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Clifford, Munn, Ponizovskii, Green ~1942+4. Finite semigroups or monoids.

Example. N, Aut({1,...,n}) =5, C T, = End({1, ..., n}), groups, groupoids,
categories, any - closed subsets of matrices, “everything” , etc.

The cell orders and equivalences:

x< yedziy=zx, x~ye(x < y)A(y < x),
x<pyedZ:y=x7, x~rye (x<pry)A(y<rx),
x<ipye3z,Ziy=2x7', xRy S (X <rY)A(Y <tr X).

Left, right and two-sided cells: Equivalence classes.

Example (group-like). The unit 1 is always in the lowest cell —e.g. 1 <; y

because we can take z = y. Invertible elements g are always in the lowest cell — e.g.

g <, y because we can take z = yg~!.
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Clifford, Munn, Ponizovskii, Green ~1942+4. Finite semigroups or monoids.

Example (the transformation monoid T3). Cells — left £ (columns), right R
(rows), two-sided J (big rectangles), H = L NR (small rectangles).

u7|owest (123)7 (213), (132) ’H o~ 53
(231), (312), (321)

(122), (221) | (133),(331) | (233),(322)
Tmiddle (121), (212) | (313), (131) | (323), (232) H=S,
(221), (112) | (113),(311) | (223), (332)
jbiggest (111) ‘ (222) ‘ (333) H =
Cute facts.

» Each H contains precisely one idempotent e or no idempotent. Each e is
contained in some #(e). (ldempotent separation.)

» Each #(e) is a maximal subgroup. (Group-like.)

» Each simple has a unique maximal J(e) whose 7(e) does not kill it. (Apex.)
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Clifford, Theorem (Mind your groups');stated for mon0|ds monoids.
Example There is a one-to-one correspondence right R
(rows), tw
simples with | onetoone | Simples of (any) . 5
Jio apex J (e) H(e) C T(e) S
Thus, the maximal subgroups #/(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C). |
jmlddle (IZ1),(Z212) ‘ (313), (131) ‘ (9£9),(232) TT —
(221), (112) ‘ (113), (311) ‘ (223), (332)
jbiggest (111) ‘ (222) ‘ (333) H =
Cute facts.

» Each # contains precisely one idempotent e or no idempotent. Each e is
contained in some #(e). (ldempotent separation.)

» Each 7(e) is a maximal subgroup. (Group-like.)

» Each simple has a unique maximal J(e) whose 7{(e) does not kill it. (Apex.)
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Clifford, Theorem (Mind your groups')—stated for mon0|ds monoids.
Example There is a one-to-one correspondence right R
(rows), tw
simples with | onetoone | Simples of (any) . 5
Jio apex J (e) H(e) C T(e) S
Thus, the maximal subgroups #/(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C). |
Imidare 222 GE), (B [ (929),(232) TT—
Example. (T3.)
jbiggest H =

Cute facts.

H(e) = S35, 52,51 gives 3+ 2+ 1 = 6 associated simples.

» Each # contains precisely one idempotent e or no idempotent. Each e is
contained in some #(e). (ldempotent separation.)

» Each 7(e) is a maximal subgroup. (Group-like.)

» Each simple has a unique maximal J(e) whose 7{(e) does not kill it. (Apex.)
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1~ o~ Anan ==

Theorem. (Mind your groups!)—stated for monoids

Clifford, N* monoids.

Example
(rows), tw

simples with | onetoone | Simples of (any)
— .
Jio apex J (e) H(e) C J(e)
Thus, the maximal subgroups #/(e) (semisimple over C) control

the whole representation theory (non-semisimple; even over C). |
Tmiddre EZIH R GE), B (0295257 e =
I I

There is a one-to-one correspondence right R

114

Example. (T3.)

jbiggest ) ) . H =
H(e) = Sz, S2, 51 gives 3+ 2+ 1 = 6 associated simples.
Cute facts. This is a general philosophy in representation theory.
» Each # Fach e is

Buzz words. Idempotent truncations, Kazhdan—Lusztig cells,

quasi-hereditary algebras, cellular algebras, etc.
» Each HiejTsa maxmmar sungroup: [Group-TKe.

contain

» Each sim/Note. Whenever one has a (reasonable) antiinvolution *, |kill it. (Apex.)
the H-cells to consider are the diagonals H = LN L*.
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Kazhdan—Lusztig (KL) and others ~1979-44. Green's theory in linear.

Choose a basis. For a finite-dimensional algebra S (over Z, = Z[v,v~]) fix a
basis Bs. For x,y,z € Bg write y @zx if y appears in zx with non-zero coefficient.

The cell orders and equivalences:

x< yedziyazx, x~ye (x<py)A(y < x),
x<py&edZ:iyaxz, x~rye (x<ry)A(y <gx),
x<ipye3z,Z:yaxs, x~pry e (X <try)A(y <tr X).

Left, right and two-sided cells: Equivalence classes.

Example (group-like). For S = C[G] and the choice of the group element basis
Bs = G, cell theory is boring.
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Kazhdan—Lusztig (KL) and others ~1979-44. Green's theory in linear.

Example ( of type B,, Bs=KL basis). Cells — left £ (columns), right
R (rows), two-sided J (big rectangles), H = £ N L' (diagonal rectangles).
\.7|owest 1 S?—L = Zy
Tmiddle T Sw' = 'L,[Z/2Z]
st t, tst
jbiggest Wo S’H‘ =~

Everything crucially depends on the choice of Bs.

» Sy, = Z,{By} is an algebra modulo bigger cells, but the S3; do not
parametrize the simples of S.

» Sy tends to have pseudo-idempotents e? = ) - e rather than idempotents.

Even worse, Sy, could contain no (pseudo-)idempotent e at all.
» Sy is not group-like in general.
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uestion. )
Kazhdan—Lusz Q n linear.

What can one do to at least

Example ( partially recover the #-cell theorem? (columns), right
R (rows), two-{ ectangles).
Question.
Tlowest T

Can we find good a basis for which Sy, is group-like?

Tmiddle *'7 S =’
st t, tst

jbiggest Wo SH‘

Everything crucially depends on the choice of Bs.

» Sy = Z,{By} is an algebra modulo bigger cells, but the S3; do not
parametrize the simples of S.

» Sy tends to have pseudo-idempotents e? = X - e rather than idempotents.
Even worse, Sy, could contain no (pseudo-)idempotent e at all.

» Sy, is not group-like in general.
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Kazhdan—Lusz Susshice n linear.
What can one do to at least .
Example ( partially recover the H-cell theorem? (columns), right
R (rows), two-{ ectangles).
Question.
Tlowest T
Can we find good a basis for which Sy is group-like?
jm'AAI — S =
Spoiler.
T

On the categorified level the “basis problem” vanishes
— take the basis given by the equivalence classes of indecomposables —

and a version of the H-cell theorem can be recovered.
Everytl

> Sy However, Sy still is not group-like.
parametrize the simples of S.

» Sy tends to have pseudo-idempotents e? = X - e rather than idempotents.
Even worse, S# could contain no (pseudo-)idempotent e at all.

» Sy, is not group-like in general.
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Kazhdan—Lusz Question. n linear.
What can one do to at least .
Example ( partially recover the H-cell theorem? (columns), right
R (rows), two-g ectangles).
Question.
Tlowest T
Can we find good a basis for which Sy is group-like?
jn;,ul — S =
Spoiler.
Jhi

On the categorified level the “basis problem” vanishes
— take the basis given by the equivalence classes of indecomposables —
and a version of the H-cell theorem can be recovered.

Everytl

> Sy However, S still is not group-like.

arame B N B 1 £Q -

P In a few minutes (Vanessa’s talk).
> Sy ten mpotents.

Even wi The whole categorified story.
» Sz isn

Now.
How to make S group-like for the KL basis (a good basis).
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Example (type B).

W = (s, t | s> = t? = 1, tsts = stst). Number of elements: 8. Number of cells: 3,

named 0 (lowest) to 2 (biggest).

Cell order:

Size of the cells:

Cell structure:

s, sts st number of elements | 2 | 1
ts t, tst 12
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Example (type B>).

Example (SAGEMath).

W= (s,t|s®=1t>=1,tsts L1 ments: 8. Number of cells: 3,
named 0 (lowest) to 2 (biggesc ==
Cell order:

0

I

1

I

0/

Size of the cells:

=i [0]1]0]
e [ 10| 1]

Cell structure:

s, sts st number of elements | 2 | 1
ts t, tst 12
1]
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Example (type B>).

W = (s t|s?>=t>=1,tsts
named 0 (lowest) to 2 (biggescr

Cell order:

Size of the cells:

Cell structure:

Daniel Tubbenhauer 2-rep! i of Soergel bi

Example (SAGEMath).

1-1=1.

Example (SAGEMath).

¢s - ¢ = (1+bigger powers)cs.
Csts - €s = (1-+bigger powers)csts.
Csts + Csts = (1+bigger powers)cs+higher cell elements.
Csts - Cst = (bigger powers)cs: + higher cell elements.

cell O] 1]0
size || 1|61

—_

s, sts st number of elements | 2
ts t, tst 1

g
]

Wo
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Example (type B>).

W= (s,t|s®=1t>=1,tsts
named 0 (lowest) to 2 (biggestr:

Example (SAGEMath).

1-1=1.

Cell order:

Example (SAGEMath).

¢s - ¢ = (1+bigger powers)cs.
Csts - €s = (1-+bigger powers)csts.

Csts + Csts = (1+bigger powers)cs+higher cell elements.
Csts - Cst = (bigger powers)cs: + higher cell elements.

Size of the cells:

Cell structure:

Daniel Tubbenhauer

T T T
Example (SAGEMath).

Cwp - Cwy = (1+bigger powers)cu,

wo- |

[T] 1]

s, sts st number of elements | 2 | 1

ts t, tst 12

. o]
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Example (type B,).

Fact (Lusztig ~1984++, Soergel-Elias—Williamson ~1990,2012).
W = (s, For any(!) Coxeter group W f cells: 3,
named 0 there is a well-defined function
Cell ordg a: W—N
which is constant on two-sided cells such that for v,w € J
¢v - cw € N[vl{cx | x € J} + bigger friends.
(Positively graded.)
Size of t|
size || 1|61
Cell structure: -
[1] [1]
s, sts st number of elements | 2 | 1
ts t, tst 1|2
[0 ] [1]
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Example (type B,).

Fact (Lusztig ~1984++, Soergel-Elias—Williamson ~1990,2012).
W = (s, For any(!) Coxeter group W f cells: 3,
named 0 there is a well-defined function
Cell ords a: W—N
which is constant on two-sided cells such that for v,w € J
¢v - cw € N[vl{cx | x € J} + bigger friends.
(Positively graded.)
Size of t
size || 1]6]1
Cell sifaie: Idea (Lusztig ~1984).
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Ignore everything except the leading coefficient
of the classical KL basis shifted by a(two-sided cell).
Those shifted versions are what | denote by ¢, .
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The asymptotic limit A°(W) of HY(W) is defined as follows.

As a free Z-module:
AO(W) = EBJ Z{ay |we J} vs. HY (W) =2Z{cn | we W}

Multiplication.
axdy = Zzej Vx,ydz VS CxCy = EZEJ va@) h% ,c; + bigger friends.

where
v, = (®h )(0) e N.

Think: “A crystal limit for the Hecke algebra” .
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The asymptotic limit A°(W) of HY(W) is defined as follows.

As

whd

Example (type B>).

The multiplication tables (empty entries are 0 and [2] = 1 + v?) in 1:

| =

‘ Asts ast

‘ at ‘ Atst ‘ ats

as as  asts ast
asts || asts  as ast
ats ats ats | ar+ arst
ar at Atst ats
atst Atst ar ats
ast ast ast as + asts
‘ ‘ cs ‘ Csts ‘ Cst ‘ c Crst Cts
@ [2]es [2] csts [2)es Cot Cst Cs + Cts
Cors [2]csts [2]cs [2]cse Cs + Gsts & Cs + Csts
Cis [2] ces [2] ces [2]ce + [2] cest G+ cCrst | G+ Crat 2cis
ce Cts Cts Ct + Cest [2)c: [2)cest [2)ces
Cest || Ct + Cest ce Ct + Crst [2]cese [2]ce [2]ces
Cst Cs + Cots | Cs + Csts + [2]cwe 2Cst ‘ [2]cse [2]est [2]es + [2]csts

The asymptotic algebra is much simpler!

Daniel Tubbenhauer
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The asyn
AY(W) = @, A% (W) with the a,, basis
and all its summands A% (W) = Z{aw | w € J}
As a free are multifusion algebras. (Group-like.)

Fact (Lusztig ~1984++).

Multifusion algebras = decategorifications of multifusion categories. |

Multiplication.

dxdy = Zzej Yx,ydz VS. CxCy = ZZEJ va(z)h;ycz + bigger friends.

where

Think:

Daniel Tubbenhauer

Yy = (VO )(0) €N

“A crystal limit for the Hecke algebra” .
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Fact (Lusztig ~1984++).

The asyn
AY(W) = @, A% (W) with the a,, basis
and all its summands A% (W) = Z{a, | w € J}
As a free are multifusion algebras. (Group-like.)

Multifusion algebras = decategorifications of multifusion categories. |*

Surprising fact (Lusztig ~1984-+).
It seems one throws almost everything away, but:
Multiplication.
There is an explicit embedding
axay = friends.
HY(W) — A°(W) ®z Zy
where

which is an isomorphism after scalar extension to C(v).

Think: “A crystal limit for the Hecke algebra” .
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Fact (Lusztig ~1984++).

The asyn
AY(W) = @, A% (W) with the a,, basis
and all its summands A% (W) = Z{a, | w € J}
As a free are multifusion algebras. (Group-like.)

Multifusion algebras = decategorifications of multifusion categories. |*

Surprising fact (Lusztig ~1984-+).
It seems one throws almost everything away, but:
Multiplication.
There is an explicit embedding
axay = friends.
HY(W) — A°(W) ®z Zy
where

which is an isomorphism after scalar extension to C(v).

Surprising consequence (Lusztig ~1984++).
There is a(n explicit) one-to-one correspondence

{simples of H(W) with apex J} <=°" {simples of A% (W)}.

Thus, simples of W are ordered into cells (“families”).
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The asymptotic limi Calculation (Lusztig ~1984++).

For almost all H C 7 in finite Coxeter type

As a free Z-module: A%(W) = Z[(Z/zz)kzku)]
A(W) = 7 Zlaw Tw e T} vs. H'(W)=2Z{cw | we Wt.

Multiplication.
axdy =D ,cq Veydz VS, &Gy =D .7 Va(z)h;ycz + bigger friends.

where
v, = (®h )(0) e N.

Think: “A crystal limit for the Hecke algebra” .
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The asymptotic limi

As a free Z-module:
AO(W) =

Calculation (Lusztig ~1984++).

For almost all # C J in finite Coxeter type

A (W) = Z[(z/2z)<"7)].

7 Z{ay [we T} vs. V(W) =Z,{c, | we W}.

Multiplication.

Consequence — H-cells (Lusztig ~1984-+-).

For almost all 7 in finite Coxeter type

2K < #{simples with apex J} < 2%

axay = Zzej Tx,y9z Vo Ty — 7 c7 V T yCz T P gger friends.

where

Yy = (VO )(0) €N

Think: “A crystal limit for the Hecke algebra” .
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The asymptotic limi Calculation (Lusztig ~1984++).

As a free Z-module: A%(W) = Z[(Z/2Z)k:k(J)}.

Multiplication.

where

For almost all H C J in finite Coxeter type

ANW) =, Zla, [we T} vs. W) =ZJc, | we W}
Consequence — H-cells (Lusztig ~1984-+-).

For almost all 7 in finite Coxeter type

2% < #{simples with apex J} < 2% :
axay = Zzej Tx,y9z Vo Ty — 7 c7 V T yCz T P gger friends.

Example.

In type A one always has k(J) = 0, so the H-cell theorem holds.

In other types one only gets lower and upper bounds.
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The asymptotic limi Calculation (Lusztig ~1984++).

For almost all H C J in finite Coxeter type

As a free Z-module:

A (W) = Z[(z/2z)<"7)].
ANW) =, Zla, [we T} vs. W) =ZJc, | we W}
Consequence — H-cells (Lusztig ~1984-+-).

For almost all 7 in finite Coxeter type
Multiplication.

2% < #{simples with apex J} < 2% :
axay = Zzej Tx,y9z Vo Ty — 7 c7 V T yCz T P gger friends.

Example.

where

In type A one always has k(J) = 0, so the H-cell theorem holds.

In other types one only gets lower and upper bounds.

Not too bad: Idempotents in all 7, group-like A3, (W) and “almost H-cell theorem”.

Spoiler. H-cells and asymptotes are much nicer on the categorified level.
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Categorified picture — Part 1.

Theorem (Soergel-Elias—Williamson ~1990,2012).
There exists a graded, monoidal category &¥ = V(W) such that:

(1)
()

For every w € W, there exists an indecomposable object C,,.

The C,, for w € W, form a complete set of pairwise non-isomorphic
indecomposable objects up to shifts.

The identity object is C1, where 1 is the unit in W.
&V categorifies HY with [Cy] = cy.

grdim(homyv (CV, chw)) = 6v,w60,k- (Soergel's hom formula a.k.a. positively graded.)
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Catecoarified nicture — Part 1

Examples in type A;; polynomial ring.
Let R = C[x] with deg(x) = 2 and W = S; action given by s.x = —x; R® = C[x?].

The indecomposable Soergel bimodules over R are
C1 = C[X] and Cs = (C[X] ®C[x2] (C[X]

-

T

(

B
indecomposable objects up to shifts.

(3) The identity object is C1, where 1 is the unit in W.

(4) SV categorifies HY with [C,,] = c,.
(5) grdim(hom_g/v (Cv, VkCW)) = 6‘,,W(30,k. (Soergel's hom formula a.k.a. positively graded.)
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Catecoarified nicture — Part 1

Examples in type A;; polynomial ring.
$ Let R = C[x] with deg(x) = 2 and W = S; action given by s.x = —x; R® = C[x?].
( The indecomposable Soergel bimodules over R are
C1 = C[X] and Cs = (C[X] ®C[x2] (C[X]
e e

indecompoy—

(3) The identit
(4) &V catego
(5) grdim (hon

Daniel Tubbenhauer 2-repre i of Soergel bi

I Exla.mples in typle.Al; coinvariant algebra.
The coinvariant algebra is Rw = C[x]/x>.

The indecomposable Soergel bimodules over Ry arepsitively graded.)
€1 = C[x]/x* and Cs = C[x]/x* ® C[x]/x>.
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Catecoarified nicture — Part 1

Examples in type A;; polynomial ring.
$ Let R = C[x] with deg(x) = 2 and W = S; action given by s.x = —x; R® = C[x?].
( The indecomposable Soergel bimodules over R are
C1 = (C[X] and Cs = (C[X] ®C[x2] (C[X]
e e

indecompoy—

(3) The identit
(4) &V catego
(5) grdim (hon

I Exla.mples in typle.Al; coinvariant algebra.
The coinvariant algebra is Rw = C[x]/x>.

The indecomposable Soergel bimodules over Ry arepsitively graded.)
€1 = C[x]/x* and Cs = C[x]/x* ® C[x]/x>.

Cs ®Ryy Cs = ((C[x]/x2 ® (C[x]/x2) Ry /x2 ((C[x]/x2 ® (C[X]/XZ).

Examples in type A;; coinvariant algebra.

Which gives CsCs = Cs @ Cs(2) = (1 + v2)Cs.

Daniel Tubbenhauer 2-repre i of Soergel bi
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Categorified picture — Part 2.

Theorem (Lusztig, Elias—Williamson ~2012).
There exists a bicategory .&/° = .&/°(W) such that:
(1) For every w € W, there exists a simple object A,,.

(2) The A, for w € W, form a complete set of pairwise non-isomorphic simple
objects.

(3) The ‘identity objects’ are A4, where d are Duflo involutions.
(4) .o/° categorifies A® with [A,] = ay.
(5) &/ is the degree zero part of V.
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Categorified picture — Part 2.

Examples in type A;; coinvariant algebra.

C1 = C[x]/x* and Cs = C[x]/x* ® C[x]/x?. (Positively graded, but non-semisimple.)

Ay = C and A, = C® C. (Degree zero part.)

objects.
(3) The ‘identity objects’ are A4, where d are Duflo involutions.
(4) .o/° categorifies A® with [A,] = ay,.
(5) ./° is the degree zero part of &".

Daniel Tubbenhauer 2-repre i of Soergel bimodules | December 2019

7/8



Categorified picture — Part 2.

Examples in type A;; coinvariant algebra.

C1 = C[x]/x* and Cs = C[x]/x* ® C[x]/x?. (Positively graded, but non-semisimple.)

Ay = C and A, = C® C. (Degree zero part.)

objects.

(3) The ‘identitv obiects' are A,. where d are Duflo involutions.
Construction of .o/ .

g =add({v*Cw | w € H, k > 0}) /add ({v*Cw | w € H, k > 0}) (Degree zero part.)
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Categorified picture — Part 2.

Examples in type A;; coinvariant algebra.

C1 = C[x]/x* and Cs = C[x]/x* ® C[x]/x?. (Positively graded, but non-semisimple.)

Ay = C and A, = C® C. (Degree zero part.)

objects.

(3) The ‘identitv obiects' are A,. where d are Duflo involutions.
Construction of .o/ .

g =add({v*Cw | w € H, k > 0}) /add ({v*Cw | w € H, k > 0}) (Degree zero part.)

Theorem (Bezrukavnikov—Finkelberg—Ostrik ~2006).

For almost all H C J in finite Coxeter type

Y (W) = Vect ((Z/2Z)<K).
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Categorified picture — Part 2.

Up next in Vanessa's talk. The categorification of Lusztig's “crystal approach” to
the representation theory of HY for W of finite type (proved in most cases):

A conjectural relationship between 2-representations of .¢/® and &V using ﬁiﬁ. ‘

Why is this awesome? Because, if true, then the conjectural relationship...

» ...reduces questions from a non-semisimple, non-abelian setup to the
semisimple world. (Where life is reasonably )

» ...implies that there are finitely many equivalence classes of 2-simples of &, by
Ocneanu rigidity. (Kind of a “Uniqueness of categorification statement”.)

» ...would provide a complete classification of the 2-simples, because of the
Bezrukavnikov—Finkelberg—Ostrik theorem.

» ...is a potential approach to similar questions in 2-representation theory beyond
Soergel bimodules.

Daniel Tubbenhauer 2-repre i of Soergel bimodules | December 2019 7/8
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Totality iativity Identity ibility C

Semigroupoid Unneeded  Required  Unneeded  Unneeded | Unneeded
Small
Unneeded Required  Required  Unneeded =~ Unneeded
Category

Groupoid Unneeded Required  Required Required | Unneeded
uired  Unneeded Unneeded Unnee

Quasigroup | Required B3 Required  Unneeded
Required Unneeded Required Requie

Semigroup Required Required Unneeded Unneeded  Unneeded

I

MVErS€  pequired  Required Unneeded Required | Unneeded

Semigroup

Monoid  Required  Required  Required | Unneeded | Unneeded

Group  Required Required  Required Required | Unneeded
Abeli
e1aN  pequired  Required  Required Required Required
group

Picture from https://en.wikipedia.org/wiki/Semigroup.

» There are zillions of semigroups, e.g. 1843120128 of order 8. (Compare: There
are 5 groups of order 8.)

» Already the easiest of these are not semisimple — not even over C.

» Almost all of them are of wild representation type.

Is the study of semigroups hopeless?

| Green & co: No! |



https://en.wikipedia.org/wiki/Semigroup

Figure: The Coxeter graphs of finite type. (picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type A3 «~ tetrahedron «~ symmetric group Sj.

Type B; «~ cube/octahedron «~ Weyl group (Z/27Z)3 x Ss.

Type H; «~ dodecahedron /icosahedron « exceptional Coxeter group.
For r(4) (this is type B,) we have a 4-gon:

|Idea (Coxeter ~1934+|-).|



https://en.wikipedia.org/wiki/Coxeter_group
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Figure: The Coxeter graphs of finite type. (picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples. |Fact. The symmetries are given by exchanging flags.|

Type A3 «~ tetrahedron «~ symmetric group Sj.
Type B; «~ cube/octahedron «~ Weyl group (Z/27Z)3 x Ss.
Type H; «~ dodecahedron /icosahedron « exceptional Coxeter group.

For h(4Fix a flag F.je B,) we have a 4-gon:

|Idea (Coxeter ~1934+|-).|
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Figure: The Coxeter graphs of finite type. (picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type A3 «~ tetrahedron «~ symmetric group Sj.

Type B; «~ cube/octahedron «~ Weyl group (Z/27Z)3 x Ss.

Type H; «~ dodecahedron /icosahedron « exceptional Coxeter group.

For I ({Fix a flag F Je B,) we have a 4-gon:

Fix a hyperplane Hy permuting
the adjacent O-cells of F. |Idea (Eonetel 1934-H-)'|

|/



https://en.wikipedia.org/wiki/Coxeter_group

Figure: The Coxeter graphs of finite type. (picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type A3 «~ tetrahedron «~ symmetric group Sj.

Type B; «~ cube/octahedron «~ Weyl group (Z/27Z)3 x Ss.

Type H; «~ dodecahedron /icosahedron « exceptional Coxeter group.

For I ({Fix a flag F Je B,) we have a 4-gon:

Fix a hyperplane Hy permuting
the adjacent O-cells of F. |Idea (Eonetel 1934-H-)'|

Fix a hyperplane H; permuting
the adjacent 1-cells of F, etc.
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Figure: The Coxeter graphs of finite type. (picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type A3 «~ tetrahedron «~ symmetric group Sj.

Type B; «~ cube/octahedron «~ Weyl group (Z/27Z)3 x Ss.

Type H; «~ dodecahedron /icosahedron « exceptional Coxeter group.

For I ({Fix a flag F Je B,) we have a 4-gon:

Fix a hyperplane Hy permuting
the adjacent O-cells of F. |Idea (Eonetel 1934-H-)'|

Fix a hyperplane H; permuting
the adjacent 1-cells of F, etc.
[ ) [ J

|Write a vertex i for each H,-.|
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Figure: The Coxeter graphs of finite type. (picture from https://en.wikipedia.org/wiki/Coxeter_group.)
|This gives a generator-relation presentation.

Examples. And the braid relation measures the angle between hyperplanes.|
Type A3 A TETTAITEaT Tt SYTTITITITELTC BTUuUp o7 -

Type B; «~ cube/octahedron «~ Weyl group (Z/27Z)3 x Ss.

Type H; «~ dodecahedron /icosahedron « exceptional Coxeter group.

For I ({Fix a flag F Je B,) we have a 4-gon:

Fix a hyperplane Hy permuting
the adjacent O-cells of F. |Idea (Eonetel 1934-H-)'|

Fix a hyperplane H; permuting
the adjacent 1-cells of F, etc. /

|Write a vertex i for each H,-.| cos(r /4)

Connect i, by an n-edge for
H;, H; having angle cos(w/n).
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Example (type B,).

= (s,t|s? = t?> =1, tsts = stst)
={1,s,t,st, ts, sts, tst, wp }.

= (hs, hs | B2 = (v 1=v)hs + 1, h2 = (v 1—v)h; + 1, hyhsh;hs = hsh.hsh;)

HY(W)
{_ Zv{h17 h57 ht7 hst7 htsa hStSa htsta th}-

In general, HY(W = (W/|S)) is generated by hs for s € S, which satisfy the
quadratic relations and the braid relations.

KL basis:

HY (W) =Z{c =1,c; = v(hs + V), ¢ = v(he + V), Cst, Cts, Cstss Cest, Cug }-

c2 = (1 +v?)cs = [2]cs. (Quasi-idempotent, but “positively graded”.)



Example (type B,).

vhi s =1+ v =[2], hwe o =1+ 2v2 4 2v* 4+ 2v0 B,

[

‘ Csts

Cst Ct ‘ Ctst Cts
Cs [2]e [2] csts [2] cot Cst Cst Cs + Csts
Csts [2]csts [2]es [2]cst Cs + Csts Cs Cs + Csts
Cts [2]ces [2]cts [2le: + [2]cese Ct + Cest | Ct + Cst 2¢ts
Ct Cts Cts Ct + Cst [2]c: [2ctst [2lets
Cist || Ct + Cist Ct Ct + Cist [2]ctst [2]ct [2]ces
Cst || Cs+ Gsts | Cs + Csts 2¢q [2Jes [2Jes [2]es + [2]ests

(Note the “subalgebras”.)

Cwygy

4w
Cup || VEARE o Cwo




Example (type B).

hS

B Thus, up to scaling(!), the Sy are C(v), C(v)[Z/2Z] and C(v).
So 1+ 2+ 1 simples, ordered by apex.
However, the Weyl group of type B, has 1 + 3 + 1 simples, ordered by apex.
C1 H C1
‘ ‘ Cs ‘ Csts ‘ Cst ‘ Ct ‘ Ctst Cts
Cs [2] Cs [2] Csts [2] Cst Cst Cst Cs + Csts
Csts [2]Csts [2]Cs [2] Cst Cs + Csts Cs Cs + Csts
Cts [2]ces [2]ces [2)ee + [2)cest Ct + Ctst | Ct + Cest 2Cts
Ct Cts Cts Ct + Cest [2]c: [2lctst [2]cis
Cest || Ct + Cst Ct Ct + Cst [2] et [2]c: [2]cis
Cst Cs + Csts | Cs + Cots 2¢st [2]Cst [2] Cst [2] Cs + [2]Csts
G
Cuo || VERLR 1y G

(Note the “subalgebras”.)



Example (type B).

g Thus, up to scaling(!), the Sy are C(v), C(v)[Z/2Z] and C(v).
So 1+ 2+ 1 simples, ordered by apex.
However, the Weyl group of type B, has 1 + 3 + 1 simples, ordered by apex.
ajea
‘ ‘ Cs ‘ Csts ‘ Cst ‘ Ct ‘ Ctst ‘ Cts
Cs [2] Cs ‘ [Q]Csts ‘ [2] Cst ‘ Cst ‘ Cst ‘ Cs + Csts
[A] ‘ Inl In] ‘ ‘ ‘
Cots Crucial: “Up to scaling” is not a good notion for d
s the categorified world as we should work over N, = N[v,v~!] or Z,.
Ct Cts
Cest || 9 Using appropriate versions of simple N,-representations,
Gt || 9 one almost recovers the H-cell theorem. [2] cers
However, Sy are still not nice over N, or Z,.

T WO,

(Note the “subalgebras”.)



Example (SAGEMath). The Weyl group of type Bs. Number of elements: 46080.
Number of cells: 26, named 0 (lowest) to 25 (biggest).

Cell order:

6—7—10—13—10'—7' —6'

7/ 7/ N\ 7/ / \ N
0—1—2—3—-5"-8—9—12—09 "~ —

N /7 N / \
11 1

=2 =1 =0

4/

Size of the cells and a-value:

cell |0 1 2 3 4 5 6 7 8 9 10 11 | 12=12' | 13=13' | 11" | 10/ 9 8 7 6 5 4 3 2 ||
ize || 1] 62 | 342 | 576 | 650 | 3150 | 350 | 1600 | 2432 | 3402 | 900 | 2025 | 14500 | 600 | 2025 | 900 | 3402 | 2432 [ 1600 | 350 | 3150 | 650 | 576 | 342 | 62
1 2 3 3 4 4 5 5 6 6 6 7 9 10 10 10 11 11 16 12 15 | 17 | 18 | 25 | 36

o

a




Example (cell 12).

Example (SAGEMath). Cell 12 is a bit scary: umber of elements: 46080.
Number of cells: 26, nam

455 155 1520 2525 2525

Ce” Order: 155 455 150 2525 25 25

1205 | Loos | 42020 | 22005 | 220,25

2 2 2 4 1 -
6 — 25,5 25,5 25,20 25,25 25,25 |/

/ / 2555 | 2255 | 22500 | losos | 4osos
0—1—2—3—=5"8—0—12—0 —8 —5 —3 —2 —1'—0
N /7 N 7 N 7/

11 11

4/

Size of the cells and a-value:

12=12' [13=13 | 17 [ 10| ¢ 8 7ol |y 3] [1V]0
350 | 3150 | 650 [ 576 | 342 [ 62 | 1

cell 1 2 3 4 5 6 7 8 9 10 1
size || 1] 62 ] 342 | 576 | 650 | 3150 | 350 | 1600 | 2432 | 3402 | 900 | 2025 | 14500 | 600 | 2025 | 900 | 3402 | 2432 | 1600
3 4 4 5 5 6 6 6 7 9 10 10 10 11 11 16 12 15 | 17 | 18 | 25 | 36

o

1] 2]3

o

a




Example (SAGEMath). Here is a random calculation in the cell 12 for type Bs.

Graph:
1=2—3—4—5—6

Elements (shorthand s; = i):

d =d ! =132123565.



Example (SAGEMath). Here is a random calculation in the cell 12 for type Bs.

CdCq =
(1 +5v2 + 12v* + 18v0 + 18v8 + 12v10 4 5y12 4 v1%)¢y
+(V2 + v + 7vO + 7V 4 4v10 + v12) 10130103565
—|—(V_4 =+ 5V_2 +11 + ].4V2 + ].].V4 + 5V6 + V8)C121232123565

Graph:
1=2—3—4—5—6

Elements (shorthand s; = i):

d =d ! =132123565.



Example (SAGEMath). Here is a random calculation in the cell 12 for type Bs.

ddgad =
(1 +5v2 + 12v* + 18v0 + 18v8 + 12v10 4 5y12 4 v1%)¢y
+(V2 + v + 7vO + 7V 4 4v10 + v12) 10130103565
—|—(V_4 =+ 5V_2 +11 + ].4V2 + ].].V4 + 5V6 + V8)C121232123565

Graph:
1=2—3—4—5—6

Elements (shorthand s; = i):

d =d ! =132123565.



Example (SAGEMath). Here is a random calculation in the cell 12 for type Bs.

ddad =
(1 +5v2 + 12v* + 18v0 + 18v8 + 12v10 4 5y12 4 v1%)¢y
+(v2 + av* + Tv0 + 78 + 4vI0 + v12) 0130103565
+(v_4 + 5V_2 + 11 + 14v2 =+ 11v4 + 5V6 + VB)C121232123565

Bigger friends.

Graph:
1=2—3—4—5—6

Elements (shorthand s; = i):

d =d ! =132123565.



Example (SAGEMath). Here is a random calculation in the cell 12 for type Bs.

agaqd =
(1 +5v2 + 12v* + 18v0 + 18v8 + 12v10 4 5y12 4 v1%)¢y
+(v2 + 4v* + TV + 7v8 4 4v10 4 v12) cip130103565

Graph:
1=2—3—4—5—6

Elements (shorthand s; = i):

d =d ! =132123565.



Example (SAGEMath). Here is a random calculation in the cell 12 for type Bs.

ddgad =
(145v2 + 12v* + 18v0 + 18v8 + 12v10 + 5v12 4 v ¢y
+(V2 —+ 4—V4 —+ 7V6 —+ 7V8 + 4V10 —+ V12)C12132123565

[Killed in the limit v — 0. |

Graph:
1=2—3—4—5—6

Elements (shorthand s; = i):

d =d ! =132123565.



Example (SAGEMath). Here is a random calculation in the cell 12 for type Bs.

adad =
ad

Looks much simpler.

Graph:
1=2—3—4—5—6

Elements (shorthand s; = i):

d =d ! =132123565.



Example (SAGEMath). The Weyl group of type Bs.

Actually, #{simples with apex J} = 1(22k + 2k) (the middle).

1
2



Fusion categories. (Multi)fusion categories 6 over C are as easy as possible
while being interesting:
» By definition, they are monoidal, rigid, semisimple, C-linear categories with
finitely many simple objects.
» They decategorify to (multi)fusion rings.

» Ocneanu rigidity. The number of multifusion categories (up to equivalence)
with a given Grothendieck ring is finite.

» Ocneanu rigidity. The number of equivalence classes of simple transitive
2-representations over a given multifusion category is finite.

» Crucial. The latter two points are wrong if one drops the semisimplicity.

Fusion categories—complete classification.
» Group-like. € = Zep(G) or twists; G finite group.
» Group-like. € = ¥ect(G) or twists; G finite group.

» Quantum groups. Semisimplifications of quantum group representations at
roots of unity or twist of such.

» Exotic fusion categories. Coming e.g. from subfactors or Soergel bimodules.



Folk theorem(?). The simple transitive 2-representations of Zep(G) and
Vect(G) are classified by subgroups H C G and ¢ € H?(H,C*), up to conjugacy.

The classification is thus a numerical problem.

For example, for Zep(Ss) (appears in type Eg) we have:

1| 2/22 | Z/3Z | ZJAL | (Z/2Z)% | Z/ST | Sy | Z/6Z | Di | Ds | As | Ds | GA(L5) | S As S

1] 2 1 1 2 12| 1 1 1 1 1 1 1 1 1
H 1| 1 1 1 Z/22 1| 1| 1 |zjez|zen| 2| 2L 1 7)27 | 222 | 2/2Z
k|l 1| 2 3 4 41 5 | 3] 6 52 | 42 | 43 | 63 5 53 | 54 | 7,5

This is completely different from their classical representation theory.




Example (type B,).

wl= (s,t|s®=t? =1, tsts = stst)
={1,s,t,st, ts, sts, tst, wp }.

= Zv{hla hsa htv hsta htsv hstsa htsta th}~

In general, HY(W = (W/|S)) is generated by hs for s € S, which satisfy the
quadratic relations and the braid relations.

HY(W) {_ (he, he | W2 = (v 1—v)hs + 1, h? = (v 1—Vv)h; + 1, hyhsh;hg = hghihshy)

KL basis:

HV(W) = Zv{Cl =1,¢= V(hs + V)7 Ct = V(ht +V)7 Cst, Ctsy Csts, Ctst Cw0}~

c2 = (1+v?)cs = [2]cs. (Quasi-idempotent, but “positively graded”.)



Example (Zep(G)).
> Let € = Zep(G) (G a finite group).
» € is fusion (fiat and semisimple). For any M,N € €, we have MQ N € €6:
g(m®n) = gm® gn

for all g € G,m &€ M,n € N. There is a trivial representation 1.
» The regular 2-representation .4 : 6 — &nd(¥6):

M———M®_

fl Jre--

N— N® _

» The decategorification is a N-representation, the regular representation.
| 4

Daniel Tubbenhauer 2-repre i of Soergel bimodules | December 2019 1/1




Example (Zep(G)).
» Let K C G be a subgroup.
> Rep(K) is a 2-representation of Zep(G), with action
Resg @ _: Rep(G) — &nd(Rep(K))

which is indeed a 2-action because Res% is a ®-functor.
» The decategorifications are N-representations.
>

Daniel Tubbenhauer 2-repre i of Soergel bimodules | December 2019
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Example (Zep(G)).

» Let i) € H?>(K,C*). Let V(K1) be the category of projective K-modules
with Schur multiplier v, i.e.vector spaces V with p: K — End(V) such that

p(&)p(h) = ¥(g, h)p(gh), for all g, h € K.
» Note that V(K, 1) = Rep(K) and
®: V(K,0) RV(K, ) = V(K, ¢b).
> V(K, ) is also a 2-representation of 6 = Zep(G):

RescXId
—_—

Rep(G) K V(K, 1)) Rep(K) B V(K, 1) 2 V(K, ).

» The decategorifications are N-representations.
>

Daniel Tubbenhauer 2-repre i of Soergel bimodules | December 2019
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Example (Zep(G)).

» Let i) € H?>(K,C*). Let V(K1) be the category of projective K-modules
with Schur multiplier v, i.e.vector spaces V with p: K — End(V) such that

Theorem (folklore?).

Completeness. All 2-simples of Zep(G) are of the form V(K ).

>
Non-redundancy. We have V(K,¢) 2 V(K’, ")
=
> the subgroups are conjugate or 1’ = 1€, where 1€ (k, /) = ¥(gkg ™, glg™1).

Rep(G) X V(K, ) ——— Rep(K) X V(K, ) = V(K, ).

» The decategorifications are N-representations.
>

Daniel Tubbenhauer 2-repre i of Soergel bimodules | December 2019 1/1
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