2-representations of Soergel bimodules I

 $\mathsf{Or:}\ \mathcal{H}\text{-cells and asymptotes}$

Daniel Tubbenhauer (Part II: Vanessa Miemietz)

Joint with Marco Mackaay, Volodymyr Mazorchuk and Xiaoting Zhang

December 2019

Clifford, Munn, Ponizovskii, Green ~1942++. Finite semigroups or monoids.

Example. \mathbb{N} , $\operatorname{Aut}(\{1, ..., n\}) = S_n \subset T_n = \operatorname{End}(\{1, ..., n\})$, groups, groupoids, categories, any \cdot closed subsets of matrices, "everything" relice, etc.

The cell orders and equivalences:

$$\begin{aligned} x \leq_L y \Leftrightarrow \exists z \colon y = zx, & x \sim_L y \Leftrightarrow (x \leq_L y) \land (y \leq_L x), \\ x \leq_R y \Leftrightarrow \exists z' \colon y = xz', & x \sim_R y \Leftrightarrow (x \leq_R y) \land (y \leq_R x), \\ x \leq_{LR} y \Leftrightarrow \exists z, z' \colon y = zxz', & x \sim_{LR} y \Leftrightarrow (x \leq_{LR} y) \land (y \leq_{LR} x). \end{aligned}$$

Left, right and two-sided cells: Equivalence classes.

Example (group-like). The unit 1 is always in the lowest cell -e.g. $1 \le_L y$ because we can take z = y. Invertible elements g are always in the lowest cell -e.g. $g \le_L y$ because we can take $z = yg^{-1}$.

Clifford, Munn, Ponizovskii, Green ~1942++. Finite semigroups or monoids.

Example (the transformation monoid T_3). Cells – left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided \mathcal{J} (big rectangles), $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$ (small rectangles).

\mathcal{J}_{lowest}	(123), (213), (132) (231), (312), (321)	2)	$\mathcal{H}\cong S_3$
\mathcal{J}_{middle}	(122), (221) (121), (212) (221), (112)	(133), (331) (313), (131) (113), (311)	(233), (322) (323), (232) (223), (332)	$\mathcal{H}\cong S_2$
$\mathcal{J}_{biggest}$	(111	.) (222) (333)	$\mathcal{H}\cong \frac{S_1}{S_1}$

Cute facts.

- ► Each *H* contains precisely one idempotent *e* or no idempotent. Each *e* is contained in some *H*(*e*). (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- ▶ Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ does not kill it. (Apex.)

Cute facts.

- ► Each *H* contains precisely one idempotent *e* or no idempotent. Each *e* is contained in some *H*(*e*). (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ does not kill it. (Apex.)

Cute facts.

- ► Each *H* contains precisely one idempotent *e* or no idempotent. Each *e* is contained in some *H*(*e*). (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ does not kill it. (Apex.)

Kazhdan–Lusztig (KL) and others ~1979++. Green's theory in linear.

Choose a basis. For a finite-dimensional algebra S (over $\mathbb{Z}_v = \mathbb{Z}[v, v^{-1}]$) fix a basis B_S . For $x, y, z \in B_S$ write $y \in zx$ if y appears in zx with non-zero coefficient.

The cell orders and equivalences:

$$\begin{aligned} x &\leq_L y \Leftrightarrow \exists z \colon y \in \mathbb{Z}x, \quad x \sim_L y \Leftrightarrow (x \leq_L y) \land (y \leq_L x), \\ x &\leq_R y \Leftrightarrow \exists z' \colon y \in xz', \quad x \sim_R y \Leftrightarrow (x \leq_R y) \land (y \leq_R x), \\ x &\leq_{LR} y \Leftrightarrow \exists z, z' \colon y \in \mathbb{Z}xz', \quad x \sim_{LR} y \Leftrightarrow (x \leq_{LR} y) \land (y \leq_{LR} x). \end{aligned}$$

Left, right and two-sided cells: Equivalence classes.

Example (group-like). For $S = \mathbb{C}[G]$ and the choice of the group element basis $B_S = G$, cell theory is boring.

Kazhdan–Lusztig (KL) and others \sim 1979++. Green's theory in linear.

Example (Coxeter group) of type B_2 , $B_S = \mathsf{KL}$ basis). Cells – left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided \mathcal{J} (big rectangles), $\mathcal{H} = \mathcal{L} \cap \mathcal{L}^{-1}$ (diagonal rectangles).

Everything crucially depends on the choice of $B_{\rm S}$.

- ▶ $S_{\mathcal{H}} = \mathbb{Z}_{v} \{ B_{\mathcal{H}} \}$ is an algebra modulo bigger cells, but the $S_{\mathcal{H}}$ do not parametrize the simples of S. ▶ Example
- S_H tends to have pseudo-idempotents e² = λ ⋅ e rather than idempotents. Even worse, S_H could contain no (pseudo-)idempotent e at all.
- $S_{\mathcal{H}}$ is not group-like in general.

Everything crucially depends on the choice of $B_{\rm S}$.

- ▶ $S_{\mathcal{H}} = \mathbb{Z}_{v} \{ B_{\mathcal{H}} \}$ is an algebra modulo bigger cells, but the $S_{\mathcal{H}}$ do not parametrize the simples of S. ▶ Example
- S_H tends to have pseudo-idempotents e² = λ ⋅ e rather than idempotents. Even worse, S_H could contain no (pseudo-)idempotent e at all.
- \blacktriangleright $\mathrm{S}_{\mathcal{H}}$ is not group-like in general.

 $W = \langle s, t | s^2 = t^2 = 1, tsts = stst \rangle$. Number of elements: 8. Number of cells: 3, named 0 (lowest) to 2 (biggest).

Example (type B_2).

Example (type B_2).

The asymptotic limit $A^0(W)$ of $H^{v}(W)$ is defined as follows.

As a free $\mathbb{Z}\text{-module}:$

$$\mathrm{A}^{0}(W) = \bigoplus_{\mathcal{J}} \mathbb{Z}\{a_{w} \mid w \in \mathcal{J}\} \ \text{ vs. } \ \mathrm{H}^{\mathsf{v}}(W) = \mathbb{Z}_{\mathsf{v}}\{c_{w} \mid w \in W\}.$$

Multiplication.

$$a_x a_y = \sum_{z \in \mathcal{J}} \gamma^z_{x,y} a_z$$
 vs. $c_x c_y = \sum_{z \in \mathcal{J}} v^{a(z)} h^z_{x,y} c_z$ + bigger friends.

where

$$\gamma_{x,y}^z = (\mathsf{v}^{\mathsf{a}(z)} h_{x,y}^z)(0) \in \mathbb{N}.$$

Think: "A crystal limit for the Hecke algebra".

The asymptotic limit $A^0(W)$ of $H^{v}(W)$ is defined as follows.

[Exar	nple (typ	be B	2).			
As	-	The mult	iplicat	tion	table	s (em	npty entri	ies ai	re 0	and [2] =	1+	v ²) in 1:
					as	a _{sts}	a _{st}	at	a _{tst}	a _{ts}		,
			=	as	as	a _{sts}	a _{st}				-	
				a _{sts}	a _{sts}	as	a _{st}					
			_	a _{ts}	a _{ts}	a _{ts}	$a_t + a_{tst}$					
Mu			_	at				at	a _{tst}	a _{ts}		
			_	a _{tst}				a _{tst}	at	a _{ts}		
				a _{st}				a _{st}	a _{st}	$a_s + a_{sts}$		
		Cs		C _{sts}			C _{st}	с	t	C _{tst}		Cts
whe	Cs	[2] <i>c</i> s	[2	2]c _{sts}			[2] <i>c</i> _{st}	C.	st	$c_{st}+c_w$	b	$c_s + c_{sts}$
	C _{sts}	[2] <i>c</i> _{sts}	[2] <i>c</i> s	$+[2]^{2}$	C _{W0}	[2] <i>c</i>	$s_{t}+[2]c_{w_{0}}$	$c_s +$	C _{sts}	$c_{s}+[2]^{2}c$	- WD	$c_s + c_{sts} + [2]c_{w_0}$
	Cts	[2] <i>c</i> _{ts}	[2] <i>c</i> _t	s+[2]	c _{wo}	[2] <i>c</i>	$t + [2]c_{tst}$	$c_t +$	Ctst	$c_t + c_{tst} + [$	2] <i>c</i> _{w0}	$2c_{ts}+c_{w_0}$
	Ct	Cts	C _t	$c_s + c_{w_0}$		C	$t + c_{tst}$	[2]	Ct	[2] <i>c</i> _{tst}		[2] <i>c</i> _{ts}
	Ctst	$c_t + c_{tst}$	c_t +	$-[2]^2 c_v$	w ₀	$c_t + c_t$	$c_{tst} + [2]c_{w_0}$	[2]	Ctst	$[2]c_t+[2]^2$	$^{2}C_{w_{0}}$	$[2]c_{ts}+[2]c_{w_0}$
	C _{st}	$c_s + c_{sts}$	$c_s + c_s$	_{sts} + [2	2] <i>c</i> _{w0}	20	$c_{st} + c_{w_0}$	[2]	C _{st}	$[2]c_{st}+[2]$	C _{W0}	$[2]c_s + [2]c_{sts}$
			٦	The a	asym	ptoti	c algebra	is m	uch	simpler!		

Multiplication.

$$a_x a_y = \sum_{z \in \mathcal{J}} \gamma^z_{x,y} a_z$$
 vs. $c_x c_y = \sum_{z \in \mathcal{J}} v^{a(z)} h^z_{x,y} c_z$ + bigger friends.

where

$$\gamma_{x,y}^z = (\mathsf{v}^{\mathsf{a}(z)} h_{x,y}^z)(0) \in \mathbb{N}.$$

Think: "A crystal limit for the Hecke algebra".

The asymptotic limit	Calculation (Lusztig \sim 1984 $++$).	
	For almost all $\mathcal{H}\subset\mathcal{J}$ in finite Coxeter type	
As a free \mathbb{Z} -module: $\mathrm{A}^0(W) = \epsilon$	$A^{0}_{\mathcal{H}}(W) \cong \mathbb{Z}[(\mathbb{Z}/2\mathbb{Z})^{k=k(\mathcal{J})}].$ $\bigoplus_{\mathcal{J}} \mathbb{Z}\{a_{w} \mid w \in \mathcal{J}\} \text{ vs. } H^{v}(W) = \mathbb{Z}_{v}\{c_{v}\}$	$w \mid w \in W$.

Multiplication.

$$a_x a_y = \sum_{z \in \mathcal{J}} \gamma^z_{x,y} a_z$$
 vs. $c_x c_y = \sum_{z \in \mathcal{J}} v^{a(z)} h^z_{x,y} c_z$ + bigger friends.

where

$$\gamma_{x,y}^z = (\mathsf{v}^{\mathsf{a}(z)} h_{x,y}^z)(0) \in \mathbb{N}.$$

Think: "A crystal limit for the Hecke algebra" .

The asymptotic limitCalculation (Lusztig ~1984++).As a free Z-module:For almost all
$$\mathcal{H} \subset \mathcal{J}$$
 in finite Coxeter type $A^0(W) = \bigoplus_{\mathcal{J}} \mathbb{Z}\{a_w \mid w \in \mathcal{J}\}$ vs. $H^v(W) = \mathbb{Z}_v\{c_w \mid w \in W\}.$ $A^0(W) = \bigoplus_{\mathcal{J}} \mathbb{Z}\{a_w \mid w \in \mathcal{J}\}$ vs. $H^v(W) = \mathbb{Z}_v\{c_w \mid w \in W\}.$ Multiplication. $a_x a_y = \sum_{z \in \mathcal{J}} \gamma_{x,y} d_z$ vs. $c_x c_y = \sum_{z \in \mathcal{J}} \sqrt{\gamma_{x,y} c_z} + D$ igger friends.

where

$$\gamma_{x,y}^z = (\mathsf{v}^{\mathsf{a}(z)} h_{x,y}^z)(0) \in \mathbb{N}.$$

Think: "A crystal limit for the Hecke algebra" .

Daniel Tubbenhauer

2-representations of Soergel bimodules I

Categorified picture – Part 1.

Theorem (Soergel–Elias–Williamson ~1990,2012).

There exists a graded, monoidal category $\mathscr{S}^{\vee} = \mathscr{S}^{\vee}(W)$ such that:

- (1) For every $w \in W$, there exists an indecomposable object C_w .
- (2) The C_w , for $w \in W$, form a complete set of pairwise non-isomorphic indecomposable objects up to shifts.
- (3) The identity object is C_1 , where 1 is the unit in W.
- (4) \mathscr{S}^{\vee} categorifies H^{\vee} with $[C_w] = c_w$.

(5) $\operatorname{grdim}(\operatorname{hom}_{\mathscr{S}^{\vee}}(\mathbb{C}_{v}, v^{k}\mathbb{C}_{w})) = \delta_{v,w}\delta_{0,k}$. (Soergel's hom formula *a.k.a.* positively graded.)

Let R- or R_W be the polynomial or the coinvariant algebra attached to the geometric representation of W. Soergel bimodules for me are defined as the additive Karoubi closure of the full subcategory of R- or R^W -bimodules generated by the Bott–Samelson bimodules, *e.g.* $B_s = R \otimes_{R^s} R$, and their shifts.

Categorified picture – Part 1.

Examples in type A_1 ; polynomial ring.

Let $R = \mathbb{C}[x]$ with deg(x) = 2 and $W = S_2$ action given by s.x = -x; $R^s = \mathbb{C}[x^2]$.

The indecomposable Soergel bimodules over ${\rm R}$ are $C_1=\mathbb{C}[x] \text{ and } C_s=\mathbb{C}[x]\otimes_{\mathbb{C}[x^2]}\mathbb{C}[x].$

indecomposable objects up to shifts.

- (3) The identity object is C_1 , where 1 is the unit in W.
- (4) \mathscr{S}^{\vee} categorifies H^{\vee} with $[\mathrm{C}_w] = c_w$.

(5) $\operatorname{grdim}(\operatorname{hom}_{\mathscr{S}^{\vee}}(\mathbb{C}_{v}, v^{k}\mathbb{C}_{w})) = \delta_{v,w}\delta_{0,k}$. (Soergel's hom formula *a.k.a.* positively graded.)

Let R- or R_W be the polynomial or the coinvariant algebra attached to the geometric representation of W. Soergel bimodules for me are defined as the additive Karoubi closure of the full subcategory of R- or R^W -bimodules generated by the Bott–Samelson bimodules, *e.g.* $B_s = R \otimes_{R^s} R$, and their shifts.

Categorified nicture – Part 1 Examples in type A_1 ; polynomial ring. Let $R = \mathbb{C}[x]$ with deg(x) = 2 and $W = S_2$ action given by $s \cdot x = -x$; $R^s = \mathbb{C}[x^2]$. The indecomposable Soergel bimodules over R are $C_1 = \mathbb{C}[x]$ and $C_s = \mathbb{C}[x] \otimes_{\mathbb{C}[x^2]} \mathbb{C}[x]$. torn a complete set of pairwise non-isomorphic O_W , IOI W indecompos **Examples in type** A_1 ; coinvariant algebra. The identit The coinvariant algebra is $R_W = \mathbb{C}[x]/x^2$. (4) \mathscr{S}^{\vee} categor (5) $\operatorname{grdim}(\operatorname{hom} \operatorname{\mathsf{The}} \operatorname{\mathsf{indecomposable}} \operatorname{\mathsf{Soergel}} \operatorname{\mathsf{bimodules}} \operatorname{\mathsf{over}} \operatorname{R}_W \operatorname{\mathsf{are}}^{\operatorname{\mathsf{psitively}}} \operatorname{\mathsf{graded.}})$ $C_1 = \mathbb{C}[x]/x^2$ and $C_s = \mathbb{C}[x]/x^2 \otimes \mathbb{C}[x]/x^2$. additive Karoubi closure of the full subcategory of R- or R^W-bimodules generated

Categorified picture – Part 2.

Theorem (Lusztig, Elias–Williamson ~2012). There exists a \bigcirc multifusion bicategory $\mathscr{A}^0 = \mathscr{A}^0(W)$ such that:

- (1) For every $w \in W$, there exists a simple object A_w .
- (2) The A_w , for $w \in W$, form a complete set of pairwise non-isomorphic simple objects.
- (3) The 'identity objects' are A_d , where d are Duflo involutions.
- (4) \mathscr{A}^0 categorifies A^0 with $[A_w] = a_w$.
- (5) \mathscr{A}^0 is the degree zero part of \mathscr{S}^{\vee} .

Examples in type A_1 ; coinvariant algebra.

 $C_1 = \mathbb{C}[x]/x^2$ and $C_s = \mathbb{C}[x]/x^2 \otimes \mathbb{C}[x]/x^2$. (Positively graded, but non-semisimple.)

 $A_1 = \mathbb{C}$ and $A_s = \mathbb{C} \otimes \mathbb{C}$. (Degree zero part.)

objects.

- (3) The 'identity objects' are A_d , where d are Duflo involutions.
- (4) \mathscr{A}^0 categorifies A^0 with $[A_w] = a_w$.
- (5) \mathscr{A}^0 is the degree zero part of \mathscr{S}^{\vee} .

Examples in type A_1 ; coinvariant algebra.

 $C_1 = \mathbb{C}[x]/x^2$ and $C_s = \mathbb{C}[x]/x^2 \otimes \mathbb{C}[x]/x^2$. (Positively graded, but non-semisimple.)

 $A_1 = \mathbb{C}$ and $A_s = \mathbb{C} \otimes \mathbb{C}$. (Degree zero part.)

objects.

3) The 'identity objects' are \mathbb{A}_d , where *d* are Duflo involutions. **Construction of** $\mathscr{A}^0_{\mathcal{H}}$.

 $\mathscr{A}_{\mathcal{H}}^{0} = \mathrm{add}\big(\{\mathsf{v}^{k}\mathtt{C}_{w} \mid w \in \mathcal{H}, k \geq 0\}\big)/\mathrm{add}\big(\{\mathsf{v}^{k}\mathtt{C}_{w} \mid w \in \mathcal{H}, k > 0\}\big) \text{ (Degree zero part.)}$

Examples in type A_1 ; coinvariant algebra. $C_1 = \mathbb{C}[x]/x^2$ and $C_s = \mathbb{C}[x]/x^2 \otimes \mathbb{C}[x]/x^2$. (Positively graded, but non-semisimple.) $A_1 = \mathbb{C}$ and $A_s = \mathbb{C} \otimes \mathbb{C}$. (Degree zero part.) objects. (3) The 'identity objects' are A_d , where d are Duflo involutions. Construction of $\mathscr{A}_{\mathcal{H}}^0$.

 $\mathscr{A}_{\mathcal{H}}^{0} = \mathrm{add}\big(\{\mathsf{v}^{k}\mathtt{C}_{w} \mid w \in \mathcal{H}, k \geq 0\}\big)/\mathrm{add}\big(\{\mathsf{v}^{k}\mathtt{C}_{w} \mid w \in \mathcal{H}, k > 0\}\big) \text{ (Degree zero part.)}$

Theorem (Bezrukavnikov–Finkelberg–Ostrik ~2006).

For almost all $\mathcal{H} \subset \mathcal{J}$ in finite Coxeter type

 $\mathscr{A}^{0}_{\mathcal{H}}(W) \cong \mathscr{V}\mathrm{ect}\big((\mathbb{Z}/2\mathbb{Z})^{k=k(\mathcal{J})}\big).$

Categorified picture – Part 2.

Up next in Vanessa's talk. The categorification of Lusztig's "crystal approach" to the representation theory of H^{v} for W of finite type (proved in most cases):

A conjectural relationship between 2-representations of \mathscr{A}^0 and \mathscr{S}^{\vee} using $\mathscr{A}^0_{\mathcal{H}}$.

Here we use \mathbf{R}^W to have finite-dimensional hom spaces.

Why is this awesome? Because, if true, then the conjectural relationship...

- ...reduces questions from a non-semisimple, non-abelian setup to the semisimple world. (Where life is reasonably weasypire.com)
- ► ...implies that there are finitely many equivalence classes of 2-simples of 𝒴, by Ocneanu rigidity. (Kind of a "Uniqueness of categorification statement".)
- ...would provide a complete classification of the 2-simples, because of the Bezrukavnikov–Finkelberg–Ostrik theorem.
- ...is a potential approach to similar questions in 2-representation theory beyond Soergel bimodules.

Clifford, Munn. Ponizzunkii, Green ~1942++. Finite semieroups or monoids.

Example (the transformation monoid T_1). Cells – left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided J (big rectangles), $H = L \cap R$ (small rectangles).

- ► Each ¾ contains precisely one idempotent e or no idempotent. Each e is contained in some H(e). (Idempotent separation.)
- Each H(e) is a maximal subgroup. (Group-like.) Belief Tethenham Associations of Second Street-day 1
- ► Each simple has a unique maximal J(e) whose H(e) do not kill it. (Apex.)

bunks 201 - 2/3

Example (Control of type B_2 , B_3 =KL basis). Cells – left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided \mathcal{J} (big rectangles), $\mathcal{H} = \mathcal{L} \cap \mathcal{L}^{-1}$ (diagonal rectangles).

Everything crucially depends on the choice of β_{ν}

- $S_W = Z_v \{B_W\}$ is an algebra modulo bigger cells, but the S_W do not parametrize the simples of S.
- ► S_N tends to have pseudo-idempotents e² = λ · e rather than idempotents. Even worse, Sy could contain no (pseudo-)idempotent e at all.
- SN is a not group-like in general. Exist Tobacture Committee of Second Minables 1

Figure: The Coaster graphs of finite type. Proceims representation processing graph

Deserver 2011 A.1

Secondar 2010 5/18

Type $A_1 \leftrightarrow tetrahedron \leftrightarrow symmetric group S_1$ Type $B_1 \leftrightarrow \text{cube}/\text{octahedron} \leftrightarrow \text{Weyl group} (\mathbb{Z}/2\mathbb{Z})^1 \times S_1$ Type H₂ ---- dodecahedron /icosahedron ---- exceptional Coxeter group. For $J_2(4)$ (this is type B_2) we have a 4-gor:

Excisi Tablecturer Programmetian of Sorget Minabeles 1

Example (SAGE). The Weyl group of type B.

-

The multiplication tables (empty entries are 0 and $(2) = 1 + v^2$) in 1:

Categorified picture - Part 2

Up next in Vanessa's talk. The categorification of Lusztig's "crystal approach" to the representation theory of H* for W of finite type (groved in most cases):

Why is this avesome? Because, if true, then the conjectural relationship.

- ...reduces questions from a non-seminimple, non-abelian setup to the semisimple world.
- ▶ ...implies that there are finitely many equivalence classes of 2-simples of 𝒴, by Ocneanu rigidity. (Kind of a "Uniqueness of categorification statement".)
- ...would provide a complete classification of the 2-simples, because of the Bezrukavnikov-Finkelberg-Ostrik theorem.
- ...is a potential approach to similar questions in 2-representation theory beyond Soergel bimodules.

There is still much to do...

Clifford, Munn. Ponizzunkii, Green ~1942++. Finite semieroups or monoids.

Example (the transformation monoid T_1). Cells – left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided J (big rectangles), $H = L \cap R$ (small rectangles).

- ► Each ¾ contains precisely one idempotent e or no idempotent. Each e is contained in some H(e). (Idempotent separation.)
- Each H(e) is a maximal subgroup. (Group-like.) Belief Tethenham Associations of Second Street-day 1
- ► Each simple has a unique maximal J(e) whose H(e) do not kill it. (Apex.)

Example (Control of type B_2 , B_2 :KL basis). Cells – left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided \mathcal{J} (big rectangles), $\mathcal{H} = \mathcal{L} \cap \mathcal{L}^{-1}$ (diagonal rectangles).

Everything crucially depends on the choice of β_{ν}

- $S_W = Z_v \{B_W\}$ is an algebra modulo bigger cells, but the S_W do not parametrize the simples of S.
- ► S_N tends to have pseudo-idempotents e² = λ · e rather than idempotents. Even worse, Sy could contain no (pseudo-)idempotent e at all.
- SN is a not group-like in general. Exist Tobacture Committee of Second Minables 1

Figure: The Coaster graphs of finite type. Proceims representation processing graph

Deserver 2011 A.1

Secondar 2010 5/18

Type $A_1 \leftrightarrow tetrahedron \leftrightarrow symmetric group S_1$ Type $B_1 \leftrightarrow \text{cube}/\text{octahedron} \leftrightarrow \text{Weyl group} (\mathbb{Z}/2\mathbb{Z})^1 \times S_1$ Type H₂ ---- dodecahedron /icosahedron ---- exceptional Coxeter group. For $J_2(4)$ (this is type B_2) we have a 4-gor:

Excisi Tablecturer Programmetian of Sorget Minabeles 1

Example (SAGE). The Weyl group of type B.

Categorified picture - Part 2

Up next in Vanessa's talk. The categorification of Lusztig's "crystal approach" to the representation theory of H* for W of finite type (groved in most cases):

Why is this avesome? Because, if true, then the conjectural relationship.

- ...reduces questions from a non-seminimple, non-abelian setup to the semisimple world.
- ▶ ...implies that there are finitely many equivalence classes of 2-simples of 𝒴, by Ocneanu rigidity. (Kind of a "Uniqueness of categorification statement".)
- ...would provide a complete classification of the 2-simples, because of the Bezrukavnikov-Finkelberg-Ostrik theorem.
- ...is a potential approach to similar questions in 2-representation theory beyond Soergel bimodules.

Thanks for your attention!

	Totality	Associativity	Identity	Invertibility	Commutativity
Semigroupoid	Unneeded	Required	Unneeded	Unneeded	Unneeded
Small Category	Unneeded	Required	Required	Unneeded	Unneeded
Groupoid	Unneeded	Required	Required	Required	Unneeded
Magnia	Required	Unneeded	Unneeded	Unneeded	Unneeded
Quasigroup	Required	Unnervisio	meeded	Required	Unneeded
Loop	Required	Unneeded	Required	Required	Unneeded
Semigroup	Required	Required	Unneeded	Unneeded	Unneeded
Inverse Semigroup	Required	Required	Unneeded	Required	Unneeded
Monoid	Required	Required	Required	Unneeded	Unneeded
Group	Required	Required	Required	Required	Unneeded
Abelian group	Required	Required	Required	Required	Required

Picture from https://en.wikipedia.org/wiki/Semigroup.

- ▶ There are zillions of semigroups, *e.g.* 1843120128 of order 8. (Compare: There are 5 groups of order 8.)
- Already the easiest of these are not semisimple not even over \mathbb{C} .
- ► Almost all of them are of wild representation type.

Is the study of semigroups hopeless?

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Type $A_3 \iff$ tetrahedron \iff symmetric group S_4 .

Type $B_3 \iff$ cube/octahedron \iff Weyl group $(\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$.

Type $H_3 \iff$ dodecahedron/icosahedron \iff exceptional Coxeter group.

For $I_2(4)$ (this is type B_2) we have a 4-gon:

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples. Fact. The symmetries are given by exchanging flags. Type $A_3 \iff$ tetrahedron \iff symmetric group S_4 . Type $B_3 \iff$ cube/octahedron \iff Weyl group $(\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$. Type $H_3 \iff$ dodecahedron/icosahedron \iff exceptional Coxeter group. For $I_2(4$ Fix a flag F.) $e B_2$ we have a 4-gon:

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Type $A_3 \iff$ tetrahedron \iff symmetric group S_4 .

Type $B_3 \iff$ cube/octahedron \iff Weyl group $(\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$.

Type $H_3 \leftrightarrow dodecahedron/icosahedron \leftrightarrow exceptional Coxeter group.$

For $I_2(4$ Fix a flag F) e B_2) we have a 4-gon:

Fix a hyperplane H_0 permuting the adjacent 0-cells of F.

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Type $A_3 \iff$ tetrahedron \iff symmetric group S_4 .

Type $B_3 \iff$ cube/octahedron \iff Weyl group $(\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$.

Type $H_3 \leftrightarrow dodecahedron/icosahedron \leftrightarrow exceptional Coxeter group.$

For $I_2(4$ Fix a flag F. e B_2) we have a 4-gon:

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Type $A_3 \iff$ tetrahedron \iff symmetric group S_4 .

Type $B_3 \iff$ cube/octahedron \iff Weyl group $(\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$.

Type $H_3 \leftrightarrow dodecahedron/icosahedron \leftrightarrow exceptional Coxeter group.$

For $I_2(4$ Fix a flag F) e B_2) we have a 4-gon:

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

This gives a generator-relation presentation.

Example (type B_2).

$$W \begin{cases} = \langle s, t \mid s^2 = t^2 = 1, tsts = stst \rangle \\ = \{1, s, t, st, ts, sts, tst, w_0\}. \end{cases}$$

1

$$\mathrm{H}^{\mathsf{v}}(W) \begin{cases} = \langle h_s, h_t \mid h_s^2 = (\mathsf{v}^{-1} - \mathsf{v})h_s + 1, h_t^2 = (\mathsf{v}^{-1} - \mathsf{v})h_t + 1, h_t h_s h_t h_s = h_s h_t h_s h_t \rangle \\ = \mathbb{Z}_{\mathsf{v}} \{h_1, h_s, h_t, h_{st}, h_{ts}, h_{ts}, h_{tst}, h_{w_0} \}. \end{cases}$$

In general, $H^{v}(W = (W|S))$ is generated by h_{s} for $s \in S$, which satisfy the quadratic relations and the braid relations.

KL basis:

$$\mathrm{H}^{\mathsf{v}}(\mathcal{W}) = \mathbb{Z}_{\mathsf{v}}\{c_1 = 1, c_s = \mathsf{v}(h_s + \mathsf{v}), c_t = \mathsf{v}(h_t + \mathsf{v}), c_{st}, c_{ts}, c_{sts}, c_{tst}, c_{w_0}\}.$$

 $c_s^2 = (1 + v^2)c_s = [2]c_s.$ (Quasi-idempotent, but "positively graded".)

Example (type B_2).

vh	$s_{s,s} =$	$1 + v^2 =$	$= [2], v^4 h^{w_0}_{w_0,w_0}$	$= 1 + 2v^2 + 2$	$2v^4 + 2v^6$	$\dot{v} + v^8$.	
				c_1	L		
		C _s	C _{sts}	C _{st}	Ct	C _{tst}	C _{ts}
	Cs	[2] <i>c</i> s	[2] <i>c</i> _{sts}	[2] <i>c</i> _{st}	C _{st}	$c_{st}+c_{w_0}$	$c_s + c_{sts}$
	C _{sts}	[2] <i>csts</i>	$[2]c_s+[2]^2c_{w_0}$	$[2]c_{st}+[2]c_{w_0}$	$c_s + c_{sts}$	$c_s + [2]^2 c_{w_0}$	$c_s + c_{sts} + [2]c_{w_0}$
	C _{ts}	[2] <i>c</i> _{ts}	$[2]c_{ts}+[2]c_{w_0}$	$[2]c_t + [2]c_{tst}$	$c_t + c_{tst}$	$c_t + c_{tst} + [2]c_{w_0}$	$2c_{ts}+c_{w_0}$
	Ct	Cts	$c_{ts}+c_{w_0}$	$c_t + c_{tst}$	$[2]c_t$	[2] <i>c</i> _{tst}	[2] <i>c</i> _{ts}
	C _{tst}	$c_t + c_{tst}$	$c_t + [2]^2 c_{w_0}$	$c_t + c_{tst} + [2]c_{w_0}$	$[2]c_{tst}$	$[2]c_t + [2]^2 c_{w_0}$	$[2]c_{ts}+[2]c_{w_0}$
	C _{st}	$c_s + c_{sts}$	$c_s + c_{sts} + [2]c_{w_0}$	$2c_{st}+c_{w_0}$	[2] <i>c</i> _{st}	$[2]c_{st}+[2]c_{w_0}$	$[2]c_s + [2]c_{sts}$
				$\begin{array}{c c} & c_{\nu} \\ \hline c_{w_0} & \nu^4 h_{w_0}^{w_0} \end{array}$	w ₀		

(Note the "subalgebras".)

▲ Back

(Note the "subalgebras".)

(Note the "subalgebras".)

▲ Back

Example (SAGEMath). The Weyl group of type B_6 . Number of elements: 46080. Number of cells: 26, named 0 (lowest) to 25 (biggest).

Cell order:

Size of the cells and **a**-value:

cell	0	1	2	3	4	5	6	7	8	9	10	11	12=12'	13=13'	11′	10'	9′	8′	7′	6′	5′	4′	3'	2'	1'	0′
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	3150	650	576	342	62	1
а	0	1	2	3	3	4	4	5	5	6	6	6	7	9	10	10	10	11	11	16	12	15	17	18	25	36

Size of the cells and a-value:

cell	0	1	2	3	4	5	6	7	8	9	10	11	12=12'	13=13'	11'	10'	9′	8′	7′	6′	5′	4'	3'	2'	1'	0′
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	3150	650	576	342	62	1
а	0	1	2	3	3	4	4	5	5	6	6	6	7	9	10	10	10	11	11	16	12	15	17	18	25	36

Graph:

Elements (shorthand $s_i = i$):

 $d = d^{-1} = 132123565.$

$$egin{aligned} & c_d c_d = \ & (1+5 \mathrm{v}^2+12 \mathrm{v}^4+18 \mathrm{v}^6+18 \mathrm{v}^8+12 \mathrm{v}^{10}+5 \mathrm{v}^{12}+\mathrm{v}^{14}) c_d \ & +(\mathrm{v}^2+4 \mathrm{v}^4+7 \mathrm{v}^6+7 \mathrm{v}^8+4 \mathrm{v}^{10}+\mathrm{v}^{12}) c_{12132123565} \ & +(\mathrm{v}^{-4}+5 \mathrm{v}^{-2}+11+14 \mathrm{v}^2+11 \mathrm{v}^4+5 \mathrm{v}^6+\mathrm{v}^8) c_{121232123565} \end{aligned}$$

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

 $d = d^{-1} = 132123565.$

$$a_d a_d = \ (1 + 5 v^2 + 12 v^4 + 18 v^6 + 18 v^8 + 12 v^{10} + 5 v^{12} + v^{14}) c_d \ + (v^2 + 4 v^4 + 7 v^6 + 7 v^8 + 4 v^{10} + v^{12}) c_{12132123565} \ + (v^{-4} + 5 v^{-2} + 11 + 14 v^2 + 11 v^4 + 5 v^6 + v^8) c_{121232123565}$$

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

 $d = d^{-1} = 132123565.$

$$\begin{aligned} a_d a_d &= \\ (1+5v^2+12v^4+18v^6+18v^8+12v^{10}+5v^{12}+v^{14})c_d \\ +(v^2+4v^4+7v^6+7v^8+4v^{10}+v^{12})c_{12132123565} \\ +(v^{-4}+5v^{-2}+11+14v^2+11v^4+5v^6+v^8)c_{121232123565} \end{aligned}$$

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

$$d = d^{-1} = 132123565.$$

▲ Back

$$a_d a_d = (1 + 5v^2 + 12v^4 + 18v^6 + 18v^8 + 12v^{10} + 5v^{12} + v^{14})c_d + (v^2 + 4v^4 + 7v^6 + 7v^8 + 4v^{10} + v^{12})c_{12132123565}$$

Graph:

Elements (shorthand $s_i = i$):

 $d = d^{-1} = 132123565.$

$$a_d a_d = (1+5v^2 + 12v^4 + 18v^6 + 18v^8 + 12v^{10} + 5v^{12} + v^{14})c_d + (v^2 + 4v^4 + 7v^6 + 7v^8 + 4v^{10} + v^{12})c_{12132123565}$$

Killed in the limit $v \rightarrow 0$.

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

 $d = d^{-1} = 132123565.$

 $a_d a_d = a_d$

Looks much simpler.

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

 $d = d^{-1} = 132123565.$

Example (SAGEMath). The Weyl group of type B_6 .

cell	0	1	2	3	4	5	6	7	8	9	10	11	12=12'	13=13'	11'	10'	9′	8′	7'	6'	5′	4'	3′	2'	1'	0′
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	3150	650	576	342	62	1
а	0	1	2	3	3	4	4	5	5	6	6	6	7	9	10	10	10	11	11	16	12	15	17	18	25	36
2 ^k	1	2	2	1	2	2	2	1	2	2	1	1	4	2	1	1	2	2	1	2	2	2	1	2	2	1
#simples	1	3	3	1	3	3	3	1	3	3	1	1	10	3	1	1	3	3	1	3	3	3	1	3	3	1
2 ^{2k}	1	4	4	1	4	4	4	1	4	4	1	1	16	4	1	1	4	4	1	4	4	4	1	4	4	1

Actually, $\#\{\text{simples with apex }\mathcal{J}\} = \frac{1}{2}(2^{2k} + 2^k)$ (the middle).

Fusion categories. (Multi)fusion categories \mathscr{C} over \mathbb{C} are as easy as possible while being interesting:

- ► By definition, they are monoidal, rigid, semisimple, C-linear categories with finitely many simple objects.
- ► They decategorify to (multi)fusion rings.
- ► Ocneanu rigidity. The number of multifusion categories (up to equivalence) with a given Grothendieck ring is finite.
- ► Ocneanu rigidity. The number of equivalence classes of simple transitive 2-representations over a given multifusion category is finite.
- ► Crucial. The latter two points are wrong if one drops the semisimplicity. (Counterexamples are known.)

Fusion categories—complete classification.

- Group-like. $\mathscr{C} \cong \mathscr{R}ep(G)$ or twists; G finite group.
- Group-like. $\mathscr{C} \cong \mathscr{V}ect(G)$ or twists; G finite group.
- Quantum groups. Semisimplifications of quantum group representations at roots of unity or twist of such.
- ► Exotic fusion categories. Coming *e.g.* from subfactors or Soergel bimodules.

Folk theorem(?). The simple transitive 2-representations of $\Re ep(G)$ and $\mathscr{V}ect(G)$ are classified by subgroups $H \subset G$ and $\phi \in H^2(H, \mathbb{C}^{\times})$, up to conjugacy.

The classification is thus a numerical problem.

For example, for $\Re ep(S_5)$ (appears in type E_8) we have:

								Rep	(S_5)							
К	1	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/3\mathbb{Z}$	$\mathbb{Z}/4\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z})^2$	$\mathbb{Z}/5\mathbb{Z}$	<i>S</i> ₃	$\mathbb{Z}/6\mathbb{Z}$	D ₄	D_5	A ₄	D ₆	GA(1,5)	<i>S</i> ₄	A ₅	S5
#	1	2	1	1	2	1	2	1	1	1	1	1	1	1	1	1
H^2	1	1	1	1	$\mathbb{Z}/2\mathbb{Z}$	1	1	1	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	1	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$
rk	1	2	3	4	4,1	5	3	6	5,2	4,2	4,3	6,3	5	5,3	5,4	7,5

This is completely different from their classical representation theory.

Example (type B_2).

$$W \begin{cases} = \langle s, t \mid s^2 = t^2 = 1, tsts = stst \rangle \\ = \{1, s, t, st, ts, sts, tst, w_0\}. \end{cases}$$

$$\mathrm{H}^{\mathsf{v}}(W) \begin{cases} = \langle h_s, h_t \mid h_s^2 = (\mathsf{v}^{-1} - \mathsf{v})h_s + 1, h_t^2 = (\mathsf{v}^{-1} - \mathsf{v})h_t + 1, h_t h_s h_t h_s = h_s h_t h_s h_t \rangle \\ = \mathbb{Z}_{\mathsf{v}} \{ h_1, h_s, h_t, h_{st}, h_{ts}, h_{sts}, h_{tst}, h_{w_0} \}. \end{cases}$$

In general, $H^{v}(W = (W|S))$ is generated by h_{s} for $s \in S$, which satisfy the quadratic relations and the braid relations.

KL basis:

$$\mathrm{H}^{\mathsf{v}}(\mathcal{W}) = \mathbb{Z}_{\mathsf{v}}\{c_1 = 1, c_s = \mathsf{v}(h_s + \mathsf{v}), c_t = \mathsf{v}(h_t + \mathsf{v}), c_{st}, c_{ts}, c_{sts}, c_{tst}, c_{w_0}\}.$$

 $c_s^2 = (1 + v^2)c_s = [2]c_s$. (Quasi-idempotent, but "positively graded".)

- Let $\mathscr{C} = \mathscr{R}ep(G)$ (G a finite group).
- ▶ \mathscr{C} is fusion (fiat and semisimple). For any $M, N \in \mathscr{C}$, we have $M \otimes N \in \mathscr{C}$:

$$g(m \otimes n) = gm \otimes gn$$

for all $g \in G, m \in M, n \in N$. There is a trivial representation 1.

▶ The regular 2-representation $\mathcal{M}: \mathscr{C} \to \mathscr{E}nd(\mathscr{C})$:

 \blacktriangleright The decategorification is a $\mathbb N$ -representation, the regular representation.

• The associated (co)algebra object is $\mathbb{A}_{\mathscr{M}} = 1 \in \mathscr{C}$.

- Let $K \subset G$ be a subgroup.
- ▶ $\mathcal{R}ep(K)$ is a 2-representation of $\mathscr{R}ep(G)$, with action

 $\mathcal{R}es^{G}_{K} \otimes _: \mathscr{R}ep(G) \to \mathscr{E}nd(\mathcal{R}ep(K))$

which is indeed a 2-action because $\mathcal{R}es^{G}_{\kappa}$ is a \otimes -functor.

- ► The decategorifications are N-representations.
- ▶ The associated (co)algebra object is $A_{\mathcal{M}} = \mathcal{I}nd_{K}^{G}(1_{K}) \in \mathscr{C}$.

Let ψ ∈ H²(K, C^{*}). Let V(K, ψ) be the category of projective K-modules with Schur multiplier ψ, *i.e.*vector spaces V with ρ: K → End(V) such that

 $\rho(g)\rho(h) = \psi(g,h)\rho(gh), \text{ for all } g,h \in K.$

• Note that
$$\mathcal{V}(K,1) = \mathcal{R}ep(K)$$
 and

 $\otimes : \mathcal{V}(K,\phi) \boxtimes \mathcal{V}(K,\psi) \to \mathcal{V}(K,\phi\psi).$

▶ $\mathcal{V}(\mathcal{K}, \psi)$ is also a 2-representation of $\mathscr{C} = \mathscr{R} ep(\mathcal{G})$:

$$\mathscr{R}\mathrm{ep}(\mathcal{G}) \boxtimes \mathcal{V}(\mathcal{K},\psi) \xrightarrow{\mathcal{R}\mathrm{es}_{\mathcal{K}}^{\mathcal{G}}\boxtimes\mathrm{Id}} \mathcal{R}\mathrm{ep}(\mathcal{K}) \boxtimes \mathcal{V}(\mathcal{K},\psi) \xrightarrow{\otimes} \mathcal{V}(\mathcal{K},\psi).$$

▶ The decategorifications are N-representations.

• The associated (co)algebra object is $\mathbb{A}_{\mathscr{M}} = \mathcal{I}nd_{\mathcal{K}}^{\mathsf{G}}(1_{\mathcal{K}}) \in \mathscr{C}$, but with ψ -twisted multiplication.

Example $(\mathscr{R}ep(G))$.

Let ψ ∈ H²(K, C^{*}). Let V(K, ψ) be the category of projective K-modules with Schur multiplier ψ, *i.e.*vector spaces V with ρ: K → End(V) such that

Theorem (folklore?).

Completeness. All 2-simples of $\mathscr{R}ep(G)$ are of the form $\mathcal{V}(K, \psi)$.

Non-redundancy. We have $\mathcal{V}(\mathcal{K},\psi) \cong \mathcal{V}(\mathcal{K}',\psi')$

the subgroups are conjugate or $\psi' = \psi^g$, where $\psi^g(k, l) = \psi(gkg^{-1}, glg^{-1})$.

 $\mathscr{R}\mathrm{ep}(\mathcal{G}) \boxtimes \mathcal{V}(K,\psi) \xrightarrow{\mathsf{CO}_K \subseteq \mathrm{Rep}} \mathcal{R}\mathrm{ep}(K) \boxtimes \mathcal{V}(K,\psi) \xrightarrow{\otimes} \mathcal{V}(K,\psi).$

► The decategorifications are N-representations.

▶ The associated (co)algebra object is $\mathbb{A}_{\mathcal{M}} = \mathcal{I}nd_{\mathcal{K}}^{\mathcal{G}}(1_{\mathcal{K}}) \in \mathscr{C}$, but with ψ -twisted multiplication.