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Abstract vs. real life

Abstract Incarnation

Numbers 3 or or...

Finite groups S4 = 〈s, t, u | some relations〉 or or...

Lie groups SL2 = {
(
a b
c d

)
| ad − bc = 1} or or...

More

(Lie algebras,

algebras,)

categories...)

W = 〈X ,Y | XY = YX + 1〉 x

f ∂x f

1
→ 0

or or...

People and objects are eventually known by their actions.

Representation theory studies the right-hand side
using the power of linear algebra.

The representation theory approach.

Reduce a non-linear problem to questions in linear algebra.

Problem involving

an action

G X

Problem involving

a linear action
K[G] KX

Decomposition of

the problem

into simple/elements

“linearize”

new
insights?
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What are modules?

Frobenius ∼1895++, Burnside ∼1900++. Representation theory is the useful? study
of linear actions of G (a finite group, a reductive group, an algebra...)

M : G −→ End(V),

with V being some vector space. (Called modules or representations.)

Examples.
SL2(R)→ End(R2), e.g.

(
0 −1
1 0

)
7→
(

0 −1
1 0

)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

SL2(R)→ End(R3), e.g.
(

0 −1
1 0

)
7→
(

0 0 1
0 −1 0
1 0 0

)

Daniel Tubbenhauer Why (modular) representation theory? February 2021 3 / 9



What are modules?

Frobenius ∼1895++, Burnside ∼1900++. Representation theory is the useful? study
of linear actions of G (a finite group, a reductive group, an algebra...)

M : G −→ End(V),

with V being some vector space. (Called modules or representations.)

Examples.
SL2(R)→ End(R2), e.g.

(
0 −1
1 0

)
7→
(

0 −1
1 0

)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

SL2(R)→ End(R3), e.g.
(

0 −1
1 0

)
7→
(

0 0 1
0 −1 0
1 0 0

)

Daniel Tubbenhauer Why (modular) representation theory? February 2021 3 / 9



Question. What can we say about finite-dimensional modules of SL2...

• ...in the context of the representation theory of classical groups?  The
modules and their structure.

• ...in the context of the representation theory of Hopf algebras?  Fusion rules
i.e. tensor products rules.

• ...in the context of categories?  Morphisms of representations and their
structure. (Not today – time, in general, flies!)

The most amazing things happen if the characteristic of the underlying field K = K
of SL2 = SL2(K) is finite, and we will see (inverse) fractals, e.g.

1 100 200 300 400 486

1

100

200

300

400

486

1 100 200 300 400 486

1

100

200

300

400

486

Spoiler: What will be the take away?

Well, in some sense modular (char p <∞) representation theory
so much harder than classical one (char ∞ a.k.a. char 0)

because secretly we are doing fractal geometry.

In my toy example SL2 we can do everything explicitly.
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Weyl ∼1923. The SL2 (dual) Weyl modules ∆(v−1).

∆(1−1)

∆(2−1)

∆(3−1)

∆(4−1)

∆(5−1)

∆(6−1)

∆(7−1)

X0Y 0

X1Y 0 X0Y 1

X2Y 0 X1Y 1 X0Y 2

X3Y 0 X2Y 1 X1Y 2 X0Y 3

X4Y 0 X3Y 1 X2Y 2 X1Y 3 X0Y 4

X5Y 0 X4Y 1 X3Y 2 X2Y 3 X1Y 4 X0Y 5

X6Y 0 X5Y 1 X4Y 2 X3Y 3 X2Y 4 X1Y 5 X0Y 6

(
a b
c d

)
7→ matrix who’s rows are expansions of (aX + cY )v−i (bX + dY )i−1.

The simples

Example ∆(7−1) = KX 6Y 0 ⊕ · · · ⊕KX 0Y 6.

( a b
c d ) acts as

The rows are expansions of (aX + cY )7−i (bX + dY )i−1. Binomials!

Example ∆(7−1), characteristic 0.

No common eigensystem ⇒ ∆(7−1) simple.

Example ∆(7−1), characteristic 2.

( a b
c d ) acts as

(0, 0, 0, 1, 0, 0, 0) is a common eigenvector, so we found a submodule.

When is ∆(v−1) simple?

∆(v−1) is simple

⇔
(
v−1
w−1

)
6= 0 for all w ≤ v

⇔ (Lucas’s theorem)

v = [ar , 0, ..., 0]p.

Lucas ∼1878.
“Binomials mod p are the product of

binomials of the p-adic digits”:(
a
b

)
=
∏r

i=0

(
ai
bi

)
mod p,

where a = [ar , ..., a0]p =
∑r

i=0 aip
i etc.
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Ringel, Donkin ∼1991. There is a class of modules T(v−1) indexed by N. They
are a bit tricky to define, but:
• They have ∆- and ∇ filtrations, which look the same if you tilt your head:

T(v − 1) =

∆(v − 1)

∆(w − 1) ∆(x − 1)

∆(y − 1) ... ∆(z − 1)

∇(v − 1)

∇(w − 1) ∇(x − 1)

∇(y − 1) ... ∇(z − 1)

“tilting symmetry”

• Play the role of projective modules.

• T(v−1) ∼= L(v−1) ∼= ∆(v−1) ∼= ∇(v−1) over C.

• They are much more well-behaved than simples. Analogy

How many Weyl factors does T(v−1) have?

# Weyl factors of T(v−1) is 2k where

k = max{νp
((

v−1
w−1

))
,w ≤ v}. (Order of vanishing of

(
v−1
w−1

)
.)

determined by (Lucas’s theorem)

non-zero non-leading digits of v = [ar , ar−1, ..., a0]p.

Example T(220540−1) for p = 11?

v = 220540 = [1, 4, 0, 7, 7, 1]11;

Maximal vanishing for w = 75594 = [0, 5, 1, 8, 8, 2]11;

(
v−1
w−1

)
= (HUGE) = [..., 6= 0, 0, 0, 0, 0]11.

⇒ T(220540−1) has 24 Weyl factors.

Which Weyl factors does T(v−1) have a.k.a. the negative digits game?

Weyl factors of T(v−1) are

∆([ar ,±ar−1, ...,±a0]p−1) where v = [ar , ..., a0]p (appearing exactly once).

Example T(220540−1) for p = 11?

v = 220540 = [1, 4, 0, 7, 7, 1]11;

has Weyl factors [1,±4, 0,±7,±7,±1]11;

e.g. ∆(218690 = [1, 4, 0,−7,−7,−1]11−1) appears.

The tilting-Cartan matrix a.k.a.
(
T(v−1) : ∆(w−1)

)
?

1 50 100 150 201

1

50

100

150

201

1 50 100 150 201

1

50

100

150

201

This is characteristic 3.
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Tilting modules form a braided monoidal category T ilt.
Simple⊗simple 6=simple, Weyl⊗Weyl 6=Weyl, but tilting⊗tilting=tilting.

The Grothendieck algebra [T ilt] of T ilt is a commutative algebra with basis
[T(v − 1)]. So what I would like to answer on the object level, i.e. for [T ilt]:
• What are the fusion rules? Answer

• Find the Nx
v ,w ∈ N[0] in T(v − 1)⊗ T(w − 1) ∼=

⊕
x N

x
v ,wT(x − 1).

B For [T ilt] this means finding the structure constants.

• What are the thick ⊗-ideals? Answer

B For [T ilt] this means finding the ideals.

General.
These facts hold in general, and

tilting modules form the “nicest possible” monoidal subcategory.
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All of this generalizes to...

• ...higher ranks, e.g. SL3, where higher dimensional fractals show up. (We are
very far away from understanding this!)

• ...quantum groups, e.g. quantum SL2, where “distorted” fractals show up.
(We do understanding this!)

Two distorted fractals:

1 200 400 600 882

1

200

400

600

882

1 200 400 600 882

1

200

400

600

882

1 100 200 301

1

100

200

301

1 100 200 301

1

100

200

301
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Abstract vs. real life

Abstract Incarnation

Numbers 3 or or...

Finite groups S4 = 〈s, t, u | some relations〉 or or...

Lie groups SL2 = {
(
a b
c d

)
| ad − bc = 1} or or...

More

(Lie algebras,

algebras,)

categories...)

W = 〈X ,Y | XY = YX + 1〉 x

f ∂x f

1
→ 0

or or...

People and objects are eventually known by their actions.

Representation theory studies the right-hand side
using the power of linear algebra.

The representation theory approach.

Reduce a non-linear problem to questions in linear algebra.

Problem involving

an action

G X

Problem involving

a linear action
K[G] KX

Decomposition of

the problem

into simple/elements

“linearize”

new
insights?
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What are modules?

Frobenius ∼1895++, Burnside ∼1900++. Representation theory is the useful? study
of linear actions of G (a finite group, a reductive group, an algebra...)

M : G −→ End(V),

with V being some vector space. (Called modules or representations.)

Examples.
SL2(R)→ End(R2), e.g.

(
0 −1
1 0

)
7→
(

0 −1
1 0

)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

SL2(R)→ End(R3), e.g.
(

0 −1
1 0

)
7→
(

0 0 1
0 −1 0
1 0 0

)
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Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).

Back

More than 120 years since its debut, representation theory has
served as a key ingredient in many discoveries in mathematics,

e.g. in the theory of groups.

I will however take a different stance:

Representations are sometimes more interesting than groups.

Today. SL2 (easy) vs. its representations (fun).

Figure: The map of mathematics. My home (solid) and what I like to study via
representations (dashed).

Back

Question. What can we say about finite-dimensional modules of SL2...

• ...in the context of the representation theory of classical groups?  The
modules and their structure.

• ...in the context of the representation theory of Hopf algebras?  Fusion rules
i.e. tensor products rules.

• ...in the context of categories?  Morphisms of representations and their
structure. (Not today – time, in general, flies!)

The most amazing things happen if the characteristic of the underlying field K = K
of SL2 = SL2(K) is finite, and we will see (inverse) fractals, e.g.

1 100 200 300 400 486

1

100

200

300

400

486

1 100 200 300 400 486

1

100

200

300

400

486

Spoiler: What will be the take away?

Well, in some sense modular (char p <∞) representation theory
so much harder than classical one (char ∞ a.k.a. char 0)

because secretly we are doing fractal geometry.

In my toy example SL2 we can do everything explicitly.
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Weyl ∼1923. The SL2 simples L(v−1) in ∆(v−1) for p = 5.

∆(1−1) L(1−1)

∆(2−1) L(2−1)

∆(3−1) L(3−1)

∆(4−1) L(4−1)

∆(5−1) L(5−1)

∆(6−1) L(6−1)

∆(7−1) L(7−1)

X0Y 0

X1Y 0 X0Y 1

X2Y 0 X1Y 1 X0Y 2

X3Y 0 X2Y 1 X1Y 2 X0Y 3

X4Y 0 X3Y 1 X2Y 2 X1Y 3 X0Y 4

X5Y 0 X4Y 1 X3Y 2 X2Y 3 X1Y 4 X0Y 5

X6Y 0 X5Y 1 X4Y 2 X3Y 3 X2Y 4 X1Y 5 X0Y 6

∆(7−1) has (its head) L(7−1) and L(3−1) as factors.

Back

Pascals triangle modulo p = 5 picks out the simples,
e.g. an unbroken east-west line is a Weyl module which is simple.

Ringel, Donkin ∼1991. There is a class of modules T(v−1) indexed by N. They
are a bit tricky to define, but:
• They have ∆- and ∇ filtrations, which look the same if you tilt your head:

T(v − 1) =

∆(v − 1)

∆(w − 1) ∆(x − 1)

∆(y − 1) ... ∆(z − 1)

∇(v − 1)

∇(w − 1) ∇(x − 1)

∇(y − 1) ... ∇(z − 1)

“tilting symmetry”

• Play the role of projective modules.

• T(v−1) ∼= L(v−1) ∼= ∆(v−1) ∼= ∇(v−1) over C.

• They are much more well-behaved than simples. Analogy

How many Weyl factors does T(v−1) have?

# Weyl factors of T(v−1) is 2k where

k = max{νp
((

v−1
w−1

))
,w ≤ v}. (Order of vanishing of

(
v−1
w−1

)
.)

determined by (Lucas’s theorem)

non-zero non-leading digits of v = [ar , ar−1, ..., a0]p.

Example T(220540−1) for p = 11?

v = 220540 = [1, 4, 0, 7, 7, 1]11;

Maximal vanishing for w = 75594 = [0, 5, 1, 8, 8, 2]11;

(
v−1
w−1

)
= (HUGE) = [..., 6= 0, 0, 0, 0, 0]11.

⇒ T(220540−1) has 24 Weyl factors.

Which Weyl factors does T(v−1) have a.k.a. the negative digits game?

Weyl factors of T(v−1) are

∆([ar ,±ar−1, ...,±a0]p−1) where v = [ar , ..., a0]p (appearing exactly once).

Example T(220540−1) for p = 11?

v = 220540 = [1, 4, 0, 7, 7, 1]11;

has Weyl factors [1,±4, 0,±7,±7,±1]11;

e.g. ∆(218690 = [1, 4, 0,−7,−7,−1]11−1) appears.

The tilting-Cartan matrix a.k.a.
(
T(v−1) : ∆(w−1)

)
?

1 50 100 150 201

1

50

100

150

201

1 50 100 150 201

1

50

100

150

201

This is characteristic 3.
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⊗-ideals of T ilt are indexed by prime powers.

• Every ⊗-ideal is thick, and any non-zero thick ⊗-ideal is of the form
Jpk = {T(v − 1) | v ≥ pk}.

• There is a chain of ⊗-ideals T ilt = J1 ⊃ Jp ⊃ Jp2 ⊃ .... The cells, i.e.
Jpk/Jpk+1 , are the strongly connected components of Γ1.

Example (p = 3). 1

1

1

1

2

1
1

1

12

1

1

1

1

1
2

1

1

1

1

2
1

2

1
1

1

2

1
1

1

1

1
2

1
1

1

1 2

1

2

1

1

1

2

1

1

1

1

1

1

21

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

1

3

3^2

3^3

Back

Thick ⊗-ideal = generated by identities on objects.
⊗-ideal = generated by any sets of morphism.

Prime power Verlinde categories.

The ideal Jpk ⊂ T ilt/Jpk+1 is the cell of projectives.
The abelianizations Verpk of T ilt/Jpk+1 are called Verlinde categories.

The Cartan matrix of Verpk is a pk − pk−1-square matrix
with entries given by the common Weyl factors of T(v − 1) and T(w − 1).

Example (Cartan matrix of Ver34 ).

1 100 200 300 400 486

1

100

200

300

400

486

1 100 200 300 400 486

1

100

200

300

400

486
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Jpk/Jpk+1 , are the strongly connected components of Γ1.

Example (p = 3). 1
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1

1
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3^3

Back

Thick ⊗-ideal = generated by identities on objects.
⊗-ideal = generated by any sets of morphism.

Prime power Verlinde categories.

The ideal Jpk ⊂ T ilt/Jpk+1 is the cell of projectives.
The abelianizations Verpk of T ilt/Jpk+1 are called Verlinde categories.

The Cartan matrix of Verpk is a pk − pk−1-square matrix
with entries given by the common Weyl factors of T(v − 1) and T(w − 1).

Example (Cartan matrix of Ver34 ).

1 100 200 300 400 486

1

100

200

300
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486
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1

100

200

300

400

486

There is still much to do...

Thanks for your attention!

Daniel Tubbenhauer Why (modular) representation theory? February 2021 9 / 9



Abstract vs. real life

Abstract Incarnation

Numbers 3 or or...

Finite groups S4 = 〈s, t, u | some relations〉 or or...

Lie groups SL2 = {
(
a b
c d

)
| ad − bc = 1} or or...

More

(Lie algebras,

algebras,)

categories...)

W = 〈X ,Y | XY = YX + 1〉 x

f ∂x f

1
→ 0

or or...

People and objects are eventually known by their actions.

Representation theory studies the right-hand side
using the power of linear algebra.

The representation theory approach.

Reduce a non-linear problem to questions in linear algebra.

Problem involving

an action

G X

Problem involving

a linear action
K[G] KX

Decomposition of

the problem

into simple/elements

“linearize”

new
insights?

Daniel Tubbenhauer Why (modular) representation theory? February 2021 2 / 9

What are modules?

Frobenius ∼1895++, Burnside ∼1900++. Representation theory is the useful? study
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Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).
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More than 120 years since its debut, representation theory has
served as a key ingredient in many discoveries in mathematics,

e.g. in the theory of groups.

I will however take a different stance:

Representations are sometimes more interesting than groups.

Today. SL2 (easy) vs. its representations (fun).

Figure: The map of mathematics. My home (solid) and what I like to study via
representations (dashed).

Back

Question. What can we say about finite-dimensional modules of SL2...

• ...in the context of the representation theory of classical groups?  The
modules and their structure.

• ...in the context of the representation theory of Hopf algebras?  Fusion rules
i.e. tensor products rules.

• ...in the context of categories?  Morphisms of representations and their
structure. (Not today – time, in general, flies!)

The most amazing things happen if the characteristic of the underlying field K = K
of SL2 = SL2(K) is finite, and we will see (inverse) fractals, e.g.

1 100 200 300 400 486

1

100

200

300

400

486

1 100 200 300 400 486

1

100

200

300

400

486

Spoiler: What will be the take away?

Well, in some sense modular (char p <∞) representation theory
so much harder than classical one (char ∞ a.k.a. char 0)

because secretly we are doing fractal geometry.

In my toy example SL2 we can do everything explicitly.
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Weyl ∼1923. The SL2 simples L(v−1) in ∆(v−1) for p = 5.
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∆(7−1) has (its head) L(7−1) and L(3−1) as factors.

Back

Pascals triangle modulo p = 5 picks out the simples,
e.g. an unbroken east-west line is a Weyl module which is simple.

Ringel, Donkin ∼1991. There is a class of modules T(v−1) indexed by N. They
are a bit tricky to define, but:
• They have ∆- and ∇ filtrations, which look the same if you tilt your head:

T(v − 1) =

∆(v − 1)

∆(w − 1) ∆(x − 1)

∆(y − 1) ... ∆(z − 1)

∇(v − 1)
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∇(y − 1) ... ∇(z − 1)

“tilting symmetry”

• Play the role of projective modules.

• T(v−1) ∼= L(v−1) ∼= ∆(v−1) ∼= ∇(v−1) over C.

• They are much more well-behaved than simples. Analogy

How many Weyl factors does T(v−1) have?

# Weyl factors of T(v−1) is 2k where

k = max{νp
((

v−1
w−1

))
,w ≤ v}. (Order of vanishing of

(
v−1
w−1

)
.)

determined by (Lucas’s theorem)

non-zero non-leading digits of v = [ar , ar−1, ..., a0]p.

Example T(220540−1) for p = 11?

v = 220540 = [1, 4, 0, 7, 7, 1]11;

Maximal vanishing for w = 75594 = [0, 5, 1, 8, 8, 2]11;

(
v−1
w−1

)
= (HUGE) = [..., 6= 0, 0, 0, 0, 0]11.

⇒ T(220540−1) has 24 Weyl factors.

Which Weyl factors does T(v−1) have a.k.a. the negative digits game?

Weyl factors of T(v−1) are

∆([ar ,±ar−1, ...,±a0]p−1) where v = [ar , ..., a0]p (appearing exactly once).

Example T(220540−1) for p = 11?

v = 220540 = [1, 4, 0, 7, 7, 1]11;

has Weyl factors [1,±4, 0,±7,±7,±1]11;

e.g. ∆(218690 = [1, 4, 0,−7,−7,−1]11−1) appears.

The tilting-Cartan matrix a.k.a.
(
T(v−1) : ∆(w−1)

)
?

1 50 100 150 201

1

50

100

150

201

1 50 100 150 201
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This is characteristic 3.
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⊗-ideals of T ilt are indexed by prime powers.

• Every ⊗-ideal is thick, and any non-zero thick ⊗-ideal is of the form
Jpk = {T(v − 1) | v ≥ pk}.

• There is a chain of ⊗-ideals T ilt = J1 ⊃ Jp ⊃ Jp2 ⊃ .... The cells, i.e.
Jpk/Jpk+1 , are the strongly connected components of Γ1.

Example (p = 3). 1
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Back

Thick ⊗-ideal = generated by identities on objects.
⊗-ideal = generated by any sets of morphism.

Prime power Verlinde categories.

The ideal Jpk ⊂ T ilt/Jpk+1 is the cell of projectives.
The abelianizations Verpk of T ilt/Jpk+1 are called Verlinde categories.

The Cartan matrix of Verpk is a pk − pk−1-square matrix
with entries given by the common Weyl factors of T(v − 1) and T(w − 1).

Example (Cartan matrix of Ver34 ).
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Jpk/Jpk+1 , are the strongly connected components of Γ1.
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Thick ⊗-ideal = generated by identities on objects.
⊗-ideal = generated by any sets of morphism.

Prime power Verlinde categories.

The ideal Jpk ⊂ T ilt/Jpk+1 is the cell of projectives.
The abelianizations Verpk of T ilt/Jpk+1 are called Verlinde categories.

The Cartan matrix of Verpk is a pk − pk−1-square matrix
with entries given by the common Weyl factors of T(v − 1) and T(w − 1).

Example (Cartan matrix of Ver34 ).
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There is still much to do...

Thanks for your attention!
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Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).

Back

More than 120 years since its debut, representation theory has
served as a key ingredient in many discoveries in mathematics,

e.g. in the theory of groups.

I will however take a different stance:

Representations are sometimes more interesting than groups.

Today. SL2 (easy) vs. its representations (fun).
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Weyl ∼1923. The SL2 simples L(v−1) in ∆(v−1) for p = 5.

∆(1−1) L(1−1)

∆(2−1) L(2−1)

∆(3−1) L(3−1)

∆(4−1) L(4−1)

∆(5−1) L(5−1)

∆(6−1) L(6−1)

∆(7−1) L(7−1)

X0Y 0

X1Y 0 X0Y 1

X2Y 0 X1Y 1 X0Y 2

X3Y 0 X2Y 1 X1Y 2 X0Y 3

X4Y 0 X3Y 1 X2Y 2 X1Y 3 X0Y 4

X5Y 0 X4Y 1 X3Y 2 X2Y 3 X1Y 4 X0Y 5

X6Y 0 X5Y 1 X4Y 2 X3Y 3 X2Y 4 X1Y 5 X0Y 6

∆(7−1) has (its head) L(7−1) and L(3−1) as factors.

Back

Pascals triangle modulo p = 5 picks out the simples,
e.g. an unbroken east-west line is a Weyl module which is simple.
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e.g. an unbroken east-west line is a Weyl module which is simple.



Two notions of “elements”

No substructure Does not decompose
Simples Indecomposables

(∗)V ⊂ L⇒ V ∼= 0 or V ∼= L T ∼= V⊕ W⇒ V ∼= 0 or V ∼= T

Both are legit elements of which one would like a periodic table.

G finite group, K[G] the regular module (G acting on itself).

No substructure Does not decompose
Simples Projective indecomposables

(∗) ⊕-summands of K[G]

SL2, ∆(1) the regular module (matrices acting by matrices).

No substructure Does not decompose
Simples Tilting modules

(∗) ⊕-summands of ∆(1)⊗k

Back

In good cases:
Simple=indecomposable

but not always.
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Fusion graphs.

The fusion graph Γv = ΓT(v−1) of T(v − 1) is:

• Vertices of Γv are w ∈ N, and identified with T(w − 1).

• k edges w
k−→ x if T(x − 1) appears k times in T(v − 1)⊗ T(w − 1).

• T(v − 1) is a ⊗-generator if Γv is strongly connected.

• This works for any reasonable monoidal category, with vertices being
indecomposable objects and edges count multiplicities in ⊗-products.

Baby example. Assume that we have two indecomposable objects 1 and X, with
X⊗2 = 1⊕ X. Then:

Γ1 = 1 X

not a ⊗-generator
,

ΓX = 1 X

a ⊗-generator

Back

The fusion graph of T(1) ∼= K2 for p =∞:

The fusion graph of T(1) ∼= K2 for p = 2:

In general, there is are
cycles of length p

with edges jumping
1 = p0, p1, p2,..., units,

reaping every
1 = p0, p1, p2,..., steps.

Back
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⊗-ideals of T ilt are indexed by prime powers.

• Every ⊗-ideal is thick, and any non-zero thick ⊗-ideal is of the form
Jpk = {T(v − 1) | v ≥ pk}.

• There is a chain of ⊗-ideals T ilt = J1 ⊃ Jp ⊃ Jp2 ⊃ .... The cells, i.e.
Jpk/Jpk+1 , are the strongly connected components of Γ1.

Example (p = 3). 1
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Thick ⊗-ideal = generated by identities on objects.
⊗-ideal = generated by any sets of morphism.

Prime power Verlinde categories.

The ideal Jpk ⊂ T ilt/Jpk+1 is the cell of projectives.
The abelianizations Verpk of T ilt/Jpk+1 are called Verlinde categories.

The Cartan matrix of Verpk is a pk − pk−1-square matrix
with entries given by the common Weyl factors of T(v − 1) and T(w − 1).

Example (Cartan matrix of Ver34 ).

1 100 200 300 400 486

1

100

200

300

400

486

1 100 200 300 400 486

1

100

200

300

400

486



⊗-ideals of T ilt are indexed by prime powers.

• Every ⊗-ideal is thick, and any non-zero thick ⊗-ideal is of the form
Jpk = {T(v − 1) | v ≥ pk}.

• There is a chain of ⊗-ideals T ilt = J1 ⊃ Jp ⊃ Jp2 ⊃ .... The cells, i.e.
Jpk/Jpk+1 , are the strongly connected components of Γ1.

Example (p = 3). 1

1

1

1

2

1
1

1

12

1

1

1

1

1
2

1

1

1

1

2
1

2

1
1

1

2

1
1

1

1

1
2

1
1

1

1 2

1

2

1

1

1

2

1

1

1

1

1

1

21

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

1

3

3^2

3^3

Back

Thick ⊗-ideal = generated by identities on objects.
⊗-ideal = generated by any sets of morphism.

Prime power Verlinde categories.

The ideal Jpk ⊂ T ilt/Jpk+1 is the cell of projectives.
The abelianizations Verpk of T ilt/Jpk+1 are called Verlinde categories.

The Cartan matrix of Verpk is a pk − pk−1-square matrix
with entries given by the common Weyl factors of T(v − 1) and T(w − 1).

Example (Cartan matrix of Ver34 ).

1 100 200 300 400 486

1

100

200

300

400

486

1 100 200 300 400 486

1

100

200

300

400

486


	The beginnings
	On the objects
	Fusion
	More?
	Appendix
	Additional Material


