2-representations of Soergel bimodules I

Or: \mathcal{H}-cells and asymptotes
Daniel Tubbenhauer (Part II: Vanessa Miemietz)

Joint with Marco Mackaay, Volodymyr Mazorchuk and Xiaoting Zhang

December 2019

Clifford, Munn, Ponizovskiï, Green $\sim 1942+$. Finite semigroups or monoids.
Example. $\mathbb{N}, \operatorname{Aut}(\{1, \ldots, n\})=S_{n} \subset T_{n}=\operatorname{End}(\{1, \ldots, n\})$, groups, groupoids, categories, any • closed subsets of matrices, "everything" © click, etc.

The cell orders and equivalences:

$$
\begin{aligned}
x \leq_{L} y \Leftrightarrow \exists z: y=z x, & x \sim_{L} y \Leftrightarrow\left(x \leq_{L} y\right) \wedge\left(y \leq_{L} x\right), \\
x \leq_{R} y \Leftrightarrow \exists z^{\prime}: y=x z^{\prime}, & x \sim_{R} y \Leftrightarrow\left(x \leq_{R} y\right) \wedge\left(y \leq_{R} x\right), \\
x \leq_{L R} y \Leftrightarrow \exists z, z^{\prime}: y=z x z^{\prime}, & x \sim_{L R} y \Leftrightarrow\left(x \leq_{L R} y\right) \wedge\left(y \leq_{L R} x\right) .
\end{aligned}
$$

Left, right and two-sided cells: Equivalence classes.

Example (group-like). The unit 1 is always in the lowest cell - e.g. $1 \leq_{L} y$ because we can take $z=y$. Invertible elements g are always in the lowest cell $-e . g$. $g \leq_{L} y$ because we can take $z=y g^{-1}$.

Clifford, Munn, Ponizovskiï, Green $\sim 1942+$. Finite semigroups or monoids.
Example (the transformation monoid T_{3}). Cells - left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided \mathcal{J} (big rectangles), $\mathcal{H}=\mathcal{L} \cap \mathcal{R}$ (small rectangles).
$\mathcal{J}_{\text {lowest }}$
(123), (213), (132)
(231), (312), (321)

(122), (221)	$(\mathbf{1 3 3}),(331)$	$(233),(322)$	
$(\mathbf{1 2 1}),(212)$	$(313),(131)$	$(323),(232)$	$\mathcal{H} \cong S_{2}$
$(221),(112)$	$(113),(311)$	$(\mathbf{2 2 3}),(332)$	
$(\mathbf{1 1 1})$	$(\mathbf{2 2 2})$	$(\mathbf{3 3 3})$	$\mathcal{H} \cong S_{1}$

$\mathcal{J}_{\text {biggest }}$
$\mathcal{J}_{\text {middle }}$
$(111)|(222)|(333)$
$\mathcal{H} \cong S_{2}$
$\mathcal{H} \cong S_{1}$

Cute facts.

- Each \mathcal{H} contains precisely one idempotent e or no idempotent. Each e is contained in some $\mathcal{H}(e)$. (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ does not kill it. (Apex.)

Cute facts.

- Each \mathcal{H} contains precisely one idempotent e or no idempotent. Each e is contained in some $\mathcal{H}(e)$. (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ does not kill it. (Apex.)

Cute facts.

- Each \mathcal{H} contains precisely one idempotent e or no idempotent. Each e is contained in some $\mathcal{H}(e)$. (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ does not kill it. (Apex.)

Cute facts. This is a general philosophy in representation theory.

- Each \mathcal{H}

Buzz words. Idempotent truncations, Kazhdan-Lusztig cells, quasi-hereditary algebras, cellular algebras, etc.

- Each \mathcal{H} (e) is a maximal suvgroup. (Group-Iाke.)
- Each sim Note. Whenever one has a (reasonable) antiinvolution ${ }^{\star}$, kill it. (Apex.) the \mathcal{H}-cells to consider are the diagonals $\mathcal{H}=\mathcal{L} \cap \mathcal{L}^{\star}$.

Kazhdan-Lusztig (KL) and others $\sim 1979++$. Green's theory in linear.

Choose a basis. For a finite-dimensional algebra S (over $\mathbb{Z}_{\mathrm{v}}=\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$) fix a basis B_{S}. For $x, y, z \in B_{\mathrm{S}}$ write $y \oplus z x$ if y appears in $z x$ with non-zero coefficient.

The cell orders and equivalences:

$$
\begin{array}{cl}
x \leq_{L} y \Leftrightarrow \exists z: y \oplus z x, & x \sim_{L} y \Leftrightarrow\left(x \leq_{L} y\right) \wedge\left(y \leq_{L} x\right), \\
x \leq_{R} y \Leftrightarrow \exists z^{\prime}: y \oplus x z^{\prime}, & x \sim_{R} y \Leftrightarrow\left(x \leq_{R} y\right) \wedge\left(y \leq_{R} x\right), \\
x \leq_{L R} y \Leftrightarrow \exists z, z^{\prime}: y \oplus z x z^{\prime}, & x \sim_{L R} y \Leftrightarrow\left(x \leq_{L R} y\right) \wedge\left(y \leq_{L R} x\right) .
\end{array}
$$

Left, right and two-sided cells: Equivalence classes.

Example (group-like). For $S=\mathbb{C}[G]$ and the choice of the group element basis $B_{\mathrm{S}}=G$, cell theory is boring.

Kazhdan-Lusztig (KL) and others $\boldsymbol{\sim} 1979+$. Green's theory in linear.
Example (coreter group of type $B_{2}, B_{\mathrm{S}}=\mathbf{K L}$ basis). Cells - left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided \mathcal{J} (big rectangles), $\mathcal{H}=\mathcal{L} \cap \mathcal{L}^{-1}$ (diagonal rectangles).
$\mathcal{J}_{\text {lowest }}$
$\mathcal{J}_{\text {middle }}$
$\mathcal{J}_{\text {biggest }}$

1

\mathbf{W}_{0}

$$
\begin{gathered}
\mathrm{S}_{\mathcal{H}} \cong \mathbb{Z}_{\mathrm{v}} \\
\mathrm{~S}_{\mathcal{H}^{\prime}} \cong{ }^{\prime} \mathbb{Z}_{\mathrm{v}}[\mathbb{Z} / 2 \mathbb{Z}] \\
\mathrm{S}_{\mathcal{H}}{ }^{\prime} \cong{ }^{\prime} \mathbb{Z}_{\mathrm{v}}
\end{gathered}
$$

Everything crucially depends on the choice of B_{S}.

- $S_{\mathcal{H}}=\mathbb{Z}_{\mathcal{v}}\left\{B_{\mathcal{H}}\right\}$ is an algebra modulo bigger cells, but the $S_{\mathcal{H}}$ do not parametrize the simples of S.
- $\mathrm{S}_{\mathcal{H}}$ tends to have pseudo-idempotents $e^{2}=\lambda \cdot e$ rather than idempotents. Even worse, $S_{\mathcal{H}}$ could contain no (pseudo-)idempotent e at all.
- $\mathrm{S}_{\mathcal{H}}$ is not group-like in general.

Everything crucially depends on the choice of B_{S}.

- $S_{\mathcal{H}}=\mathbb{Z}_{v}\left\{B_{\mathcal{H}}\right\}$ is an algebra modulo bigger cells, but the $S_{\mathcal{H}}$ do not parametrize the simples of S. \qquad
- $S_{\mathcal{H}}$ tends to have pseudo-idempotents $e^{2}=\lambda \cdot e$ rather than idempotents. Even worse, $S_{\mathcal{H}}$ could contain no (pseudo-)idempotent e at all.
- $S_{\mathcal{H}}$ is not group-like in general.

Example (type B_{2}).

$W=\left\langle s, t \mid s^{2}=t^{2}=1, t s t s=s t s t\right\rangle$. Number of elements: 8 . Number of cells: 3 , named 0 (lowest) to 2 (biggest).

Cell order:

Size of the cells:

cell	0	1	0^{\prime}
size	1	6	1

Cell structure:

Example (type B_{2}).

$W=\langle s, t| s^{2}=t^{2}=1$, tsts
Example (SAGEMath).
named 0 (lowest) to 2 (biggest. $1 \cdot 1=1$. nents: 8. Number of cells: 3,
Cell order:

Size of the cells:

cell	0	1	0^{\prime}
size	1	6	1

Cell structure:

Example (type B_{2}).

$W=\langle s, t\| s^{2}=t^{2}=1$, tsts	Example (SAGEMath).
$1 \cdot 1=1$.	

Cell order:

Example (SAGEMath).

$$
\begin{gathered}
c_{s} \cdot c_{s}=(1+\text { bigger powers }) c_{s} \\
c_{s t s} \cdot c_{s}=(1+\text { bigger powers }) c_{s t s} \\
c_{s t s} \cdot c_{s t s}=(1+\text { bigger powers }) c_{s}+\text { higher cell elements. } \\
c_{s t s} \cdot c_{t s t}=(\text { bigger powers }) c_{s t}+\text { higher cell elements. }
\end{gathered}
$$

Size of the cells.

cell	0	1	0^{\prime}
size	1	6	1

Cell structure:

Example (type B_{2}).

Cell order:

Example (SAGEMath).

$c_{s} \cdot c_{s}=(1+$ bigger powers $) c_{s}$.
$c_{s t s} \cdot c_{s}=(1+$ bigger powers $) c_{s t s}$.
$c_{s t s} \cdot c_{s t s}=(1+$ bigger powers $) c_{s}+$ higher cell elements.
$c_{s t s} \cdot c_{t s t}=$ (bigger powers) $c_{s t}+$ higher cell elements.
Size of the cells.

Cell structure:

Example (type B_{2}).

Cell structure:

Example (type B_{2}).

The asymptotic limit $\mathrm{A}^{0}(W)$ of $\mathrm{H}^{\vee}(W)$ is defined as follows.

As a free \mathbb{Z}-module:

$$
\mathrm{A}^{0}(W)=\bigoplus_{\mathcal{J}} \mathbb{Z}\left\{a_{w} \mid w \in \mathcal{J}\right\} \text { vs. } \mathrm{H}^{v}(W)=\mathbb{Z}_{v}\left\{c_{w} \mid w \in W\right\}
$$

Multiplication.

$$
a_{x} a_{y}=\sum_{z \in \mathcal{J}} \gamma_{x, y}^{z} a_{z} \text { vs. } c_{x} c_{y}=\sum_{z \in \mathcal{J}} v^{\mathbf{a}(z)} h_{x, y}^{z} c_{z}+\text { bigger friends. }
$$

where

$$
\gamma_{x, y}^{z}=\left(v^{\mathbf{a}(z)} h_{x, y}^{z}\right)(0) \in \mathbb{N}
$$

Think: "A crystal limit for the Hecke algebra" .

The asymptotic limit $\mathrm{A}^{0}(W)$ of $\mathrm{H}^{\vee}(W)$ is defined as follows.

Example (type B_{2}).

The multiplication tables (empty entries are 0 and $[2]=1+v^{2}$) in 1 :

	a_{s}	$a_{s t s}$	$a_{s t}$	a_{t}	$a_{t s t}$	$a_{t s}$
a_{s}	a_{s}	$a_{s t s}$	$a_{s t}$			
$a_{s t s}$	$a_{s t s}$	a_{s}	$a_{s t}$			
$a_{t s}$	$a_{t s}$	$a_{t s}$	$a_{t}+a_{t s t}$			
a_{t}				a_{t}	$a_{t s t}$	$a_{t s}$
$a_{t s t}$				$a_{t s t}$	a_{t}	$a_{t s}$
$a_{s t}$				$a_{s t}$	$a_{s t}$	$a_{s}+a_{s t s}$

	c_{s}	$c_{s t s}$	$c_{s t}$	c_{t}	$c_{t s t}$	$c_{t s}$
c_{s}	$[2] c_{s}$	$[2] c_{s t s}$	$[2] c_{s t}$	$c_{s t}$	$c_{s t}+c_{w_{0}}$	$c_{s}+c_{s t s}$
$c_{s t s}$	$[2] c_{s t s}$	$[2] c_{s}$	$[2]^{2} c_{w_{0}}$	$[2] c_{s t}+[2] c_{w_{0}}$	$c_{s}+c_{s t s}$	$c_{s}+[2]^{2} c_{w_{0}}$
$c_{t s}$	$[2] c_{t s}$	$[2] c_{t s}+[2] c_{w_{0}}$	$[2] c_{t}+[2] c_{t s t}$	$c_{t}+c_{s t s}+[2] c_{w_{0}}$		
c_{t}	$c_{t s}$	$c_{t s}+c_{w_{0}}$	$c_{t}+c_{t s t}+[2] c_{w_{0}}$	$2 c_{t s t}+c_{w_{0}}$		
$c_{t s t}$	$c_{t}+c_{t s t}$	$c_{t}+[2]^{2} c_{w_{0}}$	$c_{t}+c_{t s t}+[2] c_{w_{0}}$	$[2] c_{t}$	$[2] c_{t s t}$	$[2] c_{t s}$
$c_{s t}$	$c_{s}+c_{s t s}$	$c_{s}+c_{s t s}+[2] c_{w_{0}}$	$2 c_{s t}+c_{w_{0}}$	$[2] c_{s t}$	$[2] c_{s t}+[2] c_{w_{0}}$	$[2] c_{s}+[2] c_{s t s}$

The asymptotic algebra is much simpler!

The asyn \quad Fact (Lusztig $\boldsymbol{\sim 1 9 8 4 + +) . ~}$
$\mathrm{A}^{0}(W)=\bigoplus_{\mathcal{J}} \mathrm{A}_{\mathcal{J}}^{0}(W)$ with the a_{w} basis and all its summands $\mathrm{A}_{\mathcal{J}}^{0}(W)=\mathbb{Z}\left\{a_{w} \mid w \in \mathcal{J}\right\}$
As a free are multifusion algebras. (Group-like.)

Multifusion algebras $=$ decategorifications of multifusion categories.

Multiplication.

$$
a_{x} a_{y}=\sum_{z \in \mathcal{J}} \gamma_{x, y}^{z} a_{z} \text { vs. } c_{x} c_{y}=\sum_{z \in \mathcal{J}} v^{\mathbf{a}(z)} h_{x, y}^{z} c_{z}+\text { bigger friends. }
$$

where

$$
\gamma_{x, y}^{z}=\left(\mathrm{v}^{\mathrm{a}(z)} h_{x, y}^{z}\right)(0) \in \mathbb{N}
$$

Think: "A crystal limit for the Hecke algebra" .
Fact (Lusztig $\sim \mathbf{1 9 8 4 + +) .}$

The asyn | $\mathrm{A}^{0}(W)=\bigoplus_{\mathcal{J}} \mathrm{A}_{\mathcal{J}}^{0}(W)$ with the a_{w} basis |
| :---: |
| and all its summands $\mathrm{A}_{\mathcal{J}}^{0}(W)=\mathbb{Z}\left\{a_{w} \mid w \in \mathcal{J}\right\}$ |
| are multifusion algebras. (Group-like.) |

Multifusion algebras $=$ decategorifications of multifusion categories.

Multiplication.	Surprising fact (Lusztig $\sim 1984++$). It seems one throws almost everything away, but: There is an explicit embedding $\mathrm{H}^{\vee}(W) \hookrightarrow \mathrm{A}^{0}(W) \otimes_{\mathbb{Z}} \mathbb{Z}_{v}$ which is an isomorphism after scalar extension to $\mathbb{C}(\mathrm{v})$.	
$a_{x} a_{y}=$		friends.
where		
	Think: "A crystal limit for the Hecke algebra"	

The asyn	Fact (Lusztig $\sim 1984++$).
As a free	$\mathrm{A}^{0}(W)=\bigoplus_{\mathcal{J}} \mathrm{A}_{\mathcal{J}}^{0}(W)$ with the a_{w} basis and all its summands $\mathrm{A}_{\mathcal{J}}^{0}(W)=\mathbb{Z}\left\{a_{w} \mid w \in \mathcal{J}\right\}$ are multifusion algebras. (Group-like.)
	Multifusion algebras $=$ decategorifications of multifusion categories.

Surprising consequence (Lusztig ~1984++).

There is a(n explicit) one-to-one correspondence
$\left\{\right.$ simples of $\mathrm{H}^{\vee}(W)$ with apex $\left.\mathcal{J}\right\} \xrightarrow{\text { one-to-one }}\left\{\right.$ simples of $\left.\mathrm{A}_{\mathcal{J}}^{0}(W)\right\}$.
Thus, simples of W are ordered into cells ("families").

The asymptotic limi	Calculation (Lusztig $\sim 1984+$)
As a free \mathbb{Z}-module:	For almost all $\mathcal{H} \subset \mathcal{J}$ in finite Coxeter type
	$\mathrm{A}_{\mathcal{H}}^{0}(W) \cong \mathbb{Z}\left[(\mathbb{Z} / 2 \mathbb{Z})^{k=k(\mathcal{J})}\right]$.
	$\mathcal{J}_{\mathcal{J}} \mathbb{Z}\left\{a_{w} \mid w \in \mathcal{J}\right\}$ vs. $\mathrm{H}^{\mathrm{v}}(W)=\mathbb{Z}_{v}\{$

Multiplication.

$$
a_{x} a_{y}=\sum_{z \in \mathcal{J}} \gamma_{x, y}^{z} a_{z} \text { vs. } c_{x} c_{y}=\sum_{z \in \mathcal{J}} v^{\mathrm{a}(z)} h_{x, y}^{z} c_{z}+\text { bigger friends. }
$$

where

$$
\gamma_{x, y}^{z}=\left(v^{\mathbf{a}(z)} h_{x, y}^{z}\right)(0) \in \mathbb{N}
$$

Think: "A crystal limit for the Hecke algebra" .

where

$$
\gamma_{x, y}^{z}=\left(\mathrm{v}^{\mathbf{a}(z)} h_{x, y}^{z}\right)(0) \in \mathbb{N}
$$

Think: "A crystal limit for the Hecke algebra" .

Not too bad: Idempotents in all \mathcal{J}, group-like $\mathrm{A}_{\mathcal{H}}^{0}(W)$ and "almost \mathcal{H}-cell theorem".
Spoiler. \mathcal{H}-cells and asymptotes are much nicer on the categorified level.

Categorified picture - Part 1.

Theorem (Soergel-Elias-Williamson $\sim 1990,2012$).

There exists a graded, monoidal category $\mathscr{S}^{\mathrm{v}}=\mathscr{S}^{\mathrm{v}}(W)$ such that:
(1) For every $w \in W$, there exists an indecomposable object C_{w}.
(2) The C_{w}, for $w \in W$, form a complete set of pairwise non-isomorphic indecomposable objects up to shifts.
(3) The identity object is C_{1}, where 1 is the unit in W.
(4) \mathscr{S}^{\vee} categorifies H^{\vee} with $\left[\mathrm{C}_{w}\right]=c_{w}$.
(5) $\operatorname{grdim}\left(\operatorname{hom}_{\mathcal{S V}^{v}}\left(\mathrm{C}_{v}, \mathrm{v}^{k} \mathrm{C}_{w}\right)\right)=\delta_{v, w} \delta_{0, k}$. (Soergel's hom formula a.k.a. positively graded.)

Let R- or R_{W} be the polynomial or the coinvariant algebra attached to the geometric representation of W. Soergel bimodules for me are defined as the additive Karoubi closure of the full subcategory of R - or R^{W}-bimodules generated by the Bott-Samelson bimodules, e.g. $B_{s}=R \otimes_{R^{s}} R$, and their shifts.

Categorified picture - Part 1.

Examples in type A_{1}; polynomial ring.

T Let $\mathrm{R}=\mathbb{C}[x]$ with $\operatorname{deg}(x)=2$ and $W=S_{2}$ action given by $s . x=-x ; \mathrm{R}^{s}=\mathbb{C}\left[x^{2}\right]$.
The indecomposable Soergel bimodules over R are

$$
\mathrm{C}_{1}=\mathbb{C}[x] \text { and } \mathrm{C}_{s}=\mathbb{C}[x] \otimes_{\mathbb{C}\left[x^{2}\right]} \mathbb{C}[x]
$$

indecomposable objects up to shifts.
(3) The identity object is C_{1}, where 1 is the unit in W.
(4) \mathscr{S}^{v} categorifies H^{\vee} with $\left[\mathrm{C}_{w}\right]=c_{w}$.
(5) $\operatorname{grdim}\left(\operatorname{hom}_{\mathscr{S} v}\left(\mathrm{C}_{v}, \mathrm{v}^{k} \mathrm{C}_{w}\right)\right)=\delta_{v, w} \delta_{0, k}$. (Soergel's hom formula a.k.a. positively graded.)

Let R^{-}or R_{W} be the polynomial or the coinvariant algebra attached to the geometric representation of W. Soergel bimodules for me are defined as the additive Karoubi closure of the full subcategory of R - or R^{W}-bimodules generated by the Bott-Samelson bimodules, e.g. $B_{s}=R \otimes_{R^{s}} R$, and their shifts.

Categorified picture - Part 1.

Examples in type A_{1}; polynomial ring.

T Let $\mathrm{R}=\mathbb{C}[x]$ with $\operatorname{deg}(x)=2$ and $W=S_{2}$ action given by $s . x=-x ; \mathrm{R}^{s}=\mathbb{C}\left[x^{2}\right]$.
The indecomposable Soergel bimodules over R are

$$
\mathrm{C}_{1}=\mathbb{C}[x] \text { and } \mathrm{C}_{s}=\mathbb{C}[x] \otimes_{\mathbb{C}\left[x^{2}\right]} \mathbb{C}[x]
$$

indecompos | Examples in type $A_{1} ;$ coinvariant algebra. |
| :--- |
| (3) The identit |
| (4) \mathscr{S}^{v} catego, |
| (5) grdim(hon coinvariant algebra is $\mathrm{R}_{W}=\mathbb{C}[x] / x^{2}$. |
| Let R - or R_{W} The indecomposable Soergel bimodules over R_{W} are ositively graded.) |
| $\mathrm{C}_{1}=\mathbb{C}[x] / x^{2}$ and $\mathrm{C}_{s}=\mathbb{C}[x] / x^{2} \otimes \mathbb{C}[x] / x^{2}$. | ed to the

Categorified victure - Part 1.

Examples in type A_{1}; polynomial ring.

Let $\mathrm{R}=\mathbb{C}[x]$ with $\operatorname{deg}(x)=2$ and $W=S_{2}$ action given by s. $x=-x ; \mathrm{R}^{s}=\mathbb{C}\left[x^{2}\right]$.
The indecomposable Soergel bimodules over R are

$$
\mathrm{C}_{1}=\mathbb{C}[x] \text { and } \mathrm{C}_{s}=\mathbb{C}[x] \otimes_{\mathbb{C}\left[x^{2}\right]} \mathbb{C}[x] .
$$

indecompos Examples in type A_{1}; coinvariant algebra.
(3) The identit
(4) \mathscr{S}^{\vee} catego, The coinvariant algebra is $\mathrm{R}_{w}=\mathbb{C}[x] / x^{2}$.
(5) grdim(hom The indecomposable Soergel bimodules over R_{W} are ositively graded.)

Let R - or $\mathrm{R}_{W} \quad \mathrm{C}_{1}=\mathbb{C}[x] / x^{2}$ and $\mathrm{C}_{s}=\mathbb{C}[x] / x^{2} \otimes \mathbb{C}[x] / x^{2}$.
geometric representation of W. Soergel bimodules for me are defined as the
Examples in type A_{1}; coinvariant algebra.

$$
\mathrm{C}_{s} \otimes_{\mathrm{R}_{W}} \mathrm{C}_{s}=\left(\mathbb{C}[x] / x^{2} \otimes \mathbb{C}[x] / x^{2}\right) \otimes_{\mathbb{C}[x] / x^{2}}\left(\mathbb{C}[x] / x^{2} \otimes \mathbb{C}[x] / x^{2}\right)
$$

Which gives $\mathrm{C}_{s} \mathrm{C}_{s} \cong \mathrm{C}_{s} \oplus \mathrm{C}_{s}\langle 2\rangle=\left(1+\mathrm{v}^{2}\right) \mathrm{C}_{s}$.

Categorified picture - Part 2.

Theorem (Lusztig, Elias-Williamson ~2012).

There exists a multifion bicategory $\mathscr{A}^{0}=\mathscr{A}^{0}(W)$ such that:
(1) For every $w \in W$, there exists a simple object A_{w}.
(2) The A_{w}, for $w \in W$, form a complete set of pairwise non-isomorphic simple objects.
(3) The 'identity objects' are A_{d}, where d are Duflo involutions.
(4) \mathscr{A}^{0} categorifies A^{0} with $\left[\mathrm{A}_{w}\right]=a_{w}$.
(5) \mathscr{A}^{0} is the degree zero part of \mathscr{S}^{v}.

Categorified picture - Part 2.

Examples in type A_{1}; coinvariant algebra.
$\mathrm{C}_{1}=\mathbb{C}[x] / x^{2}$ and $\mathrm{C}_{s}=\mathbb{C}[x] / x^{2} \otimes \mathbb{C}[x] / x^{2}$. (Positively graded, but non-semisimple.)
$\mathrm{A}_{1}=\mathbb{C}$ and $\mathrm{A}_{s}=\mathbb{C} \otimes \mathbb{C}$. (Degree zero part.)

objects.
(3) The 'identity objects' are A_{d}, where d are Duflo involutions.
(4) \mathscr{A}^{0} categorifies A^{0} with $\left[\mathrm{A}_{w}\right]=a_{w}$.
(5) \mathscr{A}^{0} is the degree zero part of \mathscr{S}^{v}.

Categorified picture - Part 2.

Examples in type A_{1}; coinvariant algebra.
$\mathrm{C}_{1}=\mathbb{C}[x] / x^{2}$ and $\mathrm{C}_{s}=\mathbb{C}[x] / x^{2} \otimes \mathbb{C}[x] / x^{2}$. (Positively graded, but non-semisimple.)
$\mathrm{A}_{1}=\mathbb{C}$ and $\mathrm{A}_{s}=\mathbb{C} \otimes \mathbb{C}$. (Degree zero part.)

objects.

(3) The 'identity obiects' are A_{d}. where d are Duflo involutions.

Construction of $\mathscr{A}_{\mathcal{H}}^{0}$.

$$
\mathscr{A}_{\mathcal{H}}^{0}=\operatorname{add}\left(\left\{\mathrm{v}^{k} \mathrm{C}_{w} \mid w \in \mathcal{H}, k \geq 0\right\}\right) / \operatorname{add}\left(\left\{\mathrm{v}^{k} \mathrm{C}_{w} \mid w \in \mathcal{H}, k>0\right\}\right) \text { (Degree zero part.) }
$$

Categorified picture - Part 2.

Examples in type A_{1}; coinvariant algebra.
$\mathrm{C}_{1}=\mathbb{C}[x] / x^{2}$ and $\mathrm{C}_{s}=\mathbb{C}[x] / x^{2} \otimes \mathbb{C}[x] / x^{2}$. (Positively graded, but non-semisimple.)
$\mathrm{A}_{1}=\mathbb{C}$ and $\mathrm{A}_{s}=\mathbb{C} \otimes \mathbb{C}$. (Degree zero part.)

objects.

(3) The 'identity obiects' are A_{d}. where d are Duflo involutions.

Construction of $\mathscr{A}_{\mathcal{H}}^{0}$.

$$
\mathscr{A}_{\mathcal{H}}^{0}=\operatorname{add}\left(\left\{\mathrm{v}^{k} \mathrm{C}_{w} \mid w \in \mathcal{H}, k \geq 0\right\}\right) / \operatorname{add}\left(\left\{\mathrm{v}^{k} \mathrm{C}_{w} \mid w \in \mathcal{H}, k>0\right\}\right) \text { (Degree zero part.) }
$$

Theorem (Bezrukavnikov-Finkelberg-Ostrik ~2006).

For almost all $\mathcal{H} \subset \mathcal{J}$ in finite Coxeter type

$$
\mathscr{A}_{\mathcal{H}}^{0}(W) \cong \mathscr{V} \operatorname{ect}\left((\mathbb{Z} / 2 \mathbb{Z})^{k=k(\mathcal{J})}\right)
$$

Categorified picture - Part 2.

Up next in Vanessa's talk. The categorification of Lusztig's "crystal approach" to the representation theory of H^{\vee} for W of finite type (proved in most cases):

A conjectural relationship between 2-representations of \mathscr{A}^{0} and \mathscr{S}^{v} using $\mathscr{A}_{\mathcal{H}}^{0}$.

Here we use R^{W} to have finite-dimensional hom spaces.

Why is this awesome? Because, if true, then the conjectural relationship...

- ...reduces questions from a non-semisimple, non-abelian setup to the semisimple world. (Where life is reasonably Casy.)
- ...implies that there are finitely many equivalence classes of 2 -simples of \mathscr{S}, by Ocneanu rigidity. (Kind of a "Uniqueness of categorification statement".)
- ...would provide a complete classification of the 2 -simples, because of the Bezrukavnikov-Finkelberg-Ostrik theorem.
\rightarrow Example
- ...is a potential approach to similar questions in 2-representation theory beyond Soergel bimodules.

Clifford, Munn, Ponizowskī̈, Green $\sim 1942++$. Finite semigroups or monoids.
Example (the transformation monoid $\left.T_{1}\right)$. Celk - left C (columns), ight R
(rows), twosidided \mathcal{J} (bis rectangies) $H-C \cap$ (small rectangles)

$\lambda_{\text {ranat }}$		123) (123), त12 (231)-(132), (231)	$H \approx S$,
Jniat*	(122) 1224)		$H \simeq S_{2}$
	(121) [1212)	${ }^{\text {(1313), (121) }}$ (1323) (123)	
	(212) (112)	(113)(\%11) (223).(132)	
$J_{\text {supu }}$	(111)	(222) (333)	$H \approx 5$

Cute facts.

- Each \mathcal{H} contains preciscly one idempotent e ar no idempotent. Each e is contained in some $\mathrm{H}(\mathrm{e})$. (Idempotent separation
- Exch simple has a unique maximal $\mathcal{J}(\mathrm{e})$ whose $\mathcal{H}(\rho)$ do not will it. (Apex)

Example (type B_{2}).

(Note the "subalgetras".)
∞

Example (SAGE). The Weyt group of type B_{4}

(tualx. $+\left(\right.$ smples with aper $\left.J^{\prime}\right)-\frac{1}{5}\left(2^{2 n}+2 v\right)$ (the middle)
\Leftrightarrow

Kazhdan-Lusstig (KL) and others $\sim 1979++$. Green's thecry in linear.

$J_{\text {rout }}$	1	$\mathrm{s}_{4} \simeq z_{\text {, }}$
$J_{\text {must }}$		
$\lambda_{\text {jowe }}$	wo	$\mathrm{S}_{\mathrm{H}^{\prime}} \simeq{ }^{\text {r }}$

Everything crucially depends on the choice of $B_{\mathrm{s} \text {. }}$

- $\mathrm{S}_{N}-Z_{\alpha}\left(B_{\mu}\right)$ is an algebra modulo bieger cells, but the S_{R} do not
- S_{N} tends to have psocuco idempocents $e^{2}-\lambda$. e rather than idempotent.
Even worse, S_{μ} could contain no (pseudo-)idempotent e at all.
- S_{N} is a not group-like in general

The asmptotic limit $\mathrm{A}^{0}(W)$ of $\mathrm{H}^{\mathrm{v}}(W)$ is defined as follows.

As a free Z -module:

$$
\Lambda^{0}(W)-\oplus_{j} Z_{2} z_{2}|W \in \mathcal{J}| \cdot v s . H^{\cdot}(W)-Z_{*}\left(c_{w} \mid w \in W\right)
$$

Multiplication.
 where

$$
x_{x_{0, y}^{x}}^{x}-v^{2(x)} h_{x, y}^{x}(0) \in N .
$$

Thince "A crystal limit for the Hecke algetra"


```
\ldots.........
...<:...
```


Examples.
Type $A_{0} \cdots$ tetrahedron symmetric group S_{4}
Type $B_{3} \ldots$ oube/octahedron … Weil group $(Z / 2 Z)^{1} \times S_{3}$
Type $H_{0}=$ dodeccahedron/icosahedron moup exceptional Coxeter group.
For $i_{2}(4)$ (this is type B_{3}) we have a 4 gon. For $\mathrm{s}_{2}(4)$ (this is type B_{2}) we have 24 -gor

ω

Categorified picture - Part 2
Up next in Vanessi's talk. The categorifiction of Luzrtig's "costal approach" the representation theory of H^{V} for W of finite type (proved in most casse):
 Here we use $\mathrm{H}^{\text {W/ }}$ to the finite dimentional hom spaces

Why is this zwsome? Because, if true, then the conjectural relationship.

- reduces questions from a non-semisimple, non-abelian setup to the
semisimple warld.
- implies that there are finitely many mequialence classes of 2-simples of \mathcal{Y}, by
- would erovide a complete dasification of the 2 -simples, bocause of the

Berrukuminow-Finkelbeg-Oatrik theorem.

- is 2 potentid approach to similar questions in 2 -representation theory beyond Soergel bimodules.

There is still much to do.

Clifford, Munn, Ponizowskī̈, Green $\sim 1942++$. Finite semigroups or monoids.
Example (the transformation monoid $\left.T_{1}\right)$. Celk - left C (columns), ight R
(rows), twosidided \mathcal{J} (bis rectangies) $H-C \cap$ (small rectangles)

$\mathcal{J}_{\text {cout }}$		123).(123). (122		$H \approx S_{1}$
$J_{\text {nuist }}$	(122).123)	(133), (mu)	(2m)	$H_{\sim} S_{1}$
	(121) -1212)	${ }^{\text {(1313) (IIII) }}$	(323).123)	
	(212) (112)	(113)(mil)	(223) (123)	
$J_{\text {bowe }}$	(111)	(222)	333)	

Cute facts.

Each H contains precisely one idempotent e or no idempotent. Exch e is contained in same $\mathrm{H}(\mathrm{e})$. (Idempotent separation:)

- Each simple has a unique maximal $\mathcal{J}(\mathrm{e})$ nhose $\mathcal{H}(o)$ do not hill it. (Apex)

Example (type B_{2}).

(Note the "subalgetras".)
∞

Example (SAGE). The Weyl group of type E_{4}

(tualx. +(Smples with aper 3$\left.)-y\left(2^{22}+2\right)^{\prime}\right)$ (the middle)
\Leftrightarrow

Kazhdan-Lustig (KL) and others $\sim 1979+4$. Green's theory in lirear.

Joma	1	$S_{\text {H }} \simeq z_{\sim}$
$J_{\text {must }}$	$\begin{array}{l\|l} \text { s.men } & u \\ \hline a t & t \end{array}$	
$\lambda_{\text {jove }}$	we	$\mathrm{SN}^{\prime} \simeq{ }^{\text {² }}$

Everything crucially depends on the choice of $B_{\text {s. }}$.

- $\mathrm{S}_{N}-\mathrm{Z}_{\text {d }}$ ($\left.B_{H}\right]$ is an algebra modulo bizger cells, but the S_{N} do not
- S_{N} tends to have pactuco ddempotents $e^{2}-\lambda$ e rather than idempotent
Even worse, S_{μ} could contain no (pseudo-)idempotent e at all.
- S_{N} is a not group-like in general

The asmptotic limit $\mathrm{A}^{0}(W)$ of $\mathrm{H}^{\mathrm{v}}(W)$ is defined as follows.

As a free Z -module:

$$
\left.\left.\Lambda^{0}(W)-\oplus_{J} Z_{2}\left\langle\alpha_{2}\right| w \in \mathcal{J}\right) \text {. vs. } H^{\cdot}(W)-Z_{v}\left(c_{w} \mid w \in W\right)\right]
$$

Multiplication.
 where

$$
x_{b, y}^{x}-v^{2(x)} h_{x, y}^{x}(0) \in \mathbb{N} .
$$

Thinke "A crystal limit for the Hecke algetra"


```
\ldots..........
............
```


Example

 For $b_{2}(4)$ (this is type B_{2}) we have a 4-gor

ω

Categorified picture - Part 2
Up next in Vanesse's talk. The categorification of Lustig's "cnstal aperoch" the representation theory of HV for W of finite type (proved in most cass):
 Here we u e $\mathrm{H}^{\text {b/ }}$ to the finite dimeniorual hom spaces

Why is this zwsome? Because, if true, then the conjectural relationship.

- reduces questions from a non-semisimple, non-abelian setup to the
semisimple world.
- implies that there are finitely many mequialence classes of 2-simples of \mathcal{Y}, by
- would provide a complete dasiqfication of the 2 -simples. bocause of th

Bezrubamikov-Finkelbeg-Oatrik thearem. \leftrightarrows
Soerged himoduproach to similar questions in 2 -representation thoory beyond Soergel bimodules.

Thanks for your attention!

Semigroupoid	Totality	Associativity	Identity	Invertibilit	mmutativity
	Unneeded	Required	Unneeded	Unneeded	Unneeded
Small Category	Unneeded	Required	Required	Unneeded	Unneeded
Groupoid	Unneeded	Required	Required	Required	Unneeded
Quasigroup	Required	Unneeded	Unneeded	Unneeded	Intreeded
	Required	Unim	mraded	Required	Unneeded
deop	Required	Unneeded	Required	Requirea	manded
Semigroup Inverse Semigroup	Required	Required	Unneeded	Unneeded	Unneeded
	Required	Required	Unneeded	Required	Unneeded
Monoid Group	Required	Required	Required	Unneeded	Unneeded
	Required	Required	Required	Required	Unneeded
Abelian group	Required	Required	Required	Required	Required

Picture from https://en.wikipedia.org/wiki/Semigroup.

- There are zillions of semigroups, e.g. 1843120128 of order 8. (Compare: There are 5 groups of order 8.)
- Already the easiest of these are not semisimple - not even over \mathbb{C}.
- Almost all of them are of wild representation type.

Is the study of semigroups hopeless?

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/viki/Coxeter_group.)

Examples.

Type $A_{3} \leadsto>$ tetrahedron $\leadsto \rightsquigarrow$ symmetric group S_{4}.
Type $B_{3} \leadsto \rightsquigarrow$ cube/octahedron $\rightsquigarrow>$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $H_{3} \leadsto \Longleftrightarrow$ dodecahedron/icosahedron $\leadsto \ll$ exceptional Coxeter group.
For $I_{2}(4)$ (this is type B_{2}) we have a 4-gon:
Idea (Coxeter ~1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples. \quad Fact. The symmetries are given by exchanging flags.
Type $A_{3} \longleftrightarrow \nrightarrow$ tetrahedron $\leadsto \rightsquigarrow$ symmetric group S_{4}.
Type $B_{3} \longleftrightarrow \rightsquigarrow$ cube/octahedron $\rightsquigarrow>$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \leadsto \Longleftrightarrow$ dodecahedron/icosahedron $\leadsto<$ exceptional Coxeter group. For I_{2} (4 Fix a flag F.ee B_{2}) we have a 4-gon:
Idea (Coxeter ~1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/viki/Coxeter_group.)

Examples.

Type $A_{3} \leadsto$ tetrahedron $\leadsto \leadsto$ symmetric group S_{4}.
Type $B_{3} \leadsto \rightsquigarrow$ cube/octahedron $\rightsquigarrow>$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \leadsto \Longleftrightarrow$ dodecahedron/icosahedron $\leadsto>$ exceptional Coxeter group.
For I_{2} (Fix a flag F. pe $\left.B_{2}\right)$ we have a 4-gon:
Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Idea (Coxeter ~1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/viki/Coxeter_group.)

Examples.

Type $A_{3} \leadsto>$ tetrahedron $\leadsto \rightsquigarrow$ symmetric group S_{4}.
Type $B_{3} \leadsto \rightsquigarrow$ cube/octahedron $\rightsquigarrow>$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \leadsto \Longleftrightarrow$ dodecahedron/icosahedron $\rightsquigarrow>$ exceptional Coxeter group.
For I_{2} ($\sqrt[\text { Fix a flag } F \text {. pe } B_{2} \text {) we have a 4-gon: }]{\text { 4 }}$
Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.
Fix a hyperplane H_{1} permuting the adjacent 1 -cells of F, etc.
Idea (Coxeter ~1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type $A_{3} \leadsto>$ tetrahedron $\leadsto \rightsquigarrow$ symmetric group S_{4}.
Type $B_{3} \leadsto \rightsquigarrow$ cube/octahedron $\rightsquigarrow>$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \leadsto>$ dodecahedron/icosahedron $\rightsquigarrow>$ exceptional Coxeter group.
For I_{2} ($\sqrt[\text { Fix a flag } F \text {. pe } B_{2} \text {) we have a 4-gon: }]{\text { 4 }}$
Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.
Fix a hyperplane H_{1} permuting the adjacent 1 -cells of F, etc.

Write a vertex i for each H_{i}.

Idea (Coxeter ~1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/viki/Coxeter_group.)
This gives a generator-relation presentation.

Examples.

Type $B_{3} \longleftrightarrow \rightsquigarrow$ cube/octahedron $\rightsquigarrow>$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \leadsto>$ dodecahedron/icosahedron $\rightsquigarrow>$ exceptional Coxeter group. For I_{2} (4 Fix a flag F. ee B_{2}) we have a 4-gon:
Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.
Fix a hyperplane H_{1} permuting the adjacent 1 -cells of F, etc.

Write a vertex i for each H_{i}.
Connect i, j by an n-edge for H_{i}, H_{j} having angle $\cos (\pi / n)$.
Idea (Coxeter ~1934++).

Example (type B_{2}).

$$
W\left\{\begin{array}{l}
=\left\langle s, t \mid s^{2}=t^{2}=1, t s t s=s t s t\right\rangle \\
=\left\{1, s, t, s t, t s, s t s, t s t, w_{0}\right\}
\end{array}\right.
$$

$$
\mathrm{H}^{\mathrm{v}}(W)\left\{\begin{array}{l}
=\left\langle h_{s}, h_{t} \mid h_{s}^{2}=\left(\mathrm{v}^{-1}-\mathrm{v}\right) h_{s}+1, h_{t}^{2}=\left(\mathrm{v}^{-1}-\mathrm{v}\right) h_{t}+1, h_{t} h_{s} h_{t} h_{s}=h_{s} h_{t} h_{s} h_{t}\right\rangle \\
=\mathbb{Z}_{\mathrm{v}}\left\{h_{1}, h_{s}, h_{t}, h_{s t}, h_{t s}, h_{s t s}, h_{t s t}, h_{w_{0}}\right\} .
\end{array}\right.
$$

In general, $\mathrm{H}^{\vee}(W=(W \mid S))$ is generated by h_{s} for $s \in S$, which satisfy the quadratic relations and the braid relations.

KL basis:

$$
\mathrm{H}^{v}(W)=\mathbb{Z}_{v}\left\{c_{1}=1, c_{s}=v\left(h_{s}+v\right), c_{t}=v\left(h_{t}+v\right), c_{s t}, c_{t s}, c_{s t s}, c_{t s t}, c_{w_{0}}\right\} .
$$

$c_{s}^{2}=\left(1+v^{2}\right) c_{s}=[2] c_{s}$. (Quasi-idempotent, but "positively graded".)

Example (type B_{2}).

$$
v h_{s, s}^{s}=1+v^{2}=[2], v^{4} h_{w_{0}, w_{0}}^{w_{0}}=1+2 v^{2}+2 v^{4}+2 v^{6}+v^{8} .
$$

	c_{s}	$c_{\text {sts }}$	$c_{s t}$	c_{t}	$c_{\text {tst }}$	$c_{\text {ts }}$
c_{s}	${ }^{[2]} c_{s}$	$[2] c_{\text {sts }}$	${ }^{[2]} c_{s t}$	$c_{s t}$	$c_{\text {st }}+c_{\text {w }}$	$c_{s}+c_{\text {sts }}$
$c_{\text {sts }}$	${ }^{[2]} \mathrm{c}_{\text {sts }}$	$[2] c_{s}[2]^{2} c_{m}$	$[2] c_{s t}+[2] c_{w_{0}}$	$c_{s}+c_{s t s}$	$c_{s}+[2]^{2} c_{w_{0}}$	$c_{s}+c_{\text {sts }}+[2] c_{w_{0}}$
$c_{t s}$	${ }^{[2]} c_{t s}$	$[2] c_{t s}+[2] c_{w_{0}}$	$\left.{ }^{2}\right] c_{t}+[2] c_{\text {cts }}$	$c_{t}+c_{\text {tst }}$	$c_{t}+c_{\text {tst }}+[2] c_{w_{0}}$	$2 c_{\text {ts }}+c_{\text {wo }}$
c_{t}	$c_{\text {ts }}$	$c_{\text {ts }}+c_{\text {wo }}$	$c_{t}+c_{\text {tst }}$	${ }^{[2]} c_{t}$	$[2] c_{\text {st }}$	${ }^{[2]} c_{\text {ts }}$
$c_{\text {tst }}$	$c_{t}+c_{\text {tst }}$	$c_{t}+[2]^{2} c_{w_{0}}$	$c_{t}+c_{\text {cts }}+[2] c_{w_{0}}$	${ }^{[2]} c_{\text {ctst }}$	${ }^{[2]} c_{t}[2]^{2} c_{m}$	${ }^{[2]} c_{\text {ts }}+[2] c_{w_{0}}$
$c_{s t}$	$c_{s}+c_{s t s}$	$c_{s}+c_{\text {sts }}+[2] c_{w_{0}}$	$2 c_{\text {st }}+c_{\text {wo }}$	${ }^{[2]} c_{s t}$	$[2] c_{s_{t t}+[2]} c_{w_{0}}$	$[2] c_{s}+[2] c_{s t s}$

	$c_{w_{0}}$
$c_{w_{0}}$	$v^{4} h_{w_{0}, w_{0}}^{w_{w_{0}}} c_{w_{0}}$

(Note the "subalgebras".)

Example (type B_{2}).

$v h_{s, s}^{s}$| Thus, up to scaling(!), the $S_{\mathcal{H}}$ are $\mathbb{C}(v), \mathbb{C}(v)[\mathbb{Z} / 2 \mathbb{Z}]$ and $\mathbb{C}(v)$. |
| :---: |
| So $1+2+1$ simples, ordered by apex. |
| However, the Weyl group of type B_{2} has $1+3+1$ simples, ordered by apex. |

	c_{s}	$c_{s t s}$	$c_{s t}$	c_{t}	$c_{t s t}$	$c_{t s}$
c_{s}	$[2] c_{s}$	$[2] c_{s t s}$	$[2] c_{s t}$	$c_{s t}$	$c_{s t}+c_{w_{0}}$	$c_{s}+c_{s t s}$
$c_{s t s}$	$[2] c_{s t s}$	$[2] c_{s}$	$[2] c_{s t}+[2] c_{w_{0}}$	$c_{s}+c_{s t s}$	$c_{s}+[2]^{2} c_{w_{0}}$	$c_{s}+c_{s t s}+[2] c_{w_{0}}$
$c_{t s}$	$[2] c_{t s}$	$[2] c_{c_{s}}+[2] c_{w_{0}}$	$[2] c_{t}+[2] c_{t s t}$	$c_{t}+c_{t s t}$	$c_{t}+c_{t s t}+[2] c_{w_{0}}$	$2 c_{t s}+c_{w_{0}}$
c_{t}	$c_{t s}$	$c_{t s}+c_{w_{0}}$	$c_{t}+c_{t s t}$	$[2] c_{t}$	$[2] c_{t s t}$	$[2] c_{t s}$
$c_{t s t}$	$c_{t}+c_{t s t}$	$c_{t}+[2]^{2} c_{w_{0}}$	$c_{t}+c_{t s t}+[2] c_{w_{0}}$	$[2] c_{t s t}$	$[2] c_{t}$	$[2] c_{t s}+[2] c_{w_{0}}$
$c_{s t}$	$c_{s}+c_{s t s}$	$c_{s}+c_{s t s}+[2] c_{w_{0}}$	$2 c_{s t}+c_{w_{0}}$	$[2] c_{s t}$	$[2] c_{s t}+[2] c_{w_{0}}$	$[2] c_{s}+[2] c_{s t s}$

	$c_{w_{0}}$
$c_{w_{0}}$	$v^{4} h_{w_{0}, w_{0}}^{w_{0}} c_{w_{0}}$

(Note the "subalgebras".)

Example (type B_{2}).

$v h_{s, s}^{s}$| Thus, up to scaling(!), the $S_{\mathcal{H}}$ are $\mathbb{C}(v), \mathbb{C}(v)[\mathbb{Z} / 2 \mathbb{Z}]$ and $\mathbb{C}(v)$. |
| :---: |
| So $1+2+1$ simples, ordered by apex. |
| However, the Weyl group of type B_{2} has $1+3+1$ simples, ordered by apex. |

(Note the "subalgebras".)

Example (SAGEMath). The Weyl group of type B_{6}. Number of elements: 46080. Number of cells: 26, named 0 (lowest) to 25 (biggest).

Cell order:

Size of the cells and a-value:

cell	0	1	2	3	4	5	6	7	8	9	10	11	$12=12^{\prime}$	$13=13^{\prime}$	11'	10^{\prime}	9^{\prime}	8^{\prime}	$7{ }^{\prime}$	6^{\prime}	$5{ }^{\prime}$	4^{\prime}	$3 \prime$	2^{\prime}	1^{\prime}	0^{\prime}
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	3150	650	576	342	62	1
a	0	1	2	3	3	4	4	5	5	6	6	6	7	9	10	10	10	11	11	16	12	15	17	18	25	36

Example (cell 12).

Example (SAGEMath).
Number of cells: 26, nam

Cell order:
Cell 12 is a bit scary:
umber of elements: 46080.

Size of the cells and a-value:

cell	0	1	2	3	4	5	6	7	8	9	10	11	$12=12^{\prime}$	$13=13^{\prime}$	11^{\prime}	10^{\prime}	9^{\prime}	8^{\prime}	$7{ }^{\prime}$	6^{\prime}	$5{ }^{\prime}$	4^{\prime}	3 '	2^{\prime}	1^{\prime}	0^{\prime}
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	3150	650	576	342	62	1
a	0	1	2	3	3	4	4	5	5	6	6	6	7	9	10	10	10	11	11	16	12	15	17	18	25	36

Example (SAGEMath). Here is a random calculation in the cell 12 for type B_{6}.

Graph:

$$
14-2-3-4-5-6
$$

Elements (shorthand $s_{i}=i$):

$$
d=d^{-1}=132123565 .
$$

Example (SAGEMath). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
c_{d} c_{d}= \\
\left(1+5 v^{2}+12 v^{4}+18 v^{6}+18 v^{8}+12 v^{10}+5 v^{12}+v^{14}\right) c_{d} \\
+\left(v^{2}+4 v^{4}+7 v^{6}+7 v^{8}+4 v^{10}+v^{12}\right) c_{12132123565} \\
+\left(v^{-4}+5 v^{-2}+11+14 v^{2}+11 v^{4}+5 v^{6}+v^{8}\right) c_{121232123565}
\end{gathered}
$$

Graph:

$$
14-2-3-4-5-6
$$

Elements (shorthand $s_{i}=i$):

$$
d=d^{-1}=132123565 .
$$

Example (SAGEMath). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
a_{d} a_{d}= \\
\left(1+5 v^{2}+12 v^{4}+18 v^{6}+18 v^{8}+12 v^{10}+5 v^{12}+v^{14}\right) c_{d} \\
+\left(v^{2}+4 v^{4}+7 v^{6}+7 v^{8}+4 v^{10}+v^{12}\right) c_{12132123565} \\
+\left(v^{-4}+5 v^{-2}+11+14 v^{2}+11 v^{4}+5 v^{6}+v^{8}\right) c_{121232123565}
\end{gathered}
$$

Graph:

$$
14-2-3-4-5-6
$$

Elements (shorthand $s_{i}=i$):

$$
d=d^{-1}=132123565 .
$$

Example (SAGEMath). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
a_{d} a_{d}= \\
\left(1+5 v^{2}+12 v^{4}+18 v^{6}+18 v^{8}+12 v^{10}+5 v^{12}+v^{14}\right) c_{d} \\
+\left(v^{2}+4 v^{4}+7 v^{6}+7 v^{8}+4 v^{10}+v^{12}\right) c_{12132123565} \\
+\left(v^{-4}+5 v^{-2}+11+14 v^{2}+11 v^{4}+5 v^{6}+v^{8}\right) c_{121232123565} \\
\text { Bigger friends. }
\end{gathered}
$$

Graph:

$$
14-2-3-4-5-6
$$

Elements (shorthand $s_{i}=i$):

$$
d=d^{-1}=132123565 .
$$

Example (SAGEMath). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
a_{d} a_{d}= \\
\left(1+5 v^{2}+12 v^{4}+18 v^{6}+18 v^{8}+12 v^{10}+5 v^{12}+v^{14}\right) c_{d} \\
+\left(v^{2}+4 v^{4}+7 v^{6}+7 v^{8}+4 v^{10}+v^{12}\right) c_{12132123565}
\end{gathered}
$$

Graph:

$$
14-2-3-4-5-6
$$

Elements (shorthand $s_{i}=i$):

$$
d=d^{-1}=132123565 .
$$

Example (SAGEMath). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
a_{d} a_{d}= \\
\left(1+5 v^{2}+12 v^{4}+18 v^{6}+18 v^{8}+12 v^{10}+5 v^{12}+v^{14}\right) c_{d} \\
+\left(v^{2}+4 v^{4}+7 v^{6}+7 v^{8}+4 v^{10}+v^{12}\right) c_{12132123565}
\end{gathered}
$$

$$
\text { Killed in the limit } v \rightarrow 0 .
$$

Graph:

$$
14-2-3-4-5-6
$$

Elements (shorthand $s_{i}=i$):

$$
d=d^{-1}=132123565 .
$$

Example (SAGEMath). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
a_{d} a_{d}= \\
a_{d}
\end{gathered}
$$

Looks much simpler.

Graph:

$$
1-2-3-4-5-6
$$

Elements (shorthand $s_{i}=i$):

$$
d=d^{-1}=132123565
$$

Example (SAGEMath). The Weyl group of type B_{6}.

cell	0	1	2	3	4	5	6	7	8	9	10	11	$12=12^{\prime}$	$13=13^{\prime}$	11^{\prime}	10^{\prime}	9^{\prime}	8^{\prime}	7^{\prime}	6^{\prime}	5^{\prime}	4^{\prime}	3^{\prime}	2^{\prime}	1^{\prime}	0^{\prime}
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	3150	650	576	342	62	1
a	0	1	2	3	3	4	4	5	5	6	6	6	7	9	10	10	10	11	11	16	12	15	17	18	25	36
2^{k}	1	2	2	1	2	2	2	1	2	2	1	1	4	2	1	1	2	2	1	2	2	2	1	2	2	1
\#simples	1	3	3	1	3	3	3	1	3	3	1	1	10	3	1	1	3	3	1	3	3	3	1	3	3	1
$2^{2 k}$	1	4	4	1	4	4	4	1	4	4	1	1	16	4	1	1	4	4	1	4	4	4	1	4	4	1

Actually, $\#\{$ simples with apex $\mathcal{J}\}=\frac{1}{2}\left(2^{2 k}+2^{k}\right)$ (the middle).

Fusion categories. (Multi)fusion categories \mathscr{C} over \mathbb{C} are as easy as possible while being interesting:

- By definition, they are monoidal, rigid, semisimple, \mathbb{C}-linear categories with finitely many simple objects.
- They decategorify to (multi)fusion rings.
- Ocneanu rigidity. The number of multifusion categories (up to equivalence) with a given Grothendieck ring is finite.
- Ocneanu rigidity. The number of equivalence classes of simple transitive 2-representations over a given multifusion category is finite.
- Crucial. The latter two points are wrong if one drops the semisimplicity. (Counterexamples are known.)

Fusion categories-complete classification.

- Group-like. $\mathscr{C} \cong \mathscr{R} \operatorname{ep}(G)$ or twists; G finite group.
- Group-like. $\mathscr{C} \cong \mathscr{V} \operatorname{ect}(G)$ or twists; G finite group.
- Quantum groups. Semisimplifications of quantum group representations at roots of unity or twist of such.
- Exotic fusion categories. Coming e.g. from subfactors or Soergel bimodules.

Folk theorem(?). The simple transitive 2-representations of $\mathscr{R e p}(G)$ and $\mathscr{V} \operatorname{ect}(G)$ are classified by subgroups $H \subset G$ and $\phi \in H^{2}\left(H, \mathbb{C}^{\times}\right)$, up to conjugacy.

The classification is thus a numerical problem.

For example, for $\mathscr{R} \mathrm{ep}\left(S_{5}\right)$ (appears in type E_{8}) we have:

K	1	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 3 \mathbb{Z}$	$\mathbb{Z} / 4 \mathbb{Z}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	$\mathbb{Z} / 5 \mathbb{Z}$	S_{3}	$\mathbb{Z} / 6 \mathbb{Z}$	D_{4}	D_{5}	A_{4}	D_{6}	$G A(1,5)$	S_{4}	A_{5}	S_{5}
\#	1	2	1	1	2	1	2	1	1	1	1	1	1	1	1	1
H^{2}	1	1	1	1	$\mathbb{Z} / 2 \mathbb{Z}$	1	1	1	$\mathbb{Z} / 2 \mathbb{Z}$	1	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$			
rk	1	2	3	4	4,1	5	3	6	5,2	4,2	4,3	6,3	5	5,3	5,4	7,5

This is completely different from their classical representation theory.

Example (type B_{2}).

$$
W\left\{\begin{array}{l}
=\left\langle s, t \mid s^{2}=t^{2}=1, t s t s=s t s t\right\rangle \\
=\left\{1, s, t, s t, t s, s t s, t s t, w_{0}\right\}
\end{array}\right.
$$

$$
\mathrm{H}^{\mathrm{v}}(W)\left\{\begin{array}{l}
=\left\langle h_{s}, h_{t} \mid h_{s}^{2}=\left(\mathrm{v}^{-1}-\mathrm{v}\right) h_{s}+1, h_{t}^{2}=\left(\mathrm{v}^{-1}-\mathrm{v}\right) h_{t}+1, h_{t} h_{s} h_{t} h_{s}=h_{s} h_{t} h_{s} h_{t}\right\rangle \\
=\mathbb{Z}_{\mathrm{v}}\left\{h_{1}, h_{s}, h_{t}, h_{s t}, h_{t s}, h_{s t s}, h_{t s t}, h_{w_{0}}\right\} .
\end{array}\right.
$$

In general, $\mathrm{H}^{\mathrm{v}}(W=(W \mid S))$ is generated by h_{s} for $s \in S$, which satisfy the quadratic relations and the braid relations.

KL basis:

$$
\mathrm{H}^{v}(W)=\mathbb{Z}_{v}\left\{c_{1}=1, c_{s}=v\left(h_{s}+v\right), c_{t}=v\left(h_{t}+v\right), c_{s t}, c_{t s}, c_{s t s}, c_{t s t}, c_{w_{0}}\right\} .
$$

$c_{s}^{2}=\left(1+v^{2}\right) c_{s}=[2] c_{s}$. (Quasi-idempotent, but "positively graded".)

Example ($\mathscr{R} \mathrm{ep}(G))$.

- Let $\mathscr{C}=\mathscr{R} \operatorname{ep}(G)$ (G a finite group).
- \mathscr{C} is fusion (fiat and semisimple). For any $\mathrm{M}, \mathrm{N} \in \mathscr{C}$, we have $\mathrm{M} \otimes \mathrm{N} \in \mathscr{C}$:

$$
g(m \otimes n)=g m \otimes g n
$$

for all $g \in G, m \in \mathrm{M}, n \in \mathrm{~N}$. There is a trivial representation 1 .

- The regular 2-representation $\mathscr{M}: \mathscr{C} \rightarrow \mathscr{E}$ nd (\mathscr{C}) :

- The decategorification is a \mathbb{N}-representation, the regular representation.
- The associated (co)algebra object is $\mathrm{A}_{\mathscr{M}}=1 \in \mathscr{C}$.

Example ($\mathscr{R} \mathrm{ep}(G))$.

- Let $K \subset G$ be a subgroup.
- $\mathcal{R e p}(K)$ is a 2 -representation of $\mathscr{R} \operatorname{ep}(G)$, with action

$$
\mathcal{R e s}_{K}^{G} \otimes_{-}: \mathscr{R} \operatorname{ep}(G) \rightarrow \mathscr{E} \operatorname{nd}(\mathcal{R e p}(K))
$$

which is indeed a 2 -action because $\operatorname{Res}_{K}^{G}$ is a \otimes-functor.

- The decategorifications are \mathbb{N}-representations.
- The associated (co)algebra object is $\mathrm{A}_{\mathscr{M}}=\operatorname{Ind}_{K}^{G}\left(1_{K}\right) \in \mathscr{C}$.

Example $(\mathscr{R} \operatorname{ep}(G))$.

- Let $\psi \in H^{2}\left(K, \mathbb{C}^{*}\right)$. Let $\mathcal{V}(K, \psi)$ be the category of projective K-modules with Schur multiplier ψ, i.e.vector spaces V with $\rho: K \rightarrow \mathcal{E} \mathrm{nd}(\mathrm{V})$ such that

$$
\rho(g) \rho(h)=\psi(g, h) \rho(g h), \text { for all } g, h \in K
$$

- Note that $\mathcal{V}(K, 1)=\mathcal{R e p}(K)$ and

$$
\otimes: \mathcal{V}(K, \phi) \boxtimes \mathcal{V}(K, \psi) \rightarrow \mathcal{V}(K, \phi \psi) .
$$

- $\mathcal{V}(K, \psi)$ is also a 2 -representation of $\mathscr{C}=\mathscr{R} \mathrm{ep}(G)$:

$$
\mathscr{R} \mathrm{ep}(G) \boxtimes \mathcal{V}(K, \psi) \xrightarrow{\mathcal{R e s}_{k}^{\epsilon} \boxtimes \mathrm{Id}} \mathcal{R e p}(K) \boxtimes \mathcal{V}(K, \psi) \xrightarrow{\otimes} \mathcal{V}(K, \psi) .
$$

- The decategorifications are \mathbb{N}-representations.
- The associated (co)algebra object is $\mathrm{A}_{\mathscr{M}}=\operatorname{Ind}_{K}^{G}\left(1_{K}\right) \in \mathscr{C}$, but with ψ-twisted multiplication.

Example $(\mathscr{R} \mathrm{ep}(G))$.

- Let $\psi \in H^{2}\left(K, \mathbb{C}^{*}\right)$. Let $\mathcal{V}(K, \psi)$ be the category of projective K-modules with Schur multiplier ψ, i.e.vector spaces V with $\rho: K \rightarrow \mathcal{E} \mathrm{nd}(\mathrm{V})$ such that

Theorem (folklore?).

Completeness. All 2-simples of $\mathscr{R} \operatorname{ep}(G)$ are of the form $\mathcal{V}(K, \psi)$.
Non-redundancy. We have $\mathcal{V}(K, \psi) \cong \mathcal{V}\left(K^{\prime}, \psi^{\prime}\right)$

$$
\Leftrightarrow
$$

the subgroups are conjugate or $\psi^{\prime}=\psi^{g}$, where $\psi^{g}(k, l)=\psi\left(g k g^{-1}, g / g^{-1}\right)$.

4 Back

- The decategorifications are \mathbb{N}-representations.
- The associated (co)algebra object is $\mathrm{A}_{\mathscr{N}}=\operatorname{Ind}_{K}^{G}\left(1_{K}\right) \in \mathscr{C}$, but with ψ-twisted multiplication.

