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Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example. N, Aut({1, ..., n}) = Sn ⊂ Tn = End({1, ..., n}), groups, groupoids,
categories, any · closed subsets of matrices, “everything” click , etc.

The cell orders and equivalences:

x ≤L y ⇔ ∃z : y = zx , x ∼L y ⇔ (x ≤L y) ∧ (y ≤L x),

x ≤R y ⇔ ∃z ′ : y = xz ′, x ∼R y ⇔ (x ≤R y) ∧ (y ≤R x),

x ≤LR y ⇔ ∃z , z ′ : y = zxz ′, x ∼LR y ⇔ (x ≤LR y) ∧ (y ≤LR x).

Left, right and two-sided cells: Equivalence classes.

Example (group-like). The unit 1 is always in the lowest cell – e.g. 1 ≤L y
because we can take z = y . Invertible elements g are always in the lowest cell – e.g.
g ≤L y because we can take z = yg−1.

Theorem. (Mind your groups!)—stated for monoids

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

Thus, the maximal subgroups H(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

Example. (T3.)

H(e) = S3, S2,S1 gives 3 + 2 + 1 = 6 associated simples.

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.

Note. Whenever one has a (reasonable) antiinvolution ?,
the H-cells to consider are the diagonals H = L ∩ L?.
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Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation monoid T3). Cells – left L (columns), right R
(rows), two-sided J (big rectangles), H = L ∩R (small rectangles).

(123), (213), (132)

(231), (312), (321)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)

(221), (112) (113), (311) (223), (332)

(111) (222) (333)

Jlowest

Jmiddle

Jbiggest

H ∼= S3

H ∼= S2

H ∼= S1

Cute facts.

I Each H contains precisely one idempotent e or no idempotent. Each e is
contained in some H(e). (Idempotent separation.)

I Each H(e) is a maximal subgroup. (Group-like.)

I Each simple has a unique maximal J (e) whose H(e) does not kill it. (Apex.)

Theorem. (Mind your groups!)—stated for monoids

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

Thus, the maximal subgroups H(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

Example. (T3.)

H(e) = S3, S2,S1 gives 3 + 2 + 1 = 6 associated simples.

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.

Note. Whenever one has a (reasonable) antiinvolution ?,
the H-cells to consider are the diagonals H = L ∩ L?.

Daniel Tubbenhauer 2-representations of Soergel bimodules I December 2019 2 / 8
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Kazhdan–Lusztig (KL) and others ∼1979++. Green’s theory in linear.

Choose a basis. For a finite-dimensional algebra S (over Zv = Z[v, v−1]) fix a
basis BS. For x , y , z ∈ BS write y ⊂+ zx if y appears in zx with non-zero coefficient.

The cell orders and equivalences:

x ≤L y ⇔ ∃z : y ⊂+ zx , x ∼L y ⇔ (x ≤L y) ∧ (y ≤L x),

x ≤R y ⇔ ∃z ′ : y ⊂+ xz ′, x ∼R y ⇔ (x ≤R y) ∧ (y ≤R x),

x ≤LR y ⇔ ∃z , z ′ : y ⊂+ zxz ′, x ∼LR y ⇔ (x ≤LR y) ∧ (y ≤LR x).

Left, right and two-sided cells: Equivalence classes.

Example (group-like). For S = C[G ] and the choice of the group element basis
BS = G , cell theory is boring.

Question.

What can one do to at least
partially recover the H-cell theorem?

Question.

Can we find good a basis for which SH is group-like?

Spoiler.

On the categorified level the “basis problem” vanishes
– take the basis given by the equivalence classes of indecomposables –

and a version of the H-cell theorem can be recovered.

However, SH still is not group-like.

In a few minutes (Vanessa’s talk).

The whole categorified story.

Now.

How to make SH group-like for the KL basis (a good basis).
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Kazhdan–Lusztig (KL) and others ∼1979++. Green’s theory in linear.

Example ( Coxeter group of type B2, BS=KL basis). Cells – left L (columns), right
R (rows), two-sided J (big rectangles), H = L ∩ L−1 (diagonal rectangles).

1

s, sts ts

st t, tst

w0

Jlowest

Jmiddle

Jbiggest

SH ∼= Zv

SH‘ ∼= ’Zv[Z/2Z]

SH‘ ∼= ’Zv

Everything crucially depends on the choice of BS.

I SH = Zv{BH} is an algebra modulo bigger cells, but the SH do not
parametrize the simples of S. Example

I SH tends to have pseudo-idempotents e2 = λ · e rather than idempotents.
Even worse, SH could contain no (pseudo-)idempotent e at all.

I SH is not group-like in general.
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Example (type B2).

W = 〈s, t | s2 = t2 = 1, tsts = stst〉. Number of elements: 8. Number of cells: 3,
named 0 (lowest) to 2 (biggest).

Cell order:
0

1

0′

Size of the cells:
cell 0 1 0′

size 1 6 1

Cell structure:

s, sts st

ts t, tst

1

w0

number of elements−−−−−−−−−−−→ 2 1

1 2

1

1

Example (SAGEMath).

1 · 1 = 1.

Example (SAGEMath).

cs · cs = (1+bigger powers)cs .
csts · cs = (1+bigger powers)csts .

csts · csts = (1+bigger powers)cs+higher cell elements.
csts · ctst = (bigger powers)cst + higher cell elements.

Example (SAGEMath).

cw0 · cw0 = (1+bigger powers)cw0 .

Fact (Lusztig ∼1984++, Soergel–Elias–Williamson ∼1990,2012).

For any(!) Coxeter group W
there is a well-defined function

a : W → N

which is constant on two-sided cells such that for v ,w ∈ J

cv · cw ∈ N[v ]{cx | x ∈ J }+ bigger friends.
(Positively graded.)

Big example

Idea (Lusztig ∼1984).

Ignore everything except the leading coefficient
of the classical KL basis shifted by a(two-sided cell).

Those shifted versions are what I denote by cw .
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The asymptotic limit A0(W ) of Hv(W ) is defined as follows.

As a free Z-module:

A0(W ) =
⊕
J Z{aw | w ∈ J } vs. Hv(W ) = Zv{cw | w ∈W }.

Multiplication.

axay =
∑

z∈J γ
z
x,yaz vs. cxcy =

∑
z∈J va(z)hzx,ycz + bigger friends.

where
γzx,y = (va(z)hzx,y )(0) ∈ N.

Think: “A crystal limit for the Hecke algebra” .

Example (type B2).

The multiplication tables (empty entries are 0 and [2] = 1 + v2) in 1:
as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst+cw0 cs + csts
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Not too bad: Idempotents in all J , group-like A0
H(W ) and “almost H-cell theorem”.

Spoiler. H-cells and asymptotes are much nicer on the categorified level.
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⊕
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∑

z∈J γ
z
x,yaz vs. cxcy =

∑
z∈J va(z)hzx,ycz + bigger friends.

where
γzx,y = (va(z)hzx,y )(0) ∈ N.

Think: “A crystal limit for the Hecke algebra” .
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⊕
J A0
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{simples of Hv(W ) with apex J } one-to-one←−−−−→ {simples of A0
J (W )}.

Thus, simples of W are ordered into cells (“families”).

Calculation (Lusztig ∼1984++).
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Categorified picture – Part 1.

Theorem (Soergel–Elias–Williamson ∼1990,2012).
There exists a graded, monoidal category S v = S v(W ) such that:

(1) For every w ∈W , there exists an indecomposable object Cw .

(2) The Cw , for w ∈W , form a complete set of pairwise non-isomorphic
indecomposable objects up to shifts.

(3) The identity object is C1, where 1 is the unit in W .

(4) S v categorifies Hv with [Cw ] = cw .

(5) grdim
(
homS v (Cv , v

kCw )
)

= δv ,wδ0,k . (Soergel’s hom formula a.k.a. positively graded.)

Let R- or RW be the polynomial or the coinvariant algebra attached to the
geometric representation of W . Soergel bimodules for me are defined as the
additive Karoubi closure of the full subcategory of R- or RW -bimodules generated
by the Bott–Samelson bimodules, e.g. Bs = R⊗Rs R, and their shifts.

Examples in type A1; polynomial ring.

Let R = C[x ] with deg(x) = 2 and W = S2 action given by s.x = −x ; Rs = C[x2].

The indecomposable Soergel bimodules over R are
C1 = C[x ] and Cs = C[x ]⊗C[x2] C[x ].

Examples in type A1; coinvariant algebra.

The coinvariant algebra is RW = C[x ]/x2.

The indecomposable Soergel bimodules over RW are
C1 = C[x ]/x2 and Cs = C[x ]/x2 ⊗ C[x ]/x2.

Examples in type A1; coinvariant algebra.

Cs ⊗RW Cs =
(
C[x ]/x2 ⊗ C[x ]/x2

)
⊗C[x]/x2

(
C[x ]/x2 ⊗ C[x ]/x2

)
.

Which gives CsCs ∼= Cs ⊕ Cs〈2〉 = (1 + v2)Cs .
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Categorified picture – Part 2.

Theorem (Lusztig, Elias–Williamson ∼2012).
There exists a multifusion bicategory A 0 =A 0(W ) such that:

(1) For every w ∈W , there exists a simple object Aw .

(2) The Aw , for w ∈W , form a complete set of pairwise non-isomorphic simple
objects.

(3) The ‘identity objects’ are Ad , where d are Duflo involutions.

(4) A 0 categorifies A0 with [Aw ] = aw .

(5) A 0 is the degree zero part of S v.

Examples in type A1; coinvariant algebra.

C1 = C[x ]/x2 and Cs = C[x ]/x2 ⊗ C[x ]/x2. (Positively graded, but non-semisimple.)

A1 = C and As = C⊗ C. (Degree zero part.)

Construction of A 0
H.

A 0
H = add

(
{vkCw | w ∈ H, k ≥ 0}

)
/add

(
{vkCw | w ∈ H, k > 0}

)
(Degree zero part.)

Theorem (Bezrukavnikov–Finkelberg–Ostrik ∼2006).

For almost all H ⊂ J in finite Coxeter type

A 0
H(W ) ∼= V ect((Z/2Z)k=k(J )

)
.
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Categorified picture – Part 2.

Up next in Vanessa’s talk. The categorification of Lusztig’s “crystal approach” to
the representation theory of Hv for W of finite type (proved in most cases):

A conjectural relationship between 2-representations of A 0 and S v using A 0
H.

Here we use RW to have finite-dimensional hom spaces.

Why is this awesome? Because, if true, then the conjectural relationship...

I ...reduces questions from a non-semisimple, non-abelian setup to the
semisimple world. (Where life is reasonably easy .)

I ...implies that there are finitely many equivalence classes of 2-simples of S , by
Ocneanu rigidity. (Kind of a “Uniqueness of categorification statement”.)

I ...would provide a complete classification of the 2-simples, because of the
Bezrukavnikov–Finkelberg–Ostrik theorem. Example

I ...is a potential approach to similar questions in 2-representation theory beyond
Soergel bimodules.

Examples in type A1; coinvariant algebra.

C1 = C[x ]/x2 and Cs = C[x ]/x2 ⊗ C[x ]/x2. (Positively graded, but non-semisimple.)
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Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation monoid T3). Cells – left L (columns), right R
(rows), two-sided J (big rectangles), H = L ∩R (small rectangles).

(123), (213), (132)

(231), (312), (321)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)

(221), (112) (113), (311) (223), (332)

(111) (222) (333)

Jlowest

Jmiddle

Jbiggest

H ∼= S3

H ∼= S2

H ∼= S1

Cute facts.

I Each H contains precisely one idempotent e or no idempotent. Each e is
contained in some H(e). (Idempotent separation.)

I Each H(e) is a maximal subgroup. (Group-like.)

I Each simple has a unique maximal J (e) whose H(e) do not kill it. (Apex.)

Theorem. (Mind your groups!)—stated for monoids

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

Thus, the maximal subgroups H(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

Example. (T3.)

H(e) = S3,S2,S1 gives 3 + 2 + 1 = 6 associated simples.

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.

Note. Whenever one has a (reasonable) antiinvolution ?,
the H-cells to consider are the diagonals H = L ∩ L?.
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Kazhdan–Lusztig (KL) and others ∼1979++. Green’s theory in linear.

Example ( Coxeter group of type B2, BS=KL basis). Cells – left L (columns), right
R (rows), two-sided J (big rectangles), H = L ∩ L−1 (diagonal rectangles).

1

s, sts ts

st t, tst

w0

Jlowest

Jmiddle

Jbiggest

SH ∼= Zv

SH‘ ∼= ’Zv[Z/2Z]

SH‘ ∼= ’Zv

Everything crucially depends on the choice of BS.

I SH = Zv{BH} is an algebra modulo bigger cells, but the SH do not
parametrize the simples of S. Example

I SH tends to have pseudo-idempotents e2 = λ · e rather than idempotents.
Even worse, SH could contain no (pseudo-)idempotent e at all.

I SH is a not group-like in general.

Question.

What can one do to at least
partially recover the H-cell theorem?

Question.

Can we find good a basis for which SH is group-like?

Spoiler.

On the categorified level the “basis problem” vanishes
– take the basis given by the equivalence classes of indecomposables –

and a version of the H-cell theorem can be recovered.

However, SH still is not group-like.

Next time (Vanessa’s talk).

The whole categorified story.

Now.

How to make SH group-like for the KL basis (a good basis).
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Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
For I2(4) (this is type B2) we have a 4-gon:

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.

Example (type B2).

vhss,s = 1 + v2 = [2], v4hw0
w0,w0

= 1 + 2v2 + 2v4 + 2v6 + v8.

c1

c1 c1

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst+cw0 cs + csts

csts [2]csts [2]cs+[2]2cw0 [2]cst+[2]cw0 cs + csts cs+[2]2cw0 cs + csts+[2]cw0

cts [2]cts [2]cts+[2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst+[2]cw0 2cts+cw0

ct cts cts+cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct+[2]2cw0 ct + ctst+[2]cw0 [2]ctst [2]ct+[2]2cw0 [2]cts+[2]cw0

cst cs + csts cs + csts+[2]cw0 2cst+cw0 [2]cst [2]cst+[2]cw0 [2]cs + [2]csts

cw0

cw0 v4hw0
w0,w0

cw0

(Note the “subalgebras”.)

Back

Thus, up to scaling(!), the SH are C(v), C(v)[Z/2Z] and C(v).
So 1 + 2 + 1 simples, ordered by apex.

However, the Weyl group of type B2 has 1 + 3 + 1 simples, ordered by apex.

Crucial: “Up to scaling” is not a good notion for
the categorified world as we should work over Nv = N[v, v−1] or Zv.

Using appropriate versions of simple Nv-representations,
one recovers the H-cell theorem.

However, SH are still not nice over Nv or Zv.

The asymptotic limit A0(W ) of Hv(W ) is defined as follows.

As a free Z-module:

A0(W ) =
⊕
J Z{aw | w ∈ J }. vs. Hv(W ) = Zv{cw | w ∈W }.

Multiplication.

axay =
∑

z∈J γ
z
x,yaz . vs. cxcy =

∑
z∈J va(z)hzx,ycz + bigger friends.

where
γzx,y = va(z)hzx,y (0) ∈ N.

Think: “A crystal limit for the Hecke algebra” .

Example (type B2).

The multiplication tables (empty entries are 0 and [2] = 1 + v2) in 1:
as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst+cw0 cs + csts

csts [2]csts [2]cs+[2]2cw0 [2]cst+[2]cw0 cs + csts cs+[2]2cw0 cs + csts+[2]cw0

cts [2]cts [2]cts+[2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst+[2]cw0 2cts+cw0

ct cts cts+cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct+[2]2cw0 ct + ctst+[2]cw0 [2]ctst [2]ct+[2]2cw0 [2]cts+[2]cw0

cst cs + csts cs + csts + [2]cw0 2cst+cw0 [2]cst [2]cst+[2]cw0 [2]cs + [2]csts

The asymptotic algebra is much simpler!

Fact (Lusztig ∼1984++).

A0(W ) =
⊕
J A0

J (W ) with the aw basis

and all its summands A0
J (W ) = Z{aw | w ∈ J }

are multifusion algebras. (Group-like.)

Multifusion algebras = decategorifications of multifusion categories.

Surprising fact (Lusztig ∼1984++).
It seems one throws almost everything away, but:

There is an explicit embedding

Hv(W ) ↪→ A0(W )⊗Z Zv

which is an isomorphism after scalar extension to C(v).

Surprising consequence (Lusztig ∼1984++).

There is a(n explicit) one-to-one correspondence

{simples of Hv(W ) with apex J } one-to-one←−−−−→ {simples of A0
J (W )}.

Thus, simples of W are ordered into cells (“families”).

Calculation (Lusztig ∼1984++).

For almost all H ⊂ J in finite Coxeter type

A0
H(W ) ∼= Z

[
(Z/2Z)k=k(J )

]
.

Consequence – H-cells (Lusztig ∼1984++).

For almost all J in finite Coxeter type

2k ≤ #{simples with apex J } ≤ 22k .

Example.

In type A one always has k(J ) = 0, so the H-cell theorem holds.

In other types one only gets lower and upper bounds. Big example

(Think: The KL basis is not cellular outside of type A.)

Not too bad: Idempotents in all J , group-like A0
H(W ) and “almost H-cell theorem”.

Spoiler. H-cells and asymptotes are much nicer on the categorified level.
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The asymptotic limit A0(W ) of Hv(W ) is defined as follows.

As a free Z-module:

A0(W ) =
⊕
J Z{aw | w ∈ J }. vs. Hv(W ) = Zv{cw | w ∈W }.

Multiplication.

axay =
∑

z∈J γ
z
x,yaz . vs. cxcy =

∑
z∈J va(z)hzx,ycz + bigger friends.

where
γzx,y = va(z)hzx,y (0) ∈ N.

Think: “A crystal limit for the Hecke algebra” .

Example (type B2).

The multiplication tables (empty entries are 0 and [2] = 1 + v2) in 1:
as asts ast at atst ats

as as asts ast

asts asts as ast
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The asymptotic algebra is much simpler!

Fact (Lusztig ∼1984++).

A0(W ) =
⊕
J A0

J (W ) with the aw basis

and all its summands A0
J (W ) = Z{aw | w ∈ J }

are multifusion algebras. (Group-like.)

Multifusion algebras = decategorifications of multifusion categories.

Surprising fact (Lusztig ∼1984++).
It seems one throws almost everything away, but:

There is an explicit embedding

Hv(W ) ↪→ A0(W )⊗Z Zv

which is an isomorphism after scalar extension to C(v).

Surprising consequence (Lusztig ∼1984++).

There is a(n explicit) one-to-one correspondence

{simples of Hv(W ) with apex J } one-to-one←−−−−→ {simples of A0
J (W )}.

Thus, simples of W are ordered into cells (“families”).

Calculation (Lusztig ∼1984++).

For almost all H ⊂ J in finite Coxeter type

A0
H(W ) ∼= Z

[
(Z/2Z)k=k(J )

]
.

Consequence – H-cells (Lusztig ∼1984++).

For almost all J in finite Coxeter type

2k ≤ #{simples with apex J } ≤ 22k .

Example.

In type A one always has k(J ) = 0, so the H-cell theorem holds.

In other types one only gets lower and upper bounds. Big example

(Think: The KL basis is not cellular outside of type A.)

Not too bad: Idempotents in all J , group-like A0
H(W ) and “almost H-cell theorem”.

Spoiler. H-cells and asymptotes are much nicer on the categorified level.
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Example (SAGE). The Weyl group of type B6.

cell 0 1 2 3 4 5 6 7 8 9 10 11 12=12′ 13=13′ 11′ 10′ 9′ 8′ 7′ 6′ 5′ 4′ 3′ 2′ 1′ 0′

size 1 62 342 576 650 3150 350 1600 2432 3402 900 2025 14500 600 2025 900 3402 2432 1600 350 3150 650 576 342 62 1

a 0 1 2 3 3 4 4 5 5 6 6 6 7 9 10 10 10 11 11 16 12 15 17 18 25 36

2k 1 2 2 1 2 2 2 1 2 2 1 1 4 2 1 1 2 2 1 2 2 2 1 2 2 1

#simples 1 3 3 1 3 3 3 1 3 3 1 1 10 3 1 1 3 3 1 3 3 3 1 3 3 1

22k 1 4 4 1 4 4 4 1 4 4 1 1 16 4 1 1 4 4 1 4 4 4 1 4 4 1

Actually, #{simples with apex J } = 1
2 (22k + 2k) (the middle).

Back
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As a free Z-module:

A0(W ) =
⊕
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where
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The asymptotic algebra is much simpler!

Fact (Lusztig ∼1984++).

A0(W ) =
⊕
J A0

J (W ) with the aw basis

and all its summands A0
J (W ) = Z{aw | w ∈ J }

are multifusion algebras. (Group-like.)

Multifusion algebras = decategorifications of multifusion categories.

Surprising fact (Lusztig ∼1984++).
It seems one throws almost everything away, but:

There is an explicit embedding

Hv(W ) ↪→ A0(W )⊗Z Zv

which is an isomorphism after scalar extension to C(v).

Surprising consequence (Lusztig ∼1984++).

There is a(n explicit) one-to-one correspondence

{simples of Hv(W ) with apex J } one-to-one←−−−−→ {simples of A0
J (W )}.

Thus, simples of W are ordered into cells (“families”).

Calculation (Lusztig ∼1984++).

For almost all H ⊂ J in finite Coxeter type

A0
H(W ) ∼= Z

[
(Z/2Z)k=k(J )

]
.

Consequence – H-cells (Lusztig ∼1984++).

For almost all J in finite Coxeter type

2k ≤ #{simples with apex J } ≤ 22k .

Example.

In type A one always has k(J ) = 0, so the H-cell theorem holds.

In other types one only gets lower and upper bounds. Big example

(Think: The KL basis is not cellular outside of type A.)

Not too bad: Idempotents in all J , group-like A0
H(W ) and “almost H-cell theorem”.

Spoiler. H-cells and asymptotes are much nicer on the categorified level.
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Categorified picture – Part 2.

Up next in Vanessa’s talk. The categorification of Lusztig’s “crystal approach” to
the representation theory of Hv for W of finite type (proved in most cases):

A conjectural relationship between 2-representations of A 0 and S v using A 0
H.

Here we use RW to have finite-dimensional hom spaces.

Why is this awesome? Because, if true, then the conjectural relationship...

I ...reduces questions from a non-semisimple, non-abelian setup to the
semisimple world.

I ...implies that there are finitely many equivalence classes of 2-simples of S , by
Ocneanu rigidity. (Kind of a “Uniqueness of categorification statement”.)

I ...would provide a complete classification of the 2-simples, because of the
Bezrukavnikov–Finkelberg–Ostrik theorem. Example

I ...is a potential approach to similar questions in 2-representation theory beyond
Soergel bimodules.

Examples in type A1; coinvariant algebra.

C1 = C[x ]/x2 and Cs = C[x ]/x2 ⊗ C[x ]/x2. (Positively graded, but non-semisimple.)

A1 = C and As = C⊗ C. (Degree zero part.)

Construction of A 0
H.

A 0
H = add

(
{vkCw | w ∈ H, k ≥ 0}

)
/add

(
{vkCw | w ∈ H, k > 0}

)
(Degree zero part.)

Theorem (Bezrukavnikov–Finkelberg–Ostrik ∼2006).

For almost all H ⊂ J in finite Coxeter type

A 0
H(W ) ∼= V ect((Z/2Z)k=k(J )

)
.
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There is still much to do...

Thanks for your attention!
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Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation monoid T3). Cells – left L (columns), right R
(rows), two-sided J (big rectangles), H = L ∩R (small rectangles).

(123), (213), (132)

(231), (312), (321)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)

(221), (112) (113), (311) (223), (332)

(111) (222) (333)

Jlowest

Jmiddle

Jbiggest

H ∼= S3

H ∼= S2

H ∼= S1

Cute facts.

I Each H contains precisely one idempotent e or no idempotent. Each e is
contained in some H(e). (Idempotent separation.)

I Each H(e) is a maximal subgroup. (Group-like.)

I Each simple has a unique maximal J (e) whose H(e) do not kill it. (Apex.)

Theorem. (Mind your groups!)—stated for monoids

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

Thus, the maximal subgroups H(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

Example. (T3.)

H(e) = S3,S2,S1 gives 3 + 2 + 1 = 6 associated simples.

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.

Note. Whenever one has a (reasonable) antiinvolution ?,
the H-cells to consider are the diagonals H = L ∩ L?.
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Kazhdan–Lusztig (KL) and others ∼1979++. Green’s theory in linear.

Example ( Coxeter group of type B2, BS=KL basis). Cells – left L (columns), right
R (rows), two-sided J (big rectangles), H = L ∩ L−1 (diagonal rectangles).

1

s, sts ts

st t, tst

w0

Jlowest

Jmiddle

Jbiggest

SH ∼= Zv

SH‘ ∼= ’Zv[Z/2Z]

SH‘ ∼= ’Zv

Everything crucially depends on the choice of BS.

I SH = Zv{BH} is an algebra modulo bigger cells, but the SH do not
parametrize the simples of S. Example

I SH tends to have pseudo-idempotents e2 = λ · e rather than idempotents.
Even worse, SH could contain no (pseudo-)idempotent e at all.

I SH is a not group-like in general.

Question.

What can one do to at least
partially recover the H-cell theorem?

Question.

Can we find good a basis for which SH is group-like?

Spoiler.

On the categorified level the “basis problem” vanishes
– take the basis given by the equivalence classes of indecomposables –

and a version of the H-cell theorem can be recovered.

However, SH still is not group-like.

Next time (Vanessa’s talk).

The whole categorified story.

Now.

How to make SH group-like for the KL basis (a good basis).
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Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
For I2(4) (this is type B2) we have a 4-gon:

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.

Example (type B2).

vhss,s = 1 + v2 = [2], v4hw0
w0,w0

= 1 + 2v2 + 2v4 + 2v6 + v8.

c1

c1 c1

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst+cw0 cs + csts

csts [2]csts [2]cs+[2]2cw0 [2]cst+[2]cw0 cs + csts cs+[2]2cw0 cs + csts+[2]cw0

cts [2]cts [2]cts+[2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst+[2]cw0 2cts+cw0

ct cts cts+cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct+[2]2cw0 ct + ctst+[2]cw0 [2]ctst [2]ct+[2]2cw0 [2]cts+[2]cw0

cst cs + csts cs + csts+[2]cw0 2cst+cw0 [2]cst [2]cst+[2]cw0 [2]cs + [2]csts

cw0

cw0 v4hw0
w0,w0

cw0

(Note the “subalgebras”.)

Back

Thus, up to scaling(!), the SH are C(v), C(v)[Z/2Z] and C(v).
So 1 + 2 + 1 simples, ordered by apex.

However, the Weyl group of type B2 has 1 + 3 + 1 simples, ordered by apex.

Crucial: “Up to scaling” is not a good notion for
the categorified world as we should work over Nv = N[v, v−1] or Zv.

Using appropriate versions of simple Nv-representations,
one recovers the H-cell theorem.

However, SH are still not nice over Nv or Zv.

The asymptotic limit A0(W ) of Hv(W ) is defined as follows.

As a free Z-module:

A0(W ) =
⊕
J Z{aw | w ∈ J }. vs. Hv(W ) = Zv{cw | w ∈W }.

Multiplication.

axay =
∑

z∈J γ
z
x,yaz . vs. cxcy =

∑
z∈J va(z)hzx,ycz + bigger friends.

where
γzx,y = va(z)hzx,y (0) ∈ N.

Think: “A crystal limit for the Hecke algebra” .

Example (type B2).

The multiplication tables (empty entries are 0 and [2] = 1 + v2) in 1:
as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst+cw0 cs + csts

csts [2]csts [2]cs+[2]2cw0 [2]cst+[2]cw0 cs + csts cs+[2]2cw0 cs + csts+[2]cw0

cts [2]cts [2]cts+[2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst+[2]cw0 2cts+cw0

ct cts cts+cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct+[2]2cw0 ct + ctst+[2]cw0 [2]ctst [2]ct+[2]2cw0 [2]cts+[2]cw0

cst cs + csts cs + csts + [2]cw0 2cst+cw0 [2]cst [2]cst+[2]cw0 [2]cs + [2]csts

The asymptotic algebra is much simpler!

Fact (Lusztig ∼1984++).

A0(W ) =
⊕
J A0

J (W ) with the aw basis

and all its summands A0
J (W ) = Z{aw | w ∈ J }

are multifusion algebras. (Group-like.)

Multifusion algebras = decategorifications of multifusion categories.

Surprising fact (Lusztig ∼1984++).
It seems one throws almost everything away, but:

There is an explicit embedding

Hv(W ) ↪→ A0(W )⊗Z Zv

which is an isomorphism after scalar extension to C(v).

Surprising consequence (Lusztig ∼1984++).

There is a(n explicit) one-to-one correspondence

{simples of Hv(W ) with apex J } one-to-one←−−−−→ {simples of A0
J (W )}.

Thus, simples of W are ordered into cells (“families”).

Calculation (Lusztig ∼1984++).

For almost all H ⊂ J in finite Coxeter type

A0
H(W ) ∼= Z

[
(Z/2Z)k=k(J )

]
.

Consequence – H-cells (Lusztig ∼1984++).

For almost all J in finite Coxeter type

2k ≤ #{simples with apex J } ≤ 22k .

Example.

In type A one always has k(J ) = 0, so the H-cell theorem holds.

In other types one only gets lower and upper bounds. Big example

(Think: The KL basis is not cellular outside of type A.)

Not too bad: Idempotents in all J , group-like A0
H(W ) and “almost H-cell theorem”.

Spoiler. H-cells and asymptotes are much nicer on the categorified level.
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The asymptotic limit A0(W ) of Hv(W ) is defined as follows.

As a free Z-module:

A0(W ) =
⊕
J Z{aw | w ∈ J }. vs. Hv(W ) = Zv{cw | w ∈W }.

Multiplication.

axay =
∑

z∈J γ
z
x,yaz . vs. cxcy =

∑
z∈J va(z)hzx,ycz + bigger friends.

where
γzx,y = va(z)hzx,y (0) ∈ N.

Think: “A crystal limit for the Hecke algebra” .

Example (type B2).

The multiplication tables (empty entries are 0 and [2] = 1 + v2) in 1:
as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

cs csts cst ct ctst cts
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ct cts cts+cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct+[2]2cw0 ct + ctst+[2]cw0 [2]ctst [2]ct+[2]2cw0 [2]cts+[2]cw0

cst cs + csts cs + csts + [2]cw0 2cst+cw0 [2]cst [2]cst+[2]cw0 [2]cs + [2]csts

The asymptotic algebra is much simpler!

Fact (Lusztig ∼1984++).

A0(W ) =
⊕
J A0

J (W ) with the aw basis

and all its summands A0
J (W ) = Z{aw | w ∈ J }

are multifusion algebras. (Group-like.)

Multifusion algebras = decategorifications of multifusion categories.

Surprising fact (Lusztig ∼1984++).
It seems one throws almost everything away, but:

There is an explicit embedding

Hv(W ) ↪→ A0(W )⊗Z Zv

which is an isomorphism after scalar extension to C(v).

Surprising consequence (Lusztig ∼1984++).

There is a(n explicit) one-to-one correspondence

{simples of Hv(W ) with apex J } one-to-one←−−−−→ {simples of A0
J (W )}.

Thus, simples of W are ordered into cells (“families”).

Calculation (Lusztig ∼1984++).

For almost all H ⊂ J in finite Coxeter type

A0
H(W ) ∼= Z

[
(Z/2Z)k=k(J )

]
.

Consequence – H-cells (Lusztig ∼1984++).

For almost all J in finite Coxeter type

2k ≤ #{simples with apex J } ≤ 22k .

Example.

In type A one always has k(J ) = 0, so the H-cell theorem holds.

In other types one only gets lower and upper bounds. Big example

(Think: The KL basis is not cellular outside of type A.)

Not too bad: Idempotents in all J , group-like A0
H(W ) and “almost H-cell theorem”.

Spoiler. H-cells and asymptotes are much nicer on the categorified level.
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Example (SAGE). The Weyl group of type B6.

cell 0 1 2 3 4 5 6 7 8 9 10 11 12=12′ 13=13′ 11′ 10′ 9′ 8′ 7′ 6′ 5′ 4′ 3′ 2′ 1′ 0′

size 1 62 342 576 650 3150 350 1600 2432 3402 900 2025 14500 600 2025 900 3402 2432 1600 350 3150 650 576 342 62 1

a 0 1 2 3 3 4 4 5 5 6 6 6 7 9 10 10 10 11 11 16 12 15 17 18 25 36

2k 1 2 2 1 2 2 2 1 2 2 1 1 4 2 1 1 2 2 1 2 2 2 1 2 2 1

#simples 1 3 3 1 3 3 3 1 3 3 1 1 10 3 1 1 3 3 1 3 3 3 1 3 3 1

22k 1 4 4 1 4 4 4 1 4 4 1 1 16 4 1 1 4 4 1 4 4 4 1 4 4 1

Actually, #{simples with apex J } = 1
2 (22k + 2k) (the middle).

Back

The asymptotic limit A0(W ) of Hv(W ) is defined as follows.

As a free Z-module:

A0(W ) =
⊕
J Z{aw | w ∈ J }. vs. Hv(W ) = Zv{cw | w ∈W }.

Multiplication.

axay =
∑

z∈J γ
z
x,yaz . vs. cxcy =

∑
z∈J va(z)hzx,ycz + bigger friends.

where
γzx,y = va(z)hzx,y (0) ∈ N.

Think: “A crystal limit for the Hecke algebra” .

Example (type B2).

The multiplication tables (empty entries are 0 and [2] = 1 + v2) in 1:
as asts ast at atst ats
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The asymptotic algebra is much simpler!

Fact (Lusztig ∼1984++).

A0(W ) =
⊕
J A0

J (W ) with the aw basis

and all its summands A0
J (W ) = Z{aw | w ∈ J }

are multifusion algebras. (Group-like.)

Multifusion algebras = decategorifications of multifusion categories.

Surprising fact (Lusztig ∼1984++).
It seems one throws almost everything away, but:

There is an explicit embedding

Hv(W ) ↪→ A0(W )⊗Z Zv

which is an isomorphism after scalar extension to C(v).

Surprising consequence (Lusztig ∼1984++).

There is a(n explicit) one-to-one correspondence

{simples of Hv(W ) with apex J } one-to-one←−−−−→ {simples of A0
J (W )}.

Thus, simples of W are ordered into cells (“families”).

Calculation (Lusztig ∼1984++).

For almost all H ⊂ J in finite Coxeter type

A0
H(W ) ∼= Z

[
(Z/2Z)k=k(J )

]
.

Consequence – H-cells (Lusztig ∼1984++).

For almost all J in finite Coxeter type

2k ≤ #{simples with apex J } ≤ 22k .

Example.

In type A one always has k(J ) = 0, so the H-cell theorem holds.

In other types one only gets lower and upper bounds. Big example

(Think: The KL basis is not cellular outside of type A.)

Not too bad: Idempotents in all J , group-like A0
H(W ) and “almost H-cell theorem”.

Spoiler. H-cells and asymptotes are much nicer on the categorified level.
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Categorified picture – Part 2.

Up next in Vanessa’s talk. The categorification of Lusztig’s “crystal approach” to
the representation theory of Hv for W of finite type (proved in most cases):

A conjectural relationship between 2-representations of A 0 and S v using A 0
H.

Here we use RW to have finite-dimensional hom spaces.

Why is this awesome? Because, if true, then the conjectural relationship...

I ...reduces questions from a non-semisimple, non-abelian setup to the
semisimple world.

I ...implies that there are finitely many equivalence classes of 2-simples of S , by
Ocneanu rigidity. (Kind of a “Uniqueness of categorification statement”.)

I ...would provide a complete classification of the 2-simples, because of the
Bezrukavnikov–Finkelberg–Ostrik theorem. Example

I ...is a potential approach to similar questions in 2-representation theory beyond
Soergel bimodules.

Examples in type A1; coinvariant algebra.

C1 = C[x ]/x2 and Cs = C[x ]/x2 ⊗ C[x ]/x2. (Positively graded, but non-semisimple.)

A1 = C and As = C⊗ C. (Degree zero part.)

Construction of A 0
H.

A 0
H = add

(
{vkCw | w ∈ H, k ≥ 0}

)
/add

(
{vkCw | w ∈ H, k > 0}

)
(Degree zero part.)

Theorem (Bezrukavnikov–Finkelberg–Ostrik ∼2006).

For almost all H ⊂ J in finite Coxeter type

A 0
H(W ) ∼= V ect((Z/2Z)k=k(J )

)
.
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There is still much to do...

Thanks for your attention!
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Picture from https://en.wikipedia.org/wiki/Semigroup.

I There are zillions of semigroups, e.g. 1843120128 of order 8. (Compare: There
are 5 groups of order 8.)

I Already the easiest of these are not semisimple – not even over C.
I Almost all of them are of wild representation type.

Is the study of semigroups hopeless?

Green & co: No!

Back
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Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
For I2(4) (this is type B2) we have a 4-gon:

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.

https://en.wikipedia.org/wiki/Coxeter_group
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Examples.
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Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
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Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .
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Example (type B2).

W

{
= 〈s, t | s2 = t2 = 1, tsts = stst〉
= {1, s, t, st, ts, sts, tst,w0}.

Hv(W )

{
= 〈hs , ht | h2

s = (v−1−v)hs + 1, h2
t = (v−1−v)ht + 1, hthshths = hshthsht〉

= Zv{h1, hs , ht , hst , hts , hsts , htst , hw0}.

In general, Hv(W = (W |S)) is generated by hs for s ∈ S , which satisfy the
quadratic relations and the braid relations.

KL basis:

Hv(W ) = Zv{c1 = 1, cs = v(hs + v), ct = v(ht + v), cst , cts , csts , ctst , cw0}.

c2
s = (1 + v2)cs = [2]cs . (Quasi-idempotent, but “positively graded”.)

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.



Example (type B2).

vhss,s = 1 + v2 = [2], v4hw0
w0,w0

= 1 + 2v2 + 2v4 + 2v6 + v8.

c1

c1 c1

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst+cw0 cs + csts

csts [2]csts [2]cs+[2]2cw0 [2]cst+[2]cw0 cs + csts cs+[2]2cw0 cs + csts+[2]cw0

cts [2]cts [2]cts+[2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst+[2]cw0 2cts+cw0

ct cts cts+cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct+[2]2cw0 ct + ctst+[2]cw0 [2]ctst [2]ct+[2]2cw0 [2]cts+[2]cw0

cst cs + csts cs + csts+[2]cw0 2cst+cw0 [2]cst [2]cst+[2]cw0 [2]cs + [2]csts

cw0

cw0 v4hw0
w0,w0

cw0

(Note the “subalgebras”.)

Back

Thus, up to scaling(!), the SH are C(v), C(v)[Z/2Z] and C(v).
So 1 + 2 + 1 simples, ordered by apex.

However, the Weyl group of type B2 has 1 + 3 + 1 simples, ordered by apex.

Crucial: “Up to scaling” is not a good notion for
the categorified world as we should work over Nv = N[v, v−1] or Zv.

Using appropriate versions of simple Nv-representations,
one almost recovers the H-cell theorem.

However, SH are still not nice over Nv or Zv.



Example (type B2).

vhss,s = 1 + v2 = [2], v4hw0
w0,w0

= 1 + 2v2 + 2v4 + 2v6 + v8.

c1

c1 c1

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst+cw0 cs + csts

csts [2]csts [2]cs+[2]2cw0 [2]cst+[2]cw0 cs + csts cs+[2]2cw0 cs + csts+[2]cw0

cts [2]cts [2]cts+[2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst+[2]cw0 2cts+cw0

ct cts cts+cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct+[2]2cw0 ct + ctst+[2]cw0 [2]ctst [2]ct+[2]2cw0 [2]cts+[2]cw0

cst cs + csts cs + csts+[2]cw0 2cst+cw0 [2]cst [2]cst+[2]cw0 [2]cs + [2]csts

cw0

cw0 v4hw0
w0,w0

cw0

(Note the “subalgebras”.)

Back

Thus, up to scaling(!), the SH are C(v), C(v)[Z/2Z] and C(v).
So 1 + 2 + 1 simples, ordered by apex.

However, the Weyl group of type B2 has 1 + 3 + 1 simples, ordered by apex.

Crucial: “Up to scaling” is not a good notion for
the categorified world as we should work over Nv = N[v, v−1] or Zv.

Using appropriate versions of simple Nv-representations,
one almost recovers the H-cell theorem.

However, SH are still not nice over Nv or Zv.



Example (type B2).

vhss,s = 1 + v2 = [2], v4hw0
w0,w0

= 1 + 2v2 + 2v4 + 2v6 + v8.

c1

c1 c1

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst+cw0 cs + csts

csts [2]csts [2]cs+[2]2cw0 [2]cst+[2]cw0 cs + csts cs+[2]2cw0 cs + csts+[2]cw0

cts [2]cts [2]cts+[2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst+[2]cw0 2cts+cw0

ct cts cts+cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct+[2]2cw0 ct + ctst+[2]cw0 [2]ctst [2]ct+[2]2cw0 [2]cts+[2]cw0

cst cs + csts cs + csts+[2]cw0 2cst+cw0 [2]cst [2]cst+[2]cw0 [2]cs + [2]csts

cw0

cw0 v4hw0
w0,w0

cw0

(Note the “subalgebras”.)

Back

Thus, up to scaling(!), the SH are C(v), C(v)[Z/2Z] and C(v).
So 1 + 2 + 1 simples, ordered by apex.

However, the Weyl group of type B2 has 1 + 3 + 1 simples, ordered by apex.

Crucial: “Up to scaling” is not a good notion for
the categorified world as we should work over Nv = N[v, v−1] or Zv.

Using appropriate versions of simple Nv-representations,
one almost recovers the H-cell theorem.

However, SH are still not nice over Nv or Zv.



Example (SAGEMath). The Weyl group of type B6. Number of elements: 46080.
Number of cells: 26, named 0 (lowest) to 25 (biggest).

Cell order:

6 7 10 13 10′ 7′ 6′

0 1 2 3 5 8 9 12 9′ 8′ 5′ 3′ 2′ 1′ 0′

4 11 11′ 4′

Size of the cells and a-value:

cell 0 1 2 3 4 5 6 7 8 9 10 11 12=12′ 13=13′ 11′ 10′ 9′ 8′ 7′ 6′ 5′ 4′ 3′ 2′ 1′ 0′

size 1 62 342 576 650 3150 350 1600 2432 3402 900 2025 14500 600 2025 900 3402 2432 1600 350 3150 650 576 342 62 1

a 0 1 2 3 3 4 4 5 5 6 6 6 7 9 10 10 10 11 11 16 12 15 17 18 25 36

Back

Example (cell 12).

Cell 12 is a bit scary:

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25
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Example (SAGEMath). Here is a random calculation in the cell 12 for type B6.

Graph:

1 2 3 4 5 64

Elements (shorthand si = i):

d = d−1 = 132123565.

Back

Bigger friends.Killed in the limit v→ 0.Looks much simpler.
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Example (SAGEMath). Here is a random calculation in the cell 12 for type B6.

adad =

ad

Graph:

1 2 3 4 5 64

Elements (shorthand si = i):
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Example (SAGEMath). The Weyl group of type B6.

cell 0 1 2 3 4 5 6 7 8 9 10 11 12=12′ 13=13′ 11′ 10′ 9′ 8′ 7′ 6′ 5′ 4′ 3′ 2′ 1′ 0′

size 1 62 342 576 650 3150 350 1600 2432 3402 900 2025 14500 600 2025 900 3402 2432 1600 350 3150 650 576 342 62 1

a 0 1 2 3 3 4 4 5 5 6 6 6 7 9 10 10 10 11 11 16 12 15 17 18 25 36

2k 1 2 2 1 2 2 2 1 2 2 1 1 4 2 1 1 2 2 1 2 2 2 1 2 2 1

#simples 1 3 3 1 3 3 3 1 3 3 1 1 10 3 1 1 3 3 1 3 3 3 1 3 3 1

22k 1 4 4 1 4 4 4 1 4 4 1 1 16 4 1 1 4 4 1 4 4 4 1 4 4 1

Actually, #{simples with apex J } = 1
2 (22k + 2k) (the middle).

Back



Fusion categories. (Multi)fusion categories C over C are as easy as possible
while being interesting:

I By definition, they are monoidal, rigid, semisimple, C-linear categories with
finitely many simple objects.

I They decategorify to (multi)fusion rings.

I Ocneanu rigidity. The number of multifusion categories (up to equivalence)
with a given Grothendieck ring is finite.

I Ocneanu rigidity. The number of equivalence classes of simple transitive
2-representations over a given multifusion category is finite.

I Crucial. The latter two points are wrong if one drops the semisimplicity.
(Counterexamples are known.)

Fusion categories—complete classification.

I Group-like. C ∼= Rep(G ) or twists; G finite group.

I Group-like. C ∼= V ect(G ) or twists; G finite group.

I Quantum groups. Semisimplifications of quantum group representations at
roots of unity or twist of such.

I Exotic fusion categories. Coming e.g. from subfactors or Soergel bimodules.

Back



Folk theorem(?). The simple transitive 2-representations of Rep(G ) and
V ect(G ) are classified by subgroups H ⊂ G and φ ∈ H2(H,C×), up to conjugacy.

The classification is thus a numerical problem.

For example, for Rep(S5) (appears in type E8) we have:

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

This is completely different from their classical representation theory.

Back



Example (type B2).

W

{
= 〈s, t | s2 = t2 = 1, tsts = stst〉
= {1, s, t, st, ts, sts, tst,w0}.

Hv(W )

{
= 〈hs , ht | h2

s = (v−1−v)hs + 1, h2
t = (v−1−v)ht + 1, hthshths = hshthsht〉

= Zv{h1, hs , ht , hst , hts , hsts , htst , hw0}.
In general, Hv(W = (W |S)) is generated by hs for s ∈ S , which satisfy the
quadratic relations and the braid relations.

KL basis:

Hv(W ) = Zv{c1 = 1, cs = v(hs + v), ct = v(ht + v), cst , cts , csts , ctst , cw0}.

c2
s = (1 + v2)cs = [2]cs . (Quasi-idempotent, but “positively graded”.)

Back



Example (Rep(G )).

I Let C = Rep(G ) (G a finite group).

I C is fusion (fiat and semisimple). For any M, N ∈ C , we have M⊗ N ∈ C :

g(m ⊗ n) = gm ⊗ gn

for all g ∈ G ,m ∈ M, n ∈ N. There is a trivial representation 1.

I The regular 2-representationM : C → End(C ):

M //

f

��

M⊗
f⊗
��

N // N⊗

.

I The decategorification is a N-representation, the regular representation.

I The associated (co)algebra object is AM = 1 ∈ C .

Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).

Non-redundancy. We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate or ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).

Back
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Example (Rep(G )).

I Let K ⊂ G be a subgroup.
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ResGK ⊗ : Rep(G )→ End(Rep(K ))

which is indeed a 2-action because ResGK is a ⊗-functor.
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K (1K ) ∈ C .
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