Why (modular) representation theory?

Or: Fractals and SL_{2}

Based on joint with Lousie Sutton, Paul Wedrich, Jieru Zhu
February 2021

Abstract vs. real life

	Abstract	Incarnation
Numbers	3	or
Finite groups	$\mathrm{S}_{4}=\langle s, t, u\|$ some relations \rangle	
Lie groups	$\mathrm{SL}_{2}=\left\{\left.\left(\begin{array}{lll}\text { a } & b \\ c & d\end{array}\right) \right\rvert\, a d-b c=1\right\}$	
More (Lie algebras, algebras,) categories...)	$\mathrm{W}=\langle X, Y \mid X Y=Y X+1\rangle$	or

Abstract vs. real life

Abstract vs. real life

What are modules?

Frobenius $\boldsymbol{\sim} 1895+$, Burnside $\sim 1900+$. Represention theon is the usenle study of linear actions of G (a finite group, a reductive group, an algebra...)

$$
\mathcal{M}: \mathrm{G} \longrightarrow \mathcal{E} \operatorname{nd}(\mathrm{v}),
$$

with V being some vector space. (Called modules or representations.)

Examples.

$\mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbb{R}^{2}\right)$, e.g. $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \mapsto\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$

$$
\mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbb{R}^{3}\right) \text {, e.g. }\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \mapsto\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

What are modules?

Frobenius $\boldsymbol{\sim} 1895+$, Burnside $\sim 1900+$. Represention theon is the usenle study of linear actions of G (a finite group, a reductive group, an algebra...)

$$
\mathcal{M}: \mathrm{G} \longrightarrow \mathcal{E} \operatorname{nd}(\mathrm{v}),
$$

with V being some vector space. (Called modules or representations.)

Examples.

$\mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbb{R}^{2}\right)$, e.g. $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \mapsto\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$

$$
\mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbb{R}^{3}\right) \text {, e.g. }\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \mapsto\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Question. What can we say about finite-dimensional modules of $\mathrm{SL}_{2} \ldots$

- ...in the context of the representation theory of classical groups? \rightsquigarrow The modules and their structure.
- ...in the context of the representation theory of Hopf algebras? \rightsquigarrow Fusion rules i.e. tensor products rules.
- ...in the context of categories? \rightsquigarrow Morphisms of representations and their structure. (Not today - time, in general, flies!)
The most amazing things happen if the characteristic of the underlying field $\mathbb{K}=\overline{\mathbb{K}}$ of $\mathrm{SL}_{2}=\mathrm{SL}_{2}(\mathbb{K})$ is finite, and we will see (inverse) fractals, e.g.

Question. What can we say about finite-dimensional modules of $\mathrm{SL}_{2} \ldots$

- ...in the context of the reoresentation theorv of classical grouns? \rightsquigarrow The modu Spoiler: What will be the take away?
- ...in t Well, in some sense modular (char $p<\infty$) representation theory Uusion rules i.e. $\mathrm{t} \in \quad$ so much harder than classical one (char ∞ a.k.a. char 0)
- ...in t because secretly we are doing fractal geometry.
struct In my toy example SL_{2} we can do everything explicitly.
 of $\mathrm{SL}_{2}=\mathrm{SL}_{2}(\mathbb{K})$ is finite, and we will see (inverse) fractals, e.g.

Weyl \sim 1923. The SL_{2} (dual) Weyl modules $\Delta(v-1)$.

$$
\begin{aligned}
& \Delta(1-1) \\
& \Delta(2-1) \\
& x^{1} y^{0} \quad x^{0} y^{1} \\
& \Delta(3-1) \\
& X^{2} Y^{0} \quad X^{1} Y^{1} \quad X^{0} Y^{2} \\
& x^{3} y^{0} \quad x^{2} y^{1} \quad x^{1} y^{2} \quad x^{0} y^{3} \\
& x^{4} y^{0} \quad x^{3} y^{1} \quad x^{2} y^{2} \quad x^{1} y^{3} \quad x^{0} y^{4} \\
& \Delta(6-1) \quad X^{5} Y^{0} \quad X^{4} Y^{1} \quad X^{3} Y^{2} \quad X^{2} Y^{3} \quad X^{1} Y^{4} \quad X^{0} Y^{5} \\
& \Delta(7-1) \quad X^{6} Y^{0} \quad X^{5} Y^{1} \quad x^{4} Y^{2} \quad X^{3} Y^{3} \quad X^{2} Y^{4} \quad X^{1} Y^{5} \quad X^{0} Y^{6}
\end{aligned}
$$

Example $\Delta(7-1)=\mathbb{K} X^{6} Y^{0} \oplus \cdots \oplus \mathbb{K} X^{0} Y^{6}$.
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ acts as
$\left(\begin{array}{cccccc}a^{6} & 6 a^{5} c & 15 a^{4} c^{2} & 20 a^{3} c^{3} & 15 a^{2} c^{4} & c^{6} \\ a^{5} b & 5 a^{4} b c+a^{5} d & 10 a^{3} b c^{2}+5 a^{4} c d & 10 a^{2} b c^{3}+10 a^{3} c^{2} d & 5 a b c^{4}+10 a^{2} c^{3} d & b c^{5}+5 a c^{4} d \\ a^{4} b^{2} & 4 a^{3} b^{2} c+2 a^{4} b d & 6 a^{2} b^{2} c^{2}+8 a^{3} b c d+a^{4} d^{2} & 4 a b^{2} c^{3}+12 a^{2} b c^{2} d^{4}+4 a^{3} c d^{2} & b^{2} c^{4}+8 a b c^{3} d+6 a^{2} c^{2} d^{2} & 2 b c^{4} d+4 a c^{3} d^{2} c^{4} d^{2} \\ a^{3} b^{3} & 3 a^{2} b^{3} c+3 a^{3} b^{2} d & 3 a b^{3} c^{2}+9 a^{2} b^{2} c d+3 a^{3} b d^{2} & b^{3} c^{3}+9 a b^{2} c^{2} d+9 a^{2} b c d^{2}+a^{3} d^{3} & 3 b^{2} c^{3} d+9 a b c^{2} d^{2}+3 a^{2} c d^{3} & 3 b c^{3} d^{2}+3 a c^{2} d^{3} c^{3} d^{3} \\ a^{2} b^{4} & 2 a b^{4} c+4 a^{2} b^{3} d & b^{4} c^{2}+8 a b^{3} c d+6 a^{2} b^{2} d^{2} & 4 b^{3} c^{2} d+12 a b^{2} c d^{2}+4 a^{2} b d^{3} & 6 b^{2} c^{2} d^{2}+8 a b c d^{3}+a^{2} d^{4} & 4 b c^{2} d^{3}+2 a c d^{4} c^{2} d^{4} \\ a b^{5} & b^{5} c+5 a b^{4} d & 5 b^{4} c d+10 a b^{3} d^{2} & 10 b^{3} c d^{2}+10 a b^{2} d^{3} & 10 b^{2} c d^{3}+5 a b d^{4} & 5 b c d^{4}+a d^{5} \\ b^{6} & 6 b^{5} d & 15 d^{5} d^{2} & 20 b^{3} d^{3} & 15 b^{2} d^{4} & 6 b d^{5}\end{array}\right)$

The rows are expansions of $(a X+c Y)^{7-i}(b X+d Y)^{i-1}$. Binomials!

$$
\begin{aligned}
& \Delta(3-1) \quad X^{2} y^{0} \quad X^{1} Y^{1} \quad X^{0} Y^{2} \\
& \Delta(4-1) \\
& x^{3} y^{0} \quad x^{2} y^{1} \quad x^{1} y^{2} \quad x^{0} y^{3} \\
& X^{4} Y^{0} \quad X^{3} Y^{1} \quad X^{2} Y^{2} \quad X^{1} Y^{3} \quad X^{0} Y^{4} \\
& \Delta(6-1) \quad X^{5} Y^{0} \quad X^{4} Y^{1} \quad X^{3} Y^{2} \quad X^{2} Y^{3} \quad X^{1} Y^{4} \quad X^{0} Y^{5} \\
& \Delta(7-1) \quad X^{6} Y^{0} \quad X^{5} Y^{1} \quad X^{4} Y^{2} \quad X^{3} Y^{3} \quad X^{2} Y^{4} \quad X^{1} Y^{5} \quad X^{0} Y^{6}
\end{aligned}
$$

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto$ matrix who's rows are expansions of $(a X+c Y)^{v-i}(b X+d Y)^{i-1}$.

Example $\Delta(7-1)=\mathbb{K} X^{6} Y^{0} \oplus \cdots \oplus \mathbb{K} X^{0} Y^{6}$.
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ acts as
$\left(\begin{array}{cccccc}a^{6} & 6 a^{5} c & 15 a^{4} c^{2} & 20 a^{3} c^{3} & 15 a^{2} c^{4} \\ a^{5} b & 5 a^{4} b c+a^{5} d & 10 a^{3} b c^{2}+5 a^{4} c d & 10 a^{2} b c^{3}+10 a^{3} c^{2} d & 5 a b c^{4}+10 a^{2} c^{3} d & c^{6} \\ a^{4} b^{2} & 4 a^{3} b^{2} c+2 a^{4} b d & 6 a^{2} b^{2} c^{2}+8 a^{3} b c d+a^{4} d^{2} & 4 a b^{2} c^{3}+12 a^{2} b c^{2} d^{5}+4 a^{3} c d^{2} & b^{2} c^{4}+8 a a^{4} b c^{3} d+6 a^{2} c^{2} d^{2} & 2 b c^{4} d+4 a c^{5} d^{2} d^{2} c^{4} d^{2} \\ a^{3} b^{3} & 3 a^{2} b^{3} c+3 a^{3} b^{2} d & 3 a b^{3} c^{2}+9 a^{2} b^{2} c d+3 a^{3} b d^{2} b^{3} c^{3}+9 a b^{2} c^{2} d+9 a^{2} b c d^{2}+a^{3} d^{3} & 3 b^{2} c^{3} d+9 a b c^{2} d^{2}+3 a^{2} c d^{3}-3 b c^{3} d^{2}+3 a c^{2} d^{3} c^{3} d^{3} \\ a^{2} b^{4} & 2 a b^{4} c+4 a^{2} b^{3} d & b^{4} c^{2}+8 a b^{3} c d+6 a^{2} b^{2} d^{2} & 4 b^{3} c^{2} d+12 a b^{2} c d^{2}+4 a^{2} b d^{3} & 6 b^{2} c^{2} d^{2}+8 a b c d^{3}+a^{2} d^{4} & 4 b c^{2} d^{3}+2 a c d^{4} c^{2} d^{4} \\ a b^{5} & b^{5} c+5 a b^{4} d & 5 b^{4} c d+10 a b^{3} d^{2} & 10 b^{3} c^{2}+10 a b^{2} d^{3} & 10 b^{2} c d^{3}+5 a b d^{4} & 5 b c d^{4}+a d^{5} \\ b^{6} & 6 b^{5} d & 15 d^{4} d^{2} & 20 b^{3} d^{3} & 15 b^{2} d^{4} & 6 b d^{5}\end{array}\right)$

The rows are expansions of $(a X+c Y)^{7-i}(b X+d Y)^{i-1}$. Binomials!
$\Delta(3-1) \quad x^{2} y^{0} \quad x^{1} y^{1} \quad x^{0} y^{2}$

Example $\Delta(7-1)$, characteristic 0 .

No common eigensystem $\Rightarrow \Delta(7-1)$ simple.
Example $\Delta(7-1)$, characteristic 2.

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ acts as	a^{6}	0	$a^{4} c^{2}$	0	$a^{2} c^{4}$	0	c^{6}
	$a^{5} \mathrm{~b}$	$a^{4} \mathrm{bc}+\mathrm{a}^{5} \mathrm{~d}$	$\mathrm{a}^{4} \mathrm{~cd}$	0	$\mathrm{abc} \mathrm{c}^{4}$	$b c^{5}+a c^{4} d$	$c^{5} d$
	$a^{4} b^{2}$	0	$a^{4} d^{2}$	0	$\mathrm{b}^{2} \mathrm{c}^{4}$	0	$c^{4} d^{2}$
	$a^{3} b^{3}$	$a^{2} b^{3} c+a^{3} b^{2}$	$\mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{cc}$		$\mathrm{bc}^{2} \mathrm{~d}^{2}$	$b c^{3} d^{2}+a c^{2} d^{3}$	$c^{3} d^{3}$
	$a^{2} b^{4}$	0	$\mathrm{b}^{4} \mathrm{c}^{2}$	0	$a^{2} d^{4}$	0	$c^{2} d^{4}$
	ab^{5}	$b^{5} c+a b^{4} d$	$b^{4} \mathrm{~cd}$	0	$\mathrm{ab} \mathrm{d}^{4}$	$b c d^{4}+\mathrm{ad}^{5}$	cd^{5}
	b^{6}	0	$b^{4} d^{2}$	0	$b^{2} d^{4}$	0	d^{6}

$(0,0,0,1,0,0,0)$ is a common eigenvector, so we found a submodule.

Weyl ~ 1923. The $\mathrm{SL}_{2}(\mathrm{du}$ When is $\Delta(v-1)$ simple? $)$.

$\Delta(1-1)$
$\Delta(2-1)$

$\Delta(4-1)$$\quad \Leftrightarrow \quad$| $\Delta(v-1)$ is simple |
| :---: |
| $\binom{v-1}{w-1} \neq 0$ for all $w \leq v$ |
| $\Leftrightarrow($ Lucas's theorem $)$ |
| $v=\left[a_{r}, 0, \ldots, 0\right]_{p}$. |$x^{0} r^{3}$

$\Delta(5-1)$		
$\Delta(6-1)$	"Binomials mod p are the product of binomials of the p-adic digits":	$x^{0} y^{5}$
	$\binom{a}{b}=\prod_{i=0}^{r}\binom{a_{i}}{b_{i}} \bmod p$	
$\Delta(7-1)$	where $a=\left[a_{r}, \ldots, a_{0}\right]_{p}=\sum_{i=0}^{r} a_{i} p^{i}$ etc.	

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto$ matrix who's rows are expansions of $(a X+c Y)^{v-i}(b X+d Y)^{i-1}$.

Ringel, Donkin \sim 1991. There is a class of modules $\mathrm{T}(v-1)$ indexed by \mathbb{N}. They are a bit tricky to define, but:

- They have Δ - and ∇ filtrations, which look the same if you tilt your head:

- Play the role of projective modules.
- $\mathrm{T}(v-1) \cong \mathrm{L}(v-1) \cong \Delta(v-1) \cong \nabla(v-1)$ over \mathbb{C}.
- They are much more well-behaved than simples.

Ringel, Doi How many Weyl factors does $\mathrm{T}(v-1)$ have? \quad by \mathbb{N}. They

 are a bit tric- They h
\# Weyl factors of $\mathrm{T}(v-1)$ is 2^{k} where
$k=\max \left\{\nu_{p}\left(\binom{v-1}{w-1}\right), w \leq v\right\}$. (Order of vanishing of $\binom{v-1}{w-1}$.)
determined by (Lucas's theorem)
non-zero non-leading digits of $v=\left[a_{r}, a_{r-1}, \ldots, a_{0}\right]_{p}$.
$\mathrm{T}(v \quad$ Example $\mathrm{T}(220540-1)$ for $p=11 ?$
- Play the ro
- $\mathrm{T}(v-1) \cong \quad \Rightarrow \mathrm{T}(220540-1)$ has 2^{4} Weyl factors.
- They are much more well-behaved than simples.

Ringel, Donkin \sim 1991. There is a class of modules $\mathrm{T}(v-1)$ indexed by \mathbb{N}. They are a bit tricky to define, but:

- They have Δ - and ∇ filtrations, which look the same if you tilt your head:

Which Weyl factors does $\mathrm{T}(v-1)$ have a.k.a. the negative digits game?

$$
\begin{gathered}
\text { Weyl factors of } \mathrm{T}(v-1) \text { are } \\
\Delta\left(\left[a_{r}, \pm a_{r-1}, \ldots, \pm a_{0}\right]_{p}-1\right) \text { where } v=\left[a_{r}, \ldots, a_{0}\right]_{p} \text { (appearing exactly once). } \\
\mathrm{T}(v(y-1) \quad \cdots \\
\text { Example } \mathrm{T}(220540-1) \text { for } p=11 ? \\
v=220540=[1,4,0,7,7,1]_{11} ; \\
\text { has Weyl factors }[1, \pm 4,0, \pm 7, \pm 7, \pm 1]_{11} ; \\
\text { e.g. } \Delta\left(218690=[1,4,0,-7,-7,-1]_{11}-1\right) \text { appears. }
\end{gathered}
$$

- Play the role of projective modules.
- $\mathrm{T}(v-1) \cong \mathrm{L}(v-1) \cong \Delta(v-1) \cong \nabla(v-1)$ over \mathbb{C}.
- They are much more well-behaved than simples.

Ringel, Donk The tilting-Cartan matrix a.k.a. $(\mathrm{T}(v-1): \Delta(w-1))$? ed by \mathbb{N}. They

 are a bit trick- They hav

- Play the
- They are much more well-behaved than simples.

Tilting modules form a braided monoidal category \mathcal{T} ilt. Simple \otimes simple \neq simple, Weyl \otimes Weyl \neq Weyl, but tilting \otimes tilting $=$ tilting.

The Grothendieck algebra [\mathcal{T} ilt] of \mathcal{T} ilt is a commutative algebra with basis $[\mathrm{T}(v-1)]$. So what I would like to answer on the object level, i.e. for [\mathcal{T} ilt]:

- What are the fusion rules?
- Find the $N_{v, w}^{x} \in \mathbb{N}[0]$ in $\mathrm{T}(v-1) \otimes \mathrm{T}(w-1) \cong \bigoplus_{x} N_{v, w}^{x} \mathrm{~T}(x-1)$.
\triangleright For [\mathcal{T} ilt] this means finding the structure constants.
- What are the thick \otimes-ideals?
\triangleright For [\mathcal{T} ilt] this means finding the ideals.

Tilting modules form a braided monoidal category \mathcal{T} ilt. Simple \otimes simple \neq simple, Weyl \otimes Weyl \neq Weyl, but tilting \otimes tilting $=$ tilting.

The Grothendieck algebra [\mathcal{T} ilt] of \mathcal{T} ilt is a commutative algebra with basis $[\mathrm{T}(v-1)]$. So what I would like to answer on the object level, i.e. for [\mathcal{T} ilt]:

- What are the fusion rules?
- Find the $N_{v, w}^{x} \in \mathbb{N}[0]$ in $\mathrm{T}(v-1) \otimes \mathrm{T}(w-1) \cong \bigoplus_{x} N_{v, w}^{x} \mathrm{~T}(x-1)$.
\triangleright For [\mathcal{T} ilt] this means finding the structure constants.
- What are the thick \otimes-ideals?
\triangleright For [\mathcal{T} ilt] this means finding the ideals.

All of this generalizes to...

- ...higher ranks, e.g. SL_{3}, where higher dimensional fractals show up. (We are very far away from understanding this!)
- ...quantum groups, e.g. quantum SL_{2}, where "distorted" fractals show up. (We do understanding this!)

Two distorted fractals:

	Abstrat	Incaraation
Mirbon	3	or
Phates nape		$4 \Delta+><r$
$L_{\text {Legrepm }}$		
	$W=\{x, y\|x y=Y x+1\rangle$	

Fisure: The map of mathematics. My home (selid) and what I Ihe to study via
tuiorns (duabod).

What are modules?
Frobenius $\sim 1895+$. Burnside $\sim 1900+t$. is the study of linear actions of G (a tinite group, a reductive group, an algebra...) $\mathrm{M}: \mathrm{G} \rightarrow E \mathrm{ud}(\mathrm{v})$.
with v being some wector space. (Cailled madules or represmatations.)

Question. What can we say about finite-dimensional modules of $\mathrm{SL}_{2} . .$.

-. In the contest of the represestation thecry of cassial groups? wo The
an theory of Hopt algecrasi \times.. Fusion nules
i.e. tensar products rules.

- in the content of categories? M Maphisms of representations and their

The nocst amazing things happen if the characteistic of the underfing field $\mathrm{X}-\mathrm{X}$ of $\mathrm{SL}_{2}-\mathrm{SL}_{2}(\mathrm{~K})$ is tinite, and we will see (inverse) fractals, eg

- Every Q-ideal is thick, and any non-zero thick \&-ideal is of the form
$J_{\mu}-\left\{\tau(v-1) \mid \nu \geq \rho^{\lambda}\right\}$.
There is a chain of ©-ideals \mathcal{T} ut $-\mathcal{J}_{1} \supset J_{p} \supset J_{2} \supset$. The cells, i.e
Example ($0-3$)

frem 'Theary of Greups of Finito Order' by Bermides, Top firan adition

com

There is still much to do...

	Abstract	Incarnation
Kimben	3	or
Phase pape		$\Delta \Delta B+>\lll r$
$L_{\text {Legrepm }}$	SL	
	$W=\|x, y\| x y=Y x+1\rangle$	

Figrure The map of mathematics. My home (solid) and what I like to study via
persentuions (dunted)

What are modules?
Frobenius $\sim 1895++$. Burnside $\sim 1900++$. is the study of linear actions of G (a tinite group, a reductive group, an algebra...) $\mathrm{M}: \mathrm{G} \rightarrow E \mathrm{ud}(\mathrm{v})$.
with v being some vector space. (Called madules or represemtations.)

Question. What can we say about finite-dimensional modules of SL_{2}...

modules conteat of the represestation thecry of classial groups? wo The
.in the context of the repi
i.e. tensar products rules.

- in the content of categories? M Maphisms of representations and their
The nocst amazing things happen if the characteistic of the underfing field $\mathrm{X}-\mathrm{X}$

- Every ©-ideal is thick, and any non-zero thick \&-ideal is of the form
- $J_{p t}-\left\{T(v-1) \mid v \geq \rho^{d}\right\}$.
- There is a chain of e-ideals $T_{\mathrm{llt}}-\mathcal{J}_{1} \supset \mathcal{J}_{p} \supset \mathcal{J}_{2} \supset$.. The cells, i.e
Example ($0-3$)

Figure: Quotes rran Theay of Groups of Finito Order' by Bernside, Top lirs edition
(1897) bottem com

Thanks for your attention!

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that could be most directly obtained by the consideration of groups of linear transformations.

VERY considerable advances in the theory of groups of finite order have been made since the appearance of the first edition of this book. In particular the theory of groups of linear substitutions has been the subject of numerous and important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of repreMore than 120 years since its debut, representation theory has served as a key ingredient in many discoveries in mathematics,

> e.g. in the theory of groups.
of linear transformations.

VERY considerable advances in the theory of groups of finite order have been made since the appearance of the first edition of this book. In particular the theory of groups of linear substitutions has been the subject of numerous and important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of repre-
More than 120 years since its debut, representation theory has served as a key ingredient in many discoveries in mathematics,

> e.g. in the theory of groups.
of linear transformations.
TTRRY nanoidorable edvances in the thenry of arouns of I will however take a different stance:

Representations are sometimes more interesting than groups.
Today. SL_{2} (easy) vs. its representations (fun).
in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).
a biased and not fully faithful map
of pure mathematics (based on a map by Alex Sarlin and Innokentij Zotov)

\longrightarrow

Weyl \sim 1923. The SL_{2} simples $\mathrm{L}(v-1)$ in $\Delta(v-1)$ for $p=5$.

$$
L(3-1)
$$

$$
\Delta(4-1)
$$

$$
x^{3} y^{0} \quad x^{2} y^{1} \quad x^{1} y^{2} \quad x^{0} y^{3}
$$

$$
L(4-1)
$$

$$
\Delta(5-1)
$$

$$
x^{4} y^{0} \quad x^{3} y^{1} \quad x^{2} y^{2} \quad x^{1} y^{3} \quad x^{0} y^{4}
$$

$$
L(5-1)
$$

$$
\Delta(6-1)
$$

$X^{1} Y^{4}$

$\Delta(7-1) \quad x^{6} y^{0} \quad x^{5} y^{1} \quad x^{4} y^{2} \quad x^{3} y^{3} \quad x^{2} y^{4} \quad x^{1} y^{5} \quad x^{0} y^{6}$
$\Delta(7-1)$ has (its head) $\mathrm{L}(7-1)$ and $\mathrm{L}(3-1)$ as factors.

Weyl ~ 1923. The SL_{2} simples $\mathrm{L}(v-1)$ in $\Delta(v-1)$ for $p=5$.

Two notions of "elements"

No substructure	Does not decompose
Simples	Indecomposables
$(*) \mathrm{V} \subset \mathrm{L} \Rightarrow \mathrm{V} \cong 0$ or $\mathrm{V} \cong \mathrm{L}$	$\mathrm{T} \cong \mathrm{V} \oplus \mathrm{W} \Rightarrow \mathrm{V} \cong 0$ or $\mathrm{V} \cong \mathrm{T}$

Both are legit elements of which one would like a periodic table.

G finite group, $\mathbb{K}[\mathrm{G}]$ the regular module (G acting on itself).

No substructure	Does not decompose
Simples	Projective indecomposables
$(*)$	\oplus-summands of $\mathbb{K}[\mathrm{G}]$

$\mathrm{SL}_{2}, \Delta(1)$ the regular module (matrices acting by matrices).

No substructure	Does not decompose
Simples	Tilting modules
$(*)$	\oplus-summands of $\Delta(1)^{\otimes k}$

Two notions of "elements"

No substructure	Does not decompose
Simples	Indecomposables
$(*) \mathrm{V} \subset \mathrm{L} \Rightarrow \mathrm{V} \cong 0$ or $\mathrm{V} \cong \mathrm{L}$	$\mathrm{T} \cong \mathrm{V} \oplus \mathrm{W} \Rightarrow \mathrm{V} \cong 0$ or $\mathrm{V} \cong \mathrm{T}$

Both are legit elements of wh	In good cases:	
group, $\mathbb{K}[\mathrm{G}]$ the	Simple=indecomposable but not always.	If)

No substructure	Does not decompose
Simples	Projective indecomposables
$(*)$	\oplus-summands of $\mathbb{K}[\mathrm{G}]$

$\mathrm{SL}_{2}, \Delta(1)$ the regular module (matrices acting by matrices).

No substructure	Does not decompose
Simples	Tilting modules
$(*)$	\oplus-summands of $\Delta(1)^{\otimes k}$

Fusion graphs.

The fusion graph $\Gamma_{v}=\Gamma_{T(v-1)}$ of $T(v-1)$ is:

- Vertices of Γ_{v} are $w \in \mathbb{N}$, and identified with $\mathrm{T}(w-1)$.
- k edges $w \xrightarrow{k} x$ if $\mathrm{T}(x-1)$ appears k times in $\mathrm{T}(v-1) \otimes \mathrm{T}(w-1)$.
- $\mathrm{T}(v-1)$ is a \otimes-generator if Γ_{v} is strongly connected.
- This works for any reasonable monoidal category, with vertices being indecomposable objects and edges count multiplicities in \otimes-products.

Baby example. Assume that we have two indecomposable objects $\mathbb{1}$ and X , with $\mathrm{X}^{\otimes 2}=\mathbb{1} \oplus \mathrm{X}$. Then:

$$
\begin{array}{cc}
\Gamma_{\mathbb{1}}=\circlearrowright \mathbb{1} & \mathrm{X} \longmapsto \\
\text { not a } \otimes \text {-generator } & \Gamma_{\mathrm{X}}=\mathbb{1} \rightleftarrows \mathrm{X} \\
\text { a } \otimes \text {-generator }
\end{array}
$$

Fusion graphs.

The fusion graph of $T(1) \cong \mathbb{K}^{2}$ for $p=\infty$:

The fusion graph Г

- Vertices of Γ_{v}
- k edges $w \xrightarrow{k}$
- $\mathrm{T}(v-1)$ is a
- This works for indecomposab
$\otimes \mathrm{T}(w-1)$.
vertices being
n \otimes-products.
The fusion graph of $T(1) \cong \mathbb{K}^{2}$ for $p=2$:
Baby example. As $\mathrm{X}^{\otimes 2}=\mathbb{1} \oplus \mathrm{X}$. Then

Fusion graphs.

The fusion graph of $\mathrm{T}(1) \cong \mathbb{K}^{2}$ for $p=\infty$:

The fusion graph Γ

- Vertices of Γ_{v}
- k edges $w \xrightarrow{k}$
- $\mathrm{T}(v-1)$ is a
- This works for indecomposab

Baby example. As
The fusion graph of $T(1) \cong \mathbb{K}^{2}$ for $p=2$: $\mathrm{X}^{\otimes 2}=\mathbb{1} \oplus \mathrm{X}$. Then

- Every \otimes-ideal is thick, and any non-zero thick \otimes-ideal is of the form $\mathcal{J}_{p^{k}}=\left\{\mathrm{T}(v-1) \mid v \geq p^{k}\right\}$.
- There is a chain of \otimes-ideals \mathcal{T} ilt $=\mathcal{J}_{1} \supset \mathcal{J}_{p} \supset \mathcal{J}_{p^{2}} \supset \ldots$ The cells, i.e. $\mathcal{J}_{p^{k}} / \mathcal{J}_{p^{k+1}}$, are the strongly connected components of Γ_{1}.

Example $(p=3)$.

The ideal $\mathcal{J}_{p^{k}} \subset \mathcal{T}$ ilt $/ \mathcal{J}_{p^{k+1}}$ is the cell of projectives.
The abelianizations $\mathcal{V e r}_{p^{k}}$ of \mathcal{T} ilt $/ \mathcal{J}_{p^{k+1}}$ are called Verlinde categories.
The Cartan matrix of $\mathcal{V} \mathrm{er}_{p^{k}}$ is a $p^{k}-p^{k-1}$-square matrix

- T with entries given by the common Weyl factors of $\mathrm{T}(v-1)$ and $\mathrm{T}(w-1)$.
$J_{p^{k} / J_{p^{k+1}}}$, are th
Example (Cartan matrix of $\mathcal{V e r}_{3^{4}}$).
Example ($p=3$).

