All I know about Artin-Tits groups

Or: Why type A is so much easier...

Daniel Tubbenhauer

(Page 283 from Gauß' handwritten notes, volume seven, <1830).

Joint with David Rose

March 2020 All I know about Artin-Tits groups

1/6

Let Γ be a Coxeter graph.

Artin \sim **1925, Tits** \sim **1961**++. The (Gauß–)Artin–Tits group and its Coxeter group quotient are given by generators-relations:

$$\begin{split} \operatorname{AT}(\Gamma) &= \langle \mathscr{E}_i \mid \underbrace{\cdots \mathscr{E}_i \mathscr{E}_j \mathscr{E}_i}_{m_{ij} \text{ factors}} = \underbrace{\cdots \mathscr{E}_j \mathscr{E}_i \mathscr{E}_j \rangle}_{m_{ij} \text{ factors}} \\ \mathbb{W}(\Gamma) &= \langle \sigma_i \mid \sigma_i^2 = 1, \underbrace{\cdots \sigma_i \sigma_j \sigma_i}_{m_{ij} \text{ factors}} = \underbrace{\cdots \sigma_j \sigma_i \sigma_j \rangle}_{m_{ij} \text{ factors}} \end{split}$$

Artin-Tits groups generalize classical braid groups, Coxeter groups

seneralize polyhedron groups.

My failure. What I would like to understand, but I do not.

Artin-Tits groups come in four main flavors.

Question: What happens in general type?

My failure. What I would like to understand, but I do not.

Artin–Tits groups come in four main flavors.

Question: What happens in general type?

Maybe some categorical considerations help?
In particular, what can Artin–Tits groups tell you about flavor two?

$$\begin{array}{cccc} \operatorname{AT}(\Gamma) & & & \operatorname{AT}(\Gamma) \\ & & & & & & & & & \\ \mathbb{L}_-\mathbb{I}\bigcirc & & & & & & & \\ \mathcal{K}^b(\mathscr{S}^\mathbf{q}(\Gamma)) & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ \mathcal{K}^b(\mathscr{Z}^\mathbf{q}(\Gamma)) & & & & & & \\ & & & & & & & \\ \mathcal{K}^b(\mathscr{Z}^\mathbf{q}(\Gamma)) & & & & & & \\ \end{array}$$

Question. How does this help to study Artin-Tits groups?

Here (killing idempotents for the last row):

- $\blacktriangleright \ \ \text{Hecke algebra} \ \ \mathcal{H}^{\mathbf{q}}(\Gamma), \ \text{homotopy category of Soergel bimodules} \ \ \mathcal{K}^b(\mathscr{S}^{\mathbf{q}}(\Gamma)).$
- ► Hecke action [_], Rouquier complex [_].
- ▶ Burau representation $\mathcal{B}^{\mathbf{q}}(\Gamma)$, homotopy category of representations of zigzag algebras $\mathcal{K}^b(\mathcal{Z}^{\mathbf{q}}(\Gamma))$.

Faithfulness?

The Hecke action is known to be faithful in very few cases, e.g. for Γ of rank 1,2. But there is "no way" to prove faithfulness in general.

Example (seems to work). Hecke distinguishes the braids where Burau failed:

```
sage: R.<q> = LaurentPolynomialRing(ZZ)
sage: H = IwahoriHeckeAlgebra('A5', q, -q^-1)
sage: psi1 = T(4) * T(5)^{(-1)} * T(2)^{(-1)} * T(1)
sage: psi2 = T[4]^{(-1)} * T[5]^{(2)} * T[2] * T[1]^{(-2)}
sage: Psil = T[1]^{(-1)} * T[2] * T[5] * T[4]^{(-1)}
sage: Psi2 = T[1]^{(2)} * T[2]^{(-1)} * T[5]^{(-2)} * T[4]
sage: w1 = Psi1 * T[3] * psi1
sage: w2 = Psi2 * T[3] * psi2
sage: W1 = Psi1 * T[3]^{(-1)} * psi1
sage: W2 = Psi2 * T(3)^{(-1)} * psi2
sage: w1 * w2 * W1 * W2
   WARNING: Output truncated!
   full output.txt
   -(q^-21-10*q^-19+50*q^-17-168*q^-15+428*q^-13-882*q^-11+1531*q^-9-2303*q\
   ^-7+3067*q^-5-3676*q^-3+4012*q^-1-4012*q+3676*q^3-3067*q^5+2303*q^7-1531\
   *q^9+882*q^11-428*q^13+168*q^15-50*q^17+10*q^19-q^21)*T[1,2,3,4,5,1,2,3,\
   4,1,2,3,1,2,11 +
```

algebras / (2 *(1))

-1446875388/59849 -1259219000/19683

644883850/19683

553296799/59049

-1294131800/59049

-4512158300/59049

9055019047/177147

-3871127000/177147

Question

- Here (kil
 - Hec

 - Hec
 - algebras $\mathcal{K}^b(\mathcal{Z}^{\mathbf{q}}(\Gamma))$.

2639191750/4782969 -45868537000/4782969

-6175410800/4782969 107290158950/4782969

12305843941/531441

10557771250/1594323

-24693841250/1594323

0 0

evaluate

Theorem (handlebody faithfulness).

For all g, n, Rouquier's action [-] gives rise to a family of faithful actions

$$\begin{array}{c} \mathscr{B}r(g,n) \curvearrowright \mathcal{K}^b(\mathscr{S}^q(\Gamma)), \mathscr{E} \mapsto \llbracket \mathscr{E} \rrbracket_{\mathtt{M}}. \\ \downarrow^{\psi} & \overset{\psi}{\mathcal{K}^b}(\mathscr{Z}^q(\Gamma)) \xrightarrow{\mathsf{decat.}} \mathcal{B}^q(\Gamma) \end{array}$$

Theorem (handlebody HOMFLYPT homology).

Questio

This action extends to a HOMFLYPT invariant for handlebody links. Mnemonic:

Here (ki

- ▶ Hed

$$\mathscr{C} = \bigoplus_{k=1}^{\infty} \& \quad \llbracket \mathscr{E} \rrbracket_{\mathtt{M}} = \bigoplus_{k=1}^{M} \bigvee_{k=1}^{M} \& \quad \llbracket \mathscr{E} \rrbracket_{\mathscr{H}_{2}} = \bigoplus_{k=1}^{M} \bigvee_{k=1}^{M} \bigvee_{k=1}^{$$

$$\llbracket \mathscr{E} \rrbracket_{\mathtt{M}} = \bigoplus_{M=M}^{M=M} \frac{k}{k}$$

$$\llbracket \mathscr{E} \rrbracket_{\mathscr{H}_2} = \bigcap_{M \mid M \mid k}$$

$$\mathscr{S}^{\mathbf{q}}(\Gamma)$$
).

Rouquier \sim **2004.** The 2-braid group $\mathcal{AT}(\Gamma)$ is $\operatorname{im}(\llbracket _ \rrbracket) \subset \mathcal{K}^b(\mathscr{S}_{\mathbf{s}}^{\mathbf{q}}(\Gamma))$.

 $\Gamma = \mathsf{A}, \mathsf{C}, \tilde{\mathsf{C}} \leadsto \mathsf{category} \ \mathsf{of} \ \mathsf{braid} \ \mathsf{cobordisms} \ \mathscr{B}_{\mathrm{cob}}(\Gamma) \ \mathsf{in} \ \mathsf{four} \ \mathsf{space}.$

Fact (well-known?). For Γ of type A, B = C or affine type C we have

$$\mathcal{AT}(\Gamma) = \mathsf{inv}(\mathscr{B}_{cob}(\Gamma)).$$

Corollary (strictness). We have a categorical action

$$\mathsf{inv}(\mathscr{B}_{\mathsf{cob}}(g,n)) \curvearrowright \mathcal{K}^b(\mathscr{S}^\mathbf{q}(\Gamma)), \mathscr{C} \mapsto \llbracket \mathscr{C} \rrbracket \, , \mathscr{C}_{\mathsf{cob}} \mapsto \llbracket \mathscr{C}_{\mathsf{cob}} \rrbracket \, .$$

Question (functoriality). Can we lift $[\![\]\!]$ to a categorical action

$$\mathscr{B}_{\rm cob}(g,n) \curvearrowright \mathcal{K}^b(\mathscr{S}^{\bf q}(\Gamma))?$$

Question (functoriality). Can we lift $[\![\]]$ to a categorical action

$$\mathscr{B}_{\text{cob}}(g,n) \curvearrowright \mathcal{K}^b(\mathscr{S}^{\mathbf{q}}(\Gamma))$$
?

Question (functoriality). Can we lift $[\![\]\!]$ to a categorical action

Theorem (well-known?).

The Rouquier complex is functorial in types A, B = C and affine C.

Rouquier \sim **2004.** The 2-braid group $\mathcal{AT}(\Gamma)$ is $\operatorname{im}(\llbracket _ \rrbracket) \subset \mathcal{K}^b(\mathscr{S}_{\mathbf{s}}^{\mathbf{q}}(\Gamma))$.

Fact For all
$$g, n$$
, Rouquier's action $[\![-]\!]$ gives rise to a family of functorial actions $\mathscr{B}_{\operatorname{cob}}(g,n) \curvearrowright \mathcal{K}^b(\mathscr{S}^{\operatorname{q}}(\Gamma)), \mathscr{E} \mapsto [\![\mathscr{E}]\!]_{\operatorname{M}}, \mathscr{E}_{\operatorname{cob}} \mapsto [\![\mathscr{E}_{\operatorname{cob}}]\!]_{\operatorname{M}}.$

Coro $(\mathscr{B}_{\operatorname{cob}}(g,n)) \curvearrowright \mathcal{K}^b(\mathscr{S}^{\operatorname{q}}(\Gamma)), \mathscr{E} \mapsto [\![\mathscr{E}]\!]_{\operatorname{M}}, \mathscr{E}_{\operatorname{cob}} \mapsto [\![\mathscr{E}_{\operatorname{cob}}]\!]_{\operatorname{M}}.$

Question (functoriality). Can we lift [-] to a categorical action

$$\mathscr{B}_{\text{cob}}(g,n) \curvearrowright \mathcal{K}^b(\mathscr{S}^{\mathbf{q}}(\Gamma))$$
?

Rouquier \sim **2004.** The 2-braid group $\mathcal{AT}(\Gamma)$ is $\operatorname{im}(\llbracket _ \rrbracket) \subset \mathcal{K}^b(\mathscr{S}_{\mathfrak{s}}^{\mathbf{q}}(\Gamma))$.

For all g, n, Rouquier's action [-] gives rise to a family of functorial actions

$$\mathscr{B}_{\mathrm{cob}}(g,n) \curvearrowright \mathcal{K}^b(\mathscr{S}^{\mathbf{q}}(\Gamma)), \mathscr{E} \mapsto \llbracket \mathscr{E} \rrbracket_{\mathsf{M}}, \mathscr{E}_{\mathrm{cob}} \mapsto \llbracket \mathscr{E}_{\mathrm{cob}} \rrbracket_{\mathsf{M}}.$$

 $(\mathscr{B}_{cob}(q,n))$ is the 2-category of handlebody braid cobordisms.)

$$\mathsf{inv}(\mathscr{B}_{\mathsf{cob}}(g,n)) \curvearrowright \mathcal{K}^b(\mathscr{S}^{\mathbf{q}}(\Gamma)), \mathscr{E} \mapsto \llbracket \mathscr{E} \rrbracket, \mathscr{E}_{\mathsf{cob}} \mapsto \llbracket \mathscr{E}_{\mathsf{cob}} \rrbracket.$$

Question (functoriality).

Corc

Final observation.

cal action

In all (non-trivial) cases I know "faithful ⇔ functorial".

Is there a general statement?

There is still much to do...

Thanks for your attention!

Examples.

Type $A_3 \iff$ tetrahedron \iff symmetric group S_4 .

Type $B_3 \iff \text{cube/octahedron} \iff \text{Weyl group } (\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3.$

Type $H_3 \iff$ dodecahedron/icosahedron \iff exceptional Coxeter group.

For $I_2(4)$ we have a 4-gon:

Examples.

Type $A_3 \leftrightarrow \text{tetra}$ Fact. The symmetries are given by exchanging flags. Type $B_3 \leftrightarrow \text{cube}$ cotahedron $\leftrightarrow \text{Weyl}$ group $(\mathbb{Z}/2\mathbb{Z})^9 \ltimes S_3$.

Type $H_3 \leftrightarrow dodecahedron/icosahedron \leftrightarrow exceptional Coxeter group.$

For $I_2(4)$ we have a 4-gon:

Fix a flag F.

Examples.

Type $A_3 \iff$ tetrahedron \iff symmetric group S_4 .

Type $B_3 \iff \text{cube/octahedron} \iff \text{Weyl group } (\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3.$

Type $H_3 \longleftrightarrow dodecahedron/icosahedron \longleftrightarrow exceptional Coxeter group.$

For $I_2(4)$ we have a 4-gon:

Fix a flag
$$F$$
.

Fix a hyperplane H_0 permuting the adjacent 0-cells of F.

Examples.

Type $A_3 \iff$ tetrahedron \iff symmetric group S_4 .

Type $B_3 \iff \text{cube/octahedron} \iff \text{Weyl group } (\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3.$

Type $H_3 \longleftrightarrow dodecahedron/icosahedron \longleftrightarrow exceptional Coxeter group.$

For $I_2(4)$ we have a 4-gon:

Fix a flag F.

Fix a hyperplane H_0 permuting the adjacent 0-cells of F.

Fix a hyperplane H_1 permuting the adjacent 1-cells of F, etc.

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type $A_3 \iff$ tetrahedron \iff symmetric group S_4 .

Type $B_3 \iff \text{cube/octahedron} \iff \text{Weyl group } (\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3.$

Type $H_3 \longleftrightarrow dodecahedron/icosahedron \longleftrightarrow exceptional Coxeter group.$

For $I_2(4)$ we have a 4-gon:

Fix a flag F.

Fix a hyperplane H_0 permuting the adjacent 0-cells of F.

Fix a hyperplane H_1 permuting the adjacent 1-cells of F, etc.

Write a vertex i for each H_i .

Idea (Coxeter \sim 1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

This gives a generator-relation presentation.

Type $A_3 \leftrightarrow$ tetrahedron \leftrightarrow symmetric group S_4 .

Type $B_3 \leftrightarrow$ And the braid relation measures the angle between hyperplanes.

Type H₃ \iff dodecahedron/icosahedron \iff exceptional Coxeter group.

For $I_2(4)$ we have a 4-gon:

Fix a flag F.

Fix a hyperplane H_0 permuting the adjacent 0-cells of F.

Fix a hyperplane H_1 permuting the adjacent 1-cells of F, etc.

Write a vertex i for each H_i .

Connect i, j by an n-edge for H_i, H_j having angle $\cos(\pi/n)$.

Idea (Coxeter \sim 1934++).

Lawrence \sim 1989, Krammer \sim 2000, Bigelow \sim 2000 (Cohen–Wales \sim 2000, Digne \sim 2000). Let Γ be of finite type. There exists a faithful action of $AT(\Gamma)$ on a finite-dimensional vector space.

Upshot: One can ask a computer program questions about braids!

```
sage: B.<b1,b2,b3,b4,b5> = BraidGroup(6)
sage: psi1 = b4 * b5^{(-1)} * b2^{(-1)} * b1
sage: psi2 = b4^{-1} + b5^{2} + b2 + b1^{-2}
sage: w1 = psi1^{(-1)} * b3 * psi1
sage: w2 = psi2^{(-1)} * b3 * psi2
sage: print((w1 * w2 * w1^(-1) * w2^(-1)).TL matrix(4))
sage: print(((w1 * w2 * w1^(-1) * w2^(-1)),LKB matrix()),substitute(x=-1,v=1))
   [1 0 0 0 0]
         129
               128
                     32
                                    96
                                              32
     -32 -128 -127
                    -32 -64 -96
                                   -96
                    -32
                              128
                                    128
                    -32
                                              -32
                                                                            -32]
```


Lawrence \sim 1989, Krammer \sim 2000, Bigelow \sim 2000 (Cohen–Wales \sim 2000, Digne \sim 2000). Let Γ be of finite type. There exists a faithful action of $AT(\Gamma)$ on a finite-dimensional vector space.

Lawrence \sim 1989, Krammer \sim 2000, Bigelow \sim 2000 (Cohen–Wales \sim 2000,

Digne \sim 2000). Let Γ be of finite type. There exists a faithful action of $AT(\Gamma)$ on a **Example.** In the dihedral case these (un)foldings correspond to bicolorings: $\longrightarrow \bigvee_{A_6} \quad \text{and} \quad \underset{I_2(8)}{\text{sl}} \quad \rightsquigarrow \bigvee_{A_7} \quad \text{and} \quad \underset{I_2(9)}{\text{sl}} \quad \rightsquigarrow \bigvee_{A_8} \quad \longrightarrow \bigvee_{A_$ Fact. This gives $AT(I_2(n)) \hookrightarrow AT(\Gamma)$ $\Gamma = \mathsf{ADE}$ for $n = \mathsf{Coxeter}$ number.

Lawrence \sim 1989, Krammer \sim 2000, Bigelow \sim 2000 (Cohen–Wales \sim 2000, Digne \sim 2000). Let Γ be of finite type. There exists a faithful action of $AT(\Gamma)$

Digne \sim 2000). Let Γ be of finite type. There exists a faithful action of $AT(\Gamma)$ on a Example. In the dihedral case these (un)foldings correspond to bicolorings:

Upsh

There exists a faithful action of $AT(\Gamma)$ and $AT(\Gamma)$ are approximately appr

Crisp-Paris \sim 2000 (Tits conjecture). For all m>1, the subgroup $\langle \mathscr{E}_i^m \rangle \subset \operatorname{AT}(\Gamma)$ is free (up to "obvious commutation").

In finite type this is a consequence of LKB; in type A it is clear:

This should have told me something: I will come back to this later.

Proof?

Essentially: Relate the problem to the mapping class $\mathcal{M}(\Sigma)$ group of a surface Σ , which acts on $\pi_1(\Sigma, \text{boundary})$ via Dehn twist.

Then
$$\langle \mathscr{E}_i^m \rangle \hookrightarrow \operatorname{AT}(\Gamma) \to \mathscr{M}(\Sigma) \curvearrowright \pi_1(\Sigma, \text{boundary})$$
 acts faithfully.

In

Example. The surface Σ is built from Γ by gluing annuli An_i :

$$i\rightarrow j$$
: * An_i * + * An_j * = * An_i

Dehn twist along the orchid curve:

Recall. Right-angled means $m_{ij} \in \{2, \infty\}$.

Fact (well-known?). Let Γ be of right-angled type. There exists a faithful action of $AT(\Gamma)$ on a finite-dimensional \mathbb{R} -vector space.

Example. $\Gamma = I_2(\infty)$, the infinite dihedral group.

$$\begin{array}{cccc}
 & & & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Define a map

$$AT(\Gamma) \to W(\Gamma'), s \mapsto ss, t \mapsto tt.$$

Crazy fact: This is an embedding, and actually

$$W(\Gamma') \cong AT(\Gamma) \rtimes (\mathbb{Z}/2\mathbb{Z})^2$$
.

Thus, via Tits' reflection representation, it follows that $AT(\Gamma)$ is linear.

Recall. Right-angled means $m_{ij} \in \{2, \infty\}$.

Fact (well-known?). Let Γ be of right-angled type. There exists a faithful action

Define a map

Tits' reflection representation gives a faithful action on a finite-dimensional \mathbb{R} -vector space.

$$AT(\Gamma) \to W(\Gamma'), s \mapsto ss, t \mapsto tt$$
.

This is the only case where I know that Crazy fact: This the Artin-Tits group embeds into a Coxeter group.

$$W(\Gamma') \cong AT(\Gamma) \rtimes (\mathbb{Z}/2\mathbb{Z})^2.$$

Thus, via Tits' reflection representation, it follows that $AT(\Gamma)$ is linear.

Let $\mathrm{Br}(g,n)$ be the group defined as follows.

Generators. Braid and twist generators

Relations. Reidemeister braid relations, type C relations and special relations, e.g.

Involves three players and inverses!

Example.

ations and special relations, e.g.

Relations. Reidemeister bra

Involves three players and inverses!

$$(h_1 t_0 h_{-1}^{-1}) t_0 = t_0 (h_1 t_0 h_{-1}^{-1})$$

$$(\mathscr{E}_1 t_2 \mathscr{E}_1^{-1}) t_3 = t_3 (\mathscr{E}_1 t_2 \mathscr{E}_1^{-1})$$

The "full wrap".
$$\ell_1 t_2 \ell_1 t_2 = t_2 \ell_1 t_{2\nu_1}$$

$$\ell_1 t_2 \ell_1 t_2 = t_2 \ell_1 t_{2\nu_1}$$

$$\ell_1 t_2 \ell_1 t_2 = t_2 \ell_1 t_{2\nu_1}$$

Generators. Braid and twist generators

The group $\mathscr{B}r(g,n)$ of braid in a g-times punctures disk $\mathscr{D}_q^2 \times [0,1]$:

Two types of braidings, the usual ones and "winding around cores", e.g.

The map

is an isomorphism of groups $Br(g,n) \to \mathscr{B}r(g,n)$.

The group $\mathscr{B}r(g,n)$ of braid in a g-times punctures disk $\mathscr{D}_q^2 \times [0,1]$:

Two types

From this perspective the type A embedding is just shrinking holes to points!

The group $\mathscr{B}\mathbf{r}(g,n)$ of braid in a g-times punctures disk $\mathscr{D}_g^2 \times [0,1]$:

Two types of braidings the usual ones and "winding around cores" e.g. Note.

For the proof it is crucial that \mathcal{D}_g^2 and the boundary points of the braids ullet are only defined up to isotopy, e.g.

⇒ one can always "conjugate cores to the left".

This is useful to define $\mathscr{B}r(g,\infty)$.

The Alexander closure on $\mathscr{B}\mathrm{r}(g,\infty)$ is given by merging core strands at infinity.

This is different from the classical Alexander closure.

This is different from the classical Alexander closure.

This is

the 3-ball $\mathcal{H}_0 = \mathcal{D}^3$

 $\cos(\pi/3)$ on a line:

type
$$A_{n-1}$$
: 1 — 2 — ... — $n-2$ — $n-1$

The classical case. Consider the map

$$\beta_i \mapsto \bigcap_{1,\dots,i}^{1,\dots,i} \bigcap_{j=i+1,\dots,n}^{i-j+1} \text{braid rel.}$$
:

Artin \sim **1925.** This gives an isomorphism of groups $AT(A_{n-1}) \xrightarrow{\cong} \mathscr{B}r(0,n)$.

 $\cos(\pi/4)$ on a line:

type
$$C_n: 0 \xrightarrow{4} 1 \longrightarrow 2 \longrightarrow \dots \longrightarrow n-1 \longrightarrow n$$

The semi-classical case. Consider the map

$$\beta_0 \mapsto \bigcap_{1=2}^{1} \bigcap_{n=1}^{2} \dots \bigcap_{n=1}^{n} \& \quad \beta_i \mapsto \bigcap_{1=i+1}^{1} \bigcap_{i=i+1}^{n} \text{braid rel.} :$$

Brieskorn ~1973. This gives an isomorphism of groups $AT(C_n) \xrightarrow{\cong} \mathscr{B}r(1,n)$.

Twice $\cos(\pi/4)$ on a line:

type
$$\tilde{C}_n$$
: $0^1 - 1 - 2 - ... - n - 1 - n - \frac{4}{n} \cdot 0^2$

Affine adds genus. Consider the map

$$\beta_{0^1} \mapsto \bigcap_{1=1}^{1-1} \dots \bigcap_{n=2}^{n-2} \quad \& \quad \beta_i \mapsto \bigcap_{i=i+1}^{i-i+1} \quad \& \quad \beta_{0^2} \mapsto \bigcap_{1=1}^{1-1} \dots \bigcap_{n=2}^{n-2}$$

Allcock ~1999. This gives an isomorphism of groups $AT(\tilde{C}_n) \xrightarrow{\cong} \mathscr{B}r(2,n)$.

Allcock ~1999. This gives an isomorphism of groups $AT(\tilde{C}_n) \xrightarrow{\cong} \mathscr{B}r(2,n)$.

Currently, not much seems to be known, but I think the same story works.

Allcock ~1999. This gives an isomorphism of groups $AT(\tilde{C}_n) \xrightarrow{\cong} \mathcal{B}r(2,n)$.

Currently, not much seems to be known, but I think the same story works.

Twice $\cos(\pi/4)$ on a line:

	Currently known (to the best of my knowledge).			
	Genus	type A		type C
ffi	g = 0	$\mathscr{B}\mathrm{r}(n) \cong \mathrm{AT}(A_{n-1})$		
	g = 1	$\mathscr{B}\mathrm{r}(1,n) \cong \mathbb{Z} \ltimes \mathrm{AT}(\tilde{A}_{n-1}) \cong \mathrm{AT}(\hat{A}_{n-1})$		$\mathscr{B}\mathrm{r}(1,n)\cong\mathrm{AT}(C_n)$
	g=2			$\mathscr{B}\mathrm{r}(2,n)\cong\mathrm{AT}(\tilde{C}_n)$
	$g \ge 3$			
	And some $\mathbb{Z}/2\mathbb{Z}$ -orbifolds ($\mathbb{Z}/\infty\mathbb{Z}$ =puncture):			
	Genus	type D	type B	
lld	g = 0			
	g=1	$\mathscr{B}\mathrm{r}(1,n)_{\mathbb{Z}/2\mathbb{Z}} \cong \mathrm{AT}(D_n)$	$\mathscr{B}\mathrm{r}(1,n)_{\mathbb{Z}/\infty\mathbb{Z}} \cong \mathrm{AT}(B_n)$	
	g=2	$\mathscr{B}r(2,n)_{\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}}\cong AT(\tilde{D}_n)$	$\mathscr{B}\mathrm{r}(2,n)_{\mathbb{Z}/\infty\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}}\cong\mathrm{AT}(\tilde{B}_n)$	
	$g \ge 3$			
	(For orbifolds "genus" is just an analogy.)			

