

By a miracle, one can avoid the special relation

=

This relation

involves three

players and inverses.

Bad!

Currently, not much seems to be known, but I think the same story works.

However, this is where it seems to end, e.g. genus g = 3 wants to be

01

02 1 2 . . . n−1 n

03

∞

∞

∞

In some sense this can not work; remember Tits’ conjecture.

Currently known (to the best of my knowledge).

Genus type A type C

g = 0 ℬr(n) ∼= AT(An−1)

g = 1 ℬr(1, n) ∼= Z n AT(Ãn−1) ∼= AT(Ân−1) ℬr(1, n) ∼= AT(Cn)

g = 2 ℬr(2, n) ∼= AT(C̃n)

g ≥ 3

And some Z/2Z-orbifolds (Z/∞Z =puncture):

Genus type D type B

g = 0

g = 1 ℬr(1, n)Z/2Z ∼= AT(Dn) ℬr(1, n)Z/∞Z ∼= AT(Bn)

g = 2 ℬr(2, n)Z/2Z×Z/2Z ∼= AT(D̃n) ℬr(2, n)Z/∞Z×Z/2Z ∼= AT(B̃n)

g ≥ 3

(For orbifolds “genus” is just an analogy.)

Example.

type B̃n n−1

0 1 2 . . . n−2

n

4

!
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Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
For I2(4) we have a 4-gon:

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi.

Connect i, j by an n-edge for
Hi, Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.

https://en.wikipedia.org/wiki/Coxeter_group


Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
For I2(4) we have a 4-gon:

•

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi.

Connect i, j by an n-edge for
Hi, Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.

https://en.wikipedia.org/wiki/Coxeter_group


Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
For I2(4) we have a 4-gon:

•

•

•

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi.

Connect i, j by an n-edge for
Hi, Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.

https://en.wikipedia.org/wiki/Coxeter_group


Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
For I2(4) we have a 4-gon:

•

•

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi.

Connect i, j by an n-edge for
Hi, Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.

https://en.wikipedia.org/wiki/Coxeter_group


Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
For I2(4) we have a 4-gon:

• • •

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi.

Connect i, j by an n-edge for
Hi, Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.

https://en.wikipedia.org/wiki/Coxeter_group


Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
For I2(4) we have a 4-gon:

•
cos(π/4)

4• •

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi.

Connect i, j by an n-edge for
Hi, Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.

https://en.wikipedia.org/wiki/Coxeter_group


Lawrence ∼1989, Krammer ∼2000, Bigelow ∼2000 (Cohen–Wales ∼2000,
Digne ∼2000). Let Γ be of finite type. There exists a faithful action of AT(Γ)
on a finite-dimensional vector space.

Upshot: One can ask a computer program questions about braids!

Figure: SAGE in action: The Burau (TL) action is not faithful, the LKB is.

Back

Proof?

Uses root combinatorics of ADE diagrams
and the fact that each AT(Γ) of finite
type can be embedded in types ADE.

Example. Type B “unfolds” into type A:

4
0 1 2  

21

0

-1 -2

b0 7→ and b1 7→ and b2 7→

But there is also a different way, discussed later.

Example. In the dihedral case these (un)foldings correspond to bicolorings:

7

I2(7)

 
A6

and 8

I2(8)

 
A7

and 9

I2(9)

 
A8

etc.

Fact.
This gives AT(I2(n)) ↪→ AT(Γ)

⇔
Γ = ADE for n =Coxeter number.

Example (SAGE; n = 9). LKB says it is true:



Lawrence ∼1989, Krammer ∼2000, Bigelow ∼2000 (Cohen–Wales ∼2000,
Digne ∼2000). Let Γ be of finite type. There exists a faithful action of AT(Γ)
on a finite-dimensional vector space.

Upshot: One can ask a computer program questions about braids!

Figure: SAGE in action: The Burau (TL) action is not faithful, the LKB is.

Back

Proof?

Uses root combinatorics of ADE diagrams
and the fact that each AT(Γ) of finite
type can be embedded in types ADE.

Example. Type B “unfolds” into type A:

4
0 1 2  

21

0

-1 -2

b0 7→ and b1 7→ and b2 7→

But there is also a different way, discussed later.

Example. In the dihedral case these (un)foldings correspond to bicolorings:

7

I2(7)

 
A6

and 8

I2(8)

 
A7

and 9

I2(9)

 
A8

etc.

Fact.
This gives AT(I2(n)) ↪→ AT(Γ)

⇔
Γ = ADE for n =Coxeter number.

Example (SAGE; n = 9). LKB says it is true:



Lawrence ∼1989, Krammer ∼2000, Bigelow ∼2000 (Cohen–Wales ∼2000,
Digne ∼2000). Let Γ be of finite type. There exists a faithful action of AT(Γ)
on a finite-dimensional vector space.

Upshot: One can ask a computer program questions about braids!

Figure: SAGE in action: The Burau (TL) action is not faithful, the LKB is.

Back

Proof?

Uses root combinatorics of ADE diagrams
and the fact that each AT(Γ) of finite
type can be embedded in types ADE.

Example. Type B “unfolds” into type A:

4
0 1 2  

21

0

-1 -2

b0 7→ and b1 7→ and b2 7→

But there is also a different way, discussed later.

Example. In the dihedral case these (un)foldings correspond to bicolorings:

7

I2(7)

 
A6

and 8

I2(8)

 
A7

and 9

I2(9)

 
A8

etc.

Fact.
This gives AT(I2(n)) ↪→ AT(Γ)

⇔
Γ = ADE for n =Coxeter number.

Example (SAGE; n = 9). LKB says it is true:



Lawrence ∼1989, Krammer ∼2000, Bigelow ∼2000 (Cohen–Wales ∼2000,
Digne ∼2000). Let Γ be of finite type. There exists a faithful action of AT(Γ)
on a finite-dimensional vector space.

Upshot: One can ask a computer program questions about braids!

Figure: SAGE in action: The Burau (TL) action is not faithful, the LKB is.

Back

Proof?

Uses root combinatorics of ADE diagrams
and the fact that each AT(Γ) of finite
type can be embedded in types ADE.

Example. Type B “unfolds” into type A:

4
0 1 2  

21

0

-1 -2

b0 7→ and b1 7→ and b2 7→

But there is also a different way, discussed later.

Example. In the dihedral case these (un)foldings correspond to bicolorings:

7

I2(7)

 
A6

and 8

I2(8)

 
A7

and 9

I2(9)

 
A8

etc.

Fact.
This gives AT(I2(n)) ↪→ AT(Γ)

⇔
Γ = ADE for n =Coxeter number.

Example (SAGE; n = 9). LKB says it is true:



Crisp–Paris ∼2000 (Tits conjecture). For all m > 1, the subgroup
〈bm

i 〉 ⊂ AT(Γ) is free (up to “obvious commutation”).

In finite type this is a consequence of LKB; in type A it is clear:

=

the only “obvious commutation”

& 6=

no relation

This should have told me something: I will come back to this later.

Back

Proof?

Essentially: Relate the problem to the mapping class ℳ(Σ) group of a surface Σ,
which acts on π1(Σ, boundary) via Dehn twist.

Then 〈bm
i 〉 ↪→ AT(Γ)→ℳ(Σ) y π1(Σ, boundary) acts faithfully.

Example. The surface Σ is built from Γ by gluing annuli Ani:

i→j: ∗ ∗Ani
•

+ ∗ ∗Anj
•

=
∗ ∗Ani

•

∗

∗

Anj•

Dehn twist along the orchid curve:

∗ ∗ 7→ ∗ ∗
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Recall. Right-angled means mij ∈ {2,∞}.

Fact (well-known?). Let Γ be of right-angled type. There exists a faithful action
of AT(Γ) on a finite-dimensional R-vector space.

Example. Γ = I2(∞), the infinite dihedral group.

∞

I2(∞)

 ∞

∞

∞

Γ′

Define a map
AT(Γ)→W(Γ′), s 7→ ss, t 7→ tt.

Crazy fact: This is an embedding, and actually

W(Γ′) ∼= AT(Γ) o (Z/2Z)2.

Thus, via Tits’ reflection representation, it follows that AT(Γ) is linear.

Back

Proof?

This works in general:
For each right-angled Γ there exists a Γ′ such that

W(Γ′) ∼= AT(Γ) o (Z/2Z)i.

Corollary.

Tits’ reflection representation gives a faithful action
on a finite-dimensional R-vector space.

This is the only case where I know that
the Artin–Tits group embeds into a Coxeter group.
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Let Br(g, n) be the group defined as follows.

Generators. Braid and twist generators

bi!
1

1

g

g

1

1

i+1

i

i

i+1

n

n

... ... ... & ti!
1

1

g

g

1i

i 1

2

2

n

n

...

...

...

...
...

Relations. Reidemeister braid relations, type C relations and special relations, e.g.

=

b1t2b1t2 = t2b1t2b1

& =

(b1t2b
−1
1 )t3 = t3(b1t2b

−1
1 )

Involves three players and inverses!

Example.

The “full wrap”.

=

Fact (type A embedding).

Br(g, n) is a subgroup of the usual braid group ℬr(g+n).

= 7→ =

Proof? A visualization exercise.
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The group ℬr(g, n) of braid in a g-times punctures disk D 2
g × [0, 1]:

Two types of braidings, the usual ones and “winding around cores”, e.g.

D2
3 × [0, 1]

&

D2
3 × [0, 1]

Theorem (Häring-Oldenburg–Lambropoulou ∼2002, Vershinin ∼1998).

The map

7→

7→

is an isomorphism of groups Br(g, n)→ ℬr(g, n).

From this perspective the type A embedding
is just shrinking holes to points!

shrink

Note.

For the proof it is crucial that D 2
g and the boundary points of the braids •

are only defined up to isotopy, e.g.

•

•D2
3

∼ • •
D2

3

⇒ one can always “conjugate cores to the left”.

This is useful to define ℬr(g,∞).
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Theorem (Häring-Oldenburg–Lambropoulou ∼2002, Vershinin ∼1998).

The map

7→

7→

is an isomorphism of groups Br(g, n)→ ℬr(g, n).

From this perspective the type A embedding
is just shrinking holes to points!

shrink

Note.

For the proof it is crucial that D 2
g and the boundary points of the braids •

are only defined up to isotopy, e.g.

•

•D2
3

∼ • •
D2

3

⇒ one can always “conjugate cores to the left”.

This is useful to define ℬr(g,∞).



The group ℬr(g, n) of braid in a g-times punctures disk D 2
g × [0, 1]:

Two types of braidings, the usual ones and “winding around cores”, e.g.

D2
3 × [0, 1]

&

D2
3 × [0, 1]
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The Alexander closure on ℬr(g,∞) is given by merging core strands at infinity.

wrong closure correct closure

This is different from the classical Alexander closure.

Theorem (Lambropoulou ∼1993).

For any link l in the genus g handlebody ℋg there is a
braid in ℬr(g,∞) whose (correct!) closure is isotopic to l.

Fact.

ℋg is given by a complement in the 3-sphere S 3 by an open tubular
neighborhood of the embedded graph obtained

by gluing g + 1 unknotted “core” edges to two vertices.

S3

the 3-ball ℋ0 = D 3

S3

a torus ℋ1

S3

ℋ2
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cos(π/3) on a line:

type An−1 : 1 2 . . . n−2 n−1

The classical case. Consider the map

βi 7→
1

1

i+1

i

i

i+1

n

n

... ... braid rel. : =

Artin ∼1925. This gives an isomorphism of groups AT(An−1)
∼=−→ℬr(0, n).



cos(π/4) on a line:

type Cn : 0 1 2 . . . n−1 n
4

The semi-classical case. Consider the map

β0 7→
1

1

2

2

n

n

... & βi 7→
1

1

i+1

i

i

i+1

n

n

... ... braid rel. : =

Brieskorn ∼1973. This gives an isomorphism of groups AT(Cn)
∼=−→ℬr(1, n).



Twice cos(π/4) on a line:

type C̃n : 01 1 2 . . . n−1 n 02
4 4

Affine adds genus. Consider the map

β01 7→
11

1 1

n

n

2

2

...

...

& βi 7→
i+1

i

i

i+1

& β02 7→
n

2

2

n1

1

1

1

...

...

Allcock ∼1999. This gives an isomorphism of groups AT(C̃n)
∼=−→ℬr(2, n).

This case is strange – it only arises under conjugation:

1 21

...

n

1 21

...

n

b 7→

1 1

...

n2

1 1
...

n2

b

By a miracle, one can avoid the special relation

=

This relation

involves three

players and inverses.

Bad!

Currently, not much seems to be known, but I think the same story works.

However, this is where it seems to end, e.g. genus g = 3 wants to be

01

02 1 2 . . . n−1 n

03

∞

∞

∞

In some sense this can not work; remember Tits’ conjecture.

Currently known (to the best of my knowledge).

Genus type A type C

g = 0 ℬr(n) ∼= AT(An−1)

g = 1 ℬr(1, n) ∼= Z n AT(Ãn−1) ∼= AT(Ân−1) ℬr(1, n) ∼= AT(Cn)

g = 2 ℬr(2, n) ∼= AT(C̃n)

g ≥ 3

And some Z/2Z-orbifolds (Z/∞Z =puncture):

Genus type D type B

g = 0

g = 1 ℬr(1, n)Z/2Z ∼= AT(Dn) ℬr(1, n)Z/∞Z ∼= AT(Bn)

g = 2 ℬr(2, n)Z/2Z×Z/2Z ∼= AT(D̃n) ℬr(2, n)Z/∞Z×Z/2Z ∼= AT(B̃n)

g ≥ 3

(For orbifolds “genus” is just an analogy.)

Example.

type B̃n n−1

0 1 2 . . . n−2

n

4

!

••• Z/2Z“Z/∞Z”

D2
3

!

1

1

order ∞ order 2

n

n

Back
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g = 1 ℬr(1, n) ∼= Z n AT(Ãn−1) ∼= AT(Ân−1) ℬr(1, n) ∼= AT(Cn)

g = 2 ℬr(2, n) ∼= AT(C̃n)

g ≥ 3

And some Z/2Z-orbifolds (Z/∞Z =puncture):

Genus type D type B

g = 0

g = 1 ℬr(1, n)Z/2Z ∼= AT(Dn) ℬr(1, n)Z/∞Z ∼= AT(Bn)

g = 2 ℬr(2, n)Z/2Z×Z/2Z ∼= AT(D̃n) ℬr(2, n)Z/∞Z×Z/2Z ∼= AT(B̃n)

g ≥ 3

(For orbifolds “genus” is just an analogy.)

Example.

type B̃n n−1

0 1 2 . . . n−2

n

4

!

••• Z/2Z“Z/∞Z”

D2
3

!

1

1

order ∞ order 2

n

n

Back



Twice cos(π/4) on a line:

type C̃n : 01 1 2 . . . n−1 n 02
4 4

Affine adds genus. Consider the map

β01 7→
11

1 1

n

n

2

2

...

...

& βi 7→
i+1

i

i

i+1

& β02 7→
n

2

2

n1

1

1

1

...

...

Allcock ∼1999. This gives an isomorphism of groups AT(C̃n)
∼=−→ℬr(2, n).

This case is strange – it only arises under conjugation:

1 21

...

n

1 21

...

n

b 7→

1 1

...

n2

1 1
...

n2

b

By a miracle, one can avoid the special relation

=

This relation

involves three

players and inverses.

Bad!

Currently, not much seems to be known, but I think the same story works.

However, this is where it seems to end, e.g. genus g = 3 wants to be

01

02 1 2 . . . n−1 n

03

∞

∞

∞

In some sense this can not work; remember Tits’ conjecture.

Currently known (to the best of my knowledge).

Genus type A type C

g = 0 ℬr(n) ∼= AT(An−1)
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