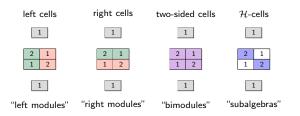
Dihedral groups, $SL(2)_q$ and beyond

Or: Who colored my Dynkin diagrams?

Daniel Tubbenhauer



Joint with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang

July 2019

Daniel	Tubbenhauer
--------	-------------

Let $A(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ . Let $U_{e+1}(X)$ be the \bullet Chebyshev polynomial.

Let $A(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ . Let $U_{e+1}(X)$ be the \bigcirc Chebyshev polynomial.

$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

$$A_{3} = \underbrace{\begin{array}{c}1 & 3 & 2\\ \bullet & \bullet & \bullet\end{array}}_{\bullet} \xrightarrow{A(A_{3})} = \begin{pmatrix}0 & 0 & 1\\ 0 & 0 & 1\\ 1 & 1 & 0\end{pmatrix} \xrightarrow{A(A_{3})} S_{A_{3}} = \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

Let $A(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ . Let $U_{e+1}(X)$ be the \bigcirc Chebyshev polynomial.

$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

$$A_{3} = \underbrace{1 \qquad 3 \qquad 2}_{\bullet} \longrightarrow A(A_{3}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \longrightarrow S_{A_{3}} = \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

$$U_{5}(X) = (X - 2\cos(\frac{\pi}{6}))(X - 2\cos(\frac{2\pi}{6}))X(X - 2\cos(\frac{4\pi}{6}))(X - 2\cos(\frac{5\pi}{6}))$$

$$D_{4} = \underbrace{1 \qquad 4}_{A_{3}} \longrightarrow A(D_{4}) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \longrightarrow S_{D_{4}} = \{2\cos(\frac{\pi}{6}), 0^{2}, 2\cos(\frac{5\pi}{6})\}$$

Let $A(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ . Let $U_{e+1}(X)$ be the \bigcirc Chebyshev polynomial.

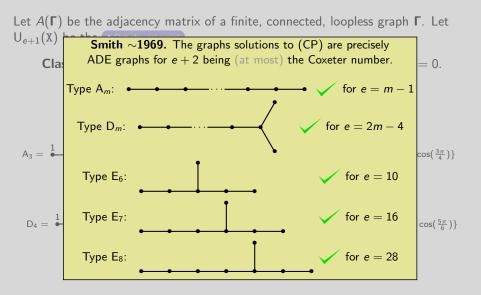
$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

$$A_{3} = \frac{1}{2} \xrightarrow{3}{2} \xrightarrow{2}{} A(A_{3}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{} S_{A_{3}} = \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

$$U_{5}(X) = (X - 2\cos(\frac{\pi}{6}))(X - 2\cos(\frac{2\pi}{6}))X(X - 2\cos(\frac{4\pi}{6}))(X - 2\cos(\frac{5\pi}{6})) \qquad \checkmark \text{ for } e = 2$$

$$D_{4} = \underbrace{1}_{4} \xrightarrow{4}_{3} \xrightarrow{2}_{4} \xrightarrow{} A(D_{4}) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{} S_{D_{4}} = \{2\cos(\frac{\pi}{6}), 0^{2}, 2\cos(\frac{5\pi}{6})\}$$

$$\checkmark \text{ for } e = 4$$



Dihedral representation theory

- Classical vs. \mathbb{N} -representation theory
- Dihedral N-representation theory

2 Non-semisimple fusion rings

- The asymptotic limit
- The limit $v \to 0$ of the \mathbb{N} -representations

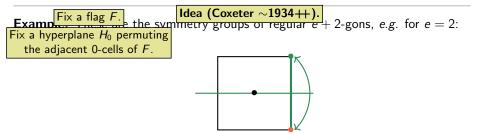
$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ e.g. : \ \mathcal{W}_4 &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g. : \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

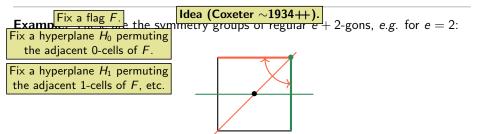
Idea (Coxeter \sim **1934**++**). Example.** These are the symmetry groups of regular e + 2-gons, e.g. for e = 2:

$$W_{e+2} = \langle \mathbf{s} | \mathbf{Fact. The symmetries are given by exchanging flags.}_{e+2} = \mathbf{\overline{t}}_{e+2} \rangle,$$
$$e+2 \qquad e+2 \qquad$$

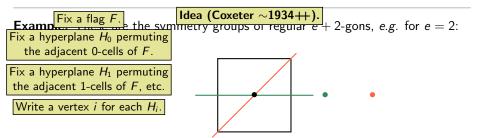
$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g. : \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

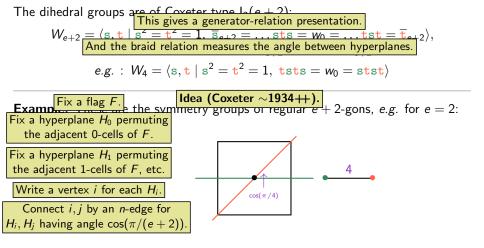


$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g. : \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

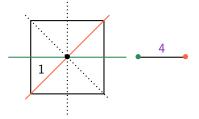


$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g. : \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

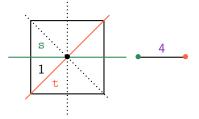




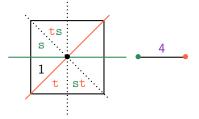
$$\begin{split} W_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ e.g. : W_4 &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$



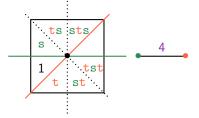
$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g. : \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$



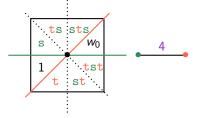
$$\begin{split} W_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ e.g. : W_4 &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$



$$\begin{split} W_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ e.g. : W_4 &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$



$$\begin{split} W_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ e.g. : W_4 &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$



Dihedral representation theory on one slide.

The Bott–Samelson (BS) generators $b_s = s + 1$, $b_t = t + 1$. There is also a Kazhdan–Lusztig (KL) basis. We will nail it down later.

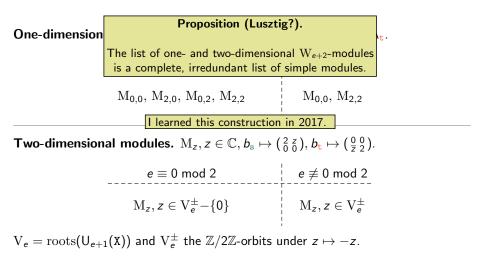
 $\textbf{One-dimensional modules.} \ \ M_{\lambda_{s},\lambda_{t}},\lambda_{s},\lambda_{t}\in\mathbb{C}, b_{s}\mapsto\lambda_{s},b_{t}\mapsto\lambda_{t}.$

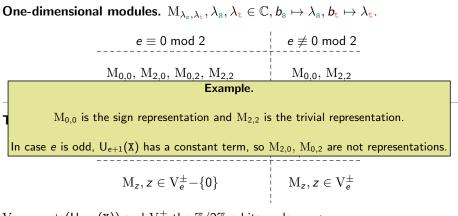
$e \equiv 0 \mod 2$	$e \not\equiv 0 \mod 2$	
$M_{0,0}, M_{2,0}, M_{0,2}, M_{2,2}$	$M_{0,0}, M_{2,2}$	

Two-dimensional modules. $M_z, z \in \mathbb{C}, b_s \mapsto \begin{pmatrix} 2 & z \\ 0 & 0 \end{pmatrix}, b_t \mapsto \begin{pmatrix} 0 & 0 \\ \overline{z} & 2 \end{pmatrix}$.

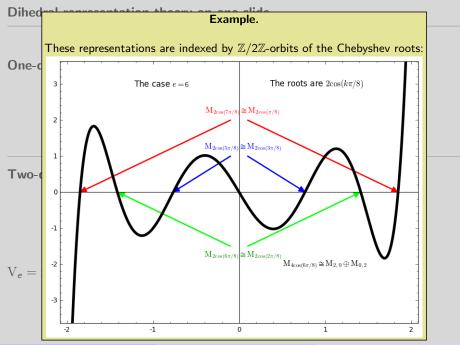
$e\equiv 0 \mod 2$	$e \not\equiv 0 \mod 2$
$\mathrm{M}_{z}, z \in \mathrm{V}_{e}^{\pm} - \{0\}$	$\mathbf{M}_{z}, z \in \mathbf{V}_{e}^{\pm}$

 $V_e = \operatorname{roots}(U_{e+1}(X))$ and V_e^{\pm} the $\mathbb{Z}/2\mathbb{Z}$ -orbits under $z \mapsto -z$.





 $\mathrm{V}_e = \mathrm{roots}(\mathsf{U}_{e+1}(\mathtt{X})) \text{ and } \mathrm{V}_e^{\pm} \text{ the } \mathbb{Z}/2\mathbb{Z}\text{-orbits under } z \mapsto -z.$



Dihedral groups, $SL(2)_q$ and beyond

An algebra A with a fixed basis B^A is called a (multi) $\mathbb N\text{-algebra}$ if $xy\in\mathbb NB^A\quad(x,y\in B^A).$

A A-module M with a fixed basis B^M is called a $\mathbb N\text{-module}$ if

$$xm \in \mathbb{N}B^M$$
 ($x \in B^A, m \in B^M$).

These are \mathbb{N} -equivalent if there is a \mathbb{N} -valued change of basis matrix.

Example. \mathbb{N} -algebras and \mathbb{N} -modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N} -equivalence comes from 2-equivalence.

Ar Group algebras of finite groups with basis given by group elements are N-algebras. The regular module is a N-module.

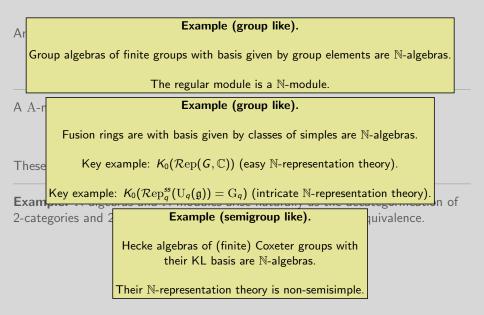
A A-module M with a fixed basis B^M is called a $\mathbb N\text{-module}$ if

$$xm\in \mathbb{N}B^M \quad (x\in B^A, m\in B^M).$$

These are $\mathbb N\text{-equivalent}$ if there is a $\mathbb N\text{-valued}$ change of basis matrix.

Example. \mathbb{N} -algebras and \mathbb{N} -modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N} -equivalence comes from 2-equivalence.

Ar	Example (group like).	
Group algebras of finite groups with basis given by group elements are ${\mathbb N} ext{-algebras}.$		
	The regular module is a \mathbb{N} -module.	
A A-r	Example (group like).	
	Fusion rings are with basis given by classes of simples are $\ensuremath{\mathbb{N}}\xspace$ -algebras.	
These	Key example: $\mathcal{K}_0(\mathcal{R} ext{ep}(\mathcal{G},\mathbb{C}))$ (easy \mathbb{N} -representation theory).	
Fxam	Key example: $\mathcal{K}_0(\operatorname{Rep}_q^{ss}(\mathrm{U}_q(\mathfrak{g})) = \mathrm{G}_q)$ (intricate \mathbb{N} -representation theory).	of
	gories and 2-modules, and \mathbb{N} -equivalence comes from 2-equivalence.	



Clifford, Munn, Ponizovskii, Green ~1942++, Kazhdan–Lusztig ~1979. $x \leq_L y$ if y appears in zx with non-zero coefficient for $z \in B^A$. $x \sim_L y$ if $x \leq_L y$ and $y \leq_L x$.

 \sim_L partitions A into left cells L. Similarly for right R, two-sided cells LR or $\mathbb{N}\text{-modules}.$

A $\mathbb N\text{-module }M$ is transitive if all basis elements belong to the same \sim_L equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N} -module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive \mathbb{N} -modules arise naturally as the decategorification of simple transitive 2-modules.

Clifford, Munn, Ponizovskii, Green \sim 1942++, Kazhdan-Lusztig \sim 1979. x Example (group like). an \sim Group algebras with the group element basis have only one cell, *G* itself.

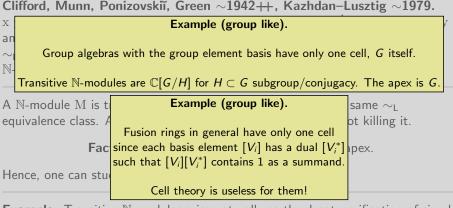
Transitive \mathbb{N} -modules are $\mathbb{C}[G/H]$ for $H \subset G$ subgroup/conjugacy. The apex is G.

A $\mathbb N\text{-module }M$ is transitive if all basis elements belong to the same \sim_L equivalence class. An apex of M is a maximal two-sided cell not killing it.

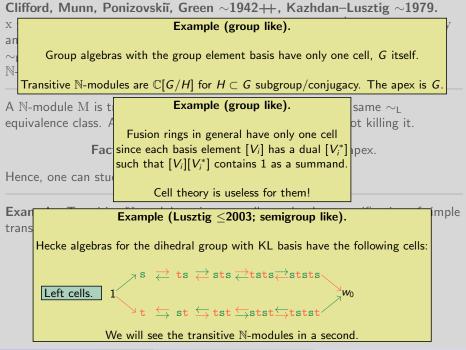
Fact. Each transitive \mathbb{N} -module has a unique apex.

Hence, one can study them cell-wise.

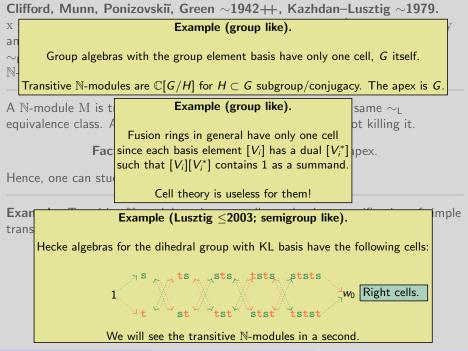
Example. Transitive \mathbb{N} -modules arise naturally as the decategorification of simple transitive 2-modules.



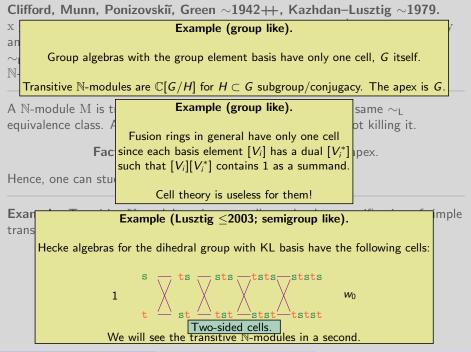
Example. Transitive \mathbb{N} -modules arise naturally as the decategorification of simple transitive 2-modules.



Dihedral groups, $SL(2)_q$ and beyond



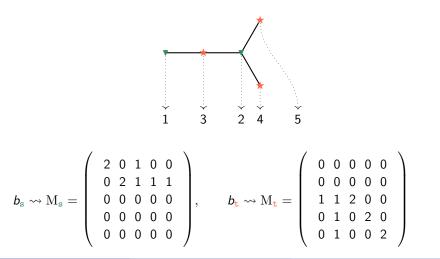
Dihedral groups, $SL(2)_q$ and beyond



\mathbb{N} -modules via graphs.

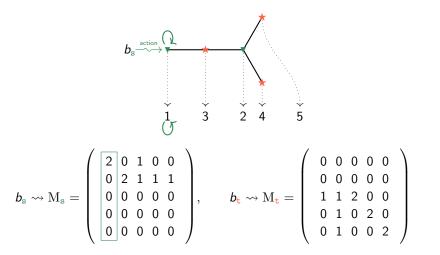
Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

 $\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$



Construct a $W_\infty\text{-module }M$ associated to a bipartite graph $\textbf{\Gamma}$:

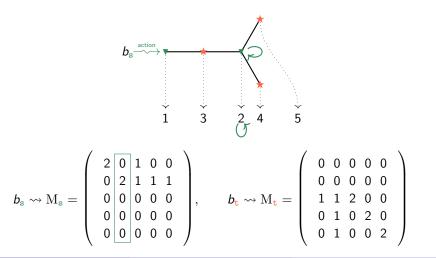
 $\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$



\mathbb{N} -modules via graphs.

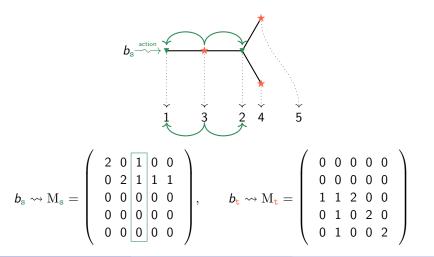
Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

 $\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$



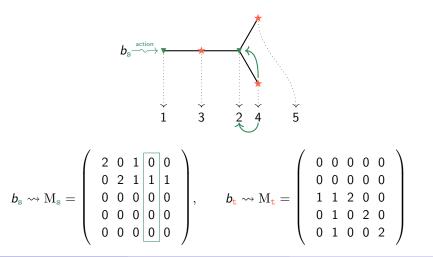
\mathbb{N} -modules via graphs.

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:



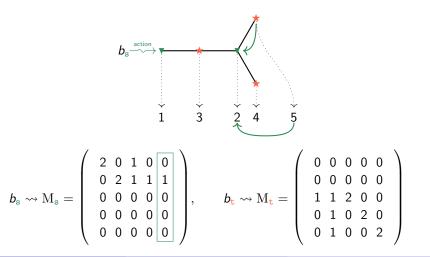
\mathbb{N} -modules via graphs.

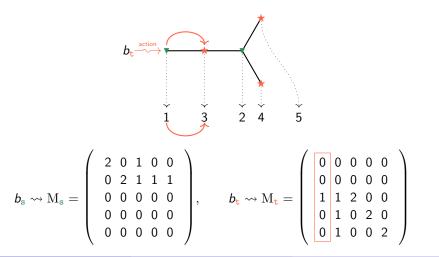
Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

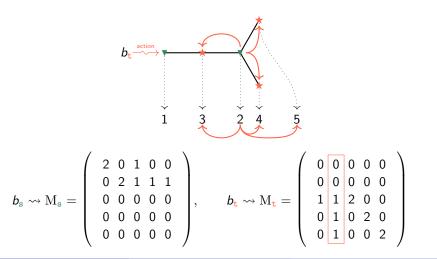


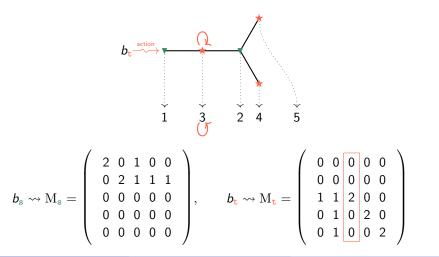
\mathbb{N} -modules via graphs.

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

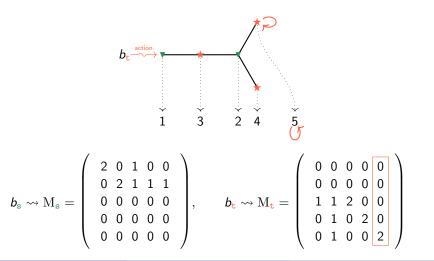


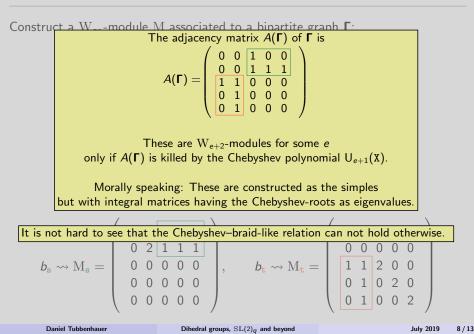


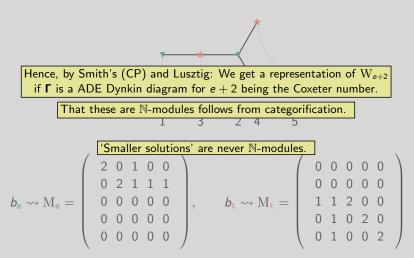


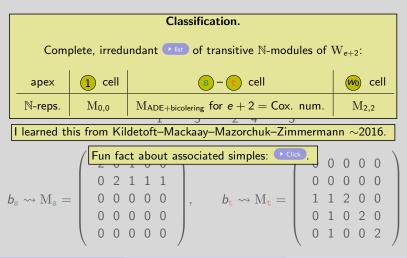


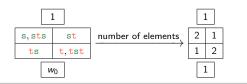


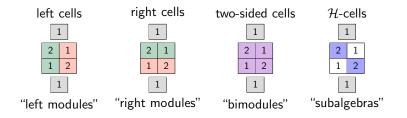


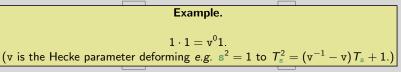


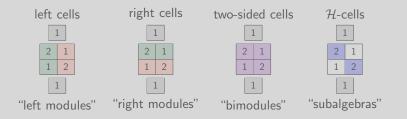


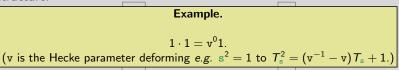


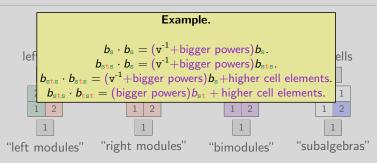


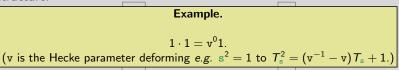


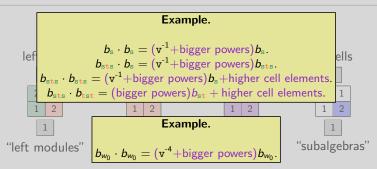


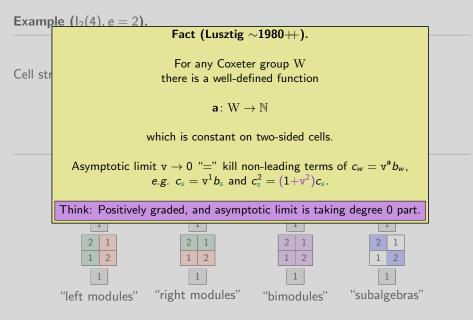












a=asymptotic element and $[2] = 1 + v^2$. (Note the "subalgebras".)

	as	a _{sts}	a _{st}	a _t	a _{tst}	a _{ts}
as	as	a _{sts}	a _{st}			
a _{sts}	a _{sts}	as	a _{st}			
a _{ts}	a _{ts}	a _{ts}	$a_t + a_{tst}$			
a _t				a _t	a_{tst}	a _{ts}
atst				a _{tst}	at	a _{ts}
a _{st}				a _{st}	a _{st}	$a_{\rm s} + a_{\rm sts}$

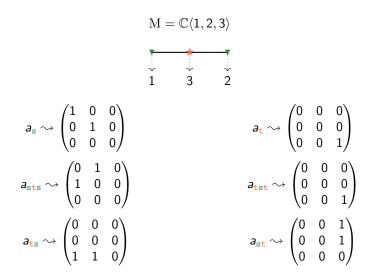
	Cs	C _{sts} C _{st}		Ct	Ctst	Cts
Cs	[2] <i>c</i> _s	[2]c _{sts}	[2]c _{st}	Cst	$c_{st} + c_{w_0}$	$c_{\rm s} + c_{\rm sts}$
Csts	$[2]c_{sts}$	$[2]c_{s} + [2]^{2}c_{w_{0}}$	$[2]c_{st} + [2]c_{w_0}$	$c_{\rm s} + c_{\rm sts}$	$c_{s} + [2]^{2} c_{w_{0}}$	$c_{\rm s} + c_{\rm sts} + [2]c_{\rm WO}$
Cts	[2] <i>c</i> ts	$[2]c_{ts} + [2]c_{w_0}$	$[2]c_{t} + [2]c_{tst}$	$c_{t} + c_{tst}$	$c_t + c_{tst} + [2]c_{w_0}$	$2c_{ts} + c_{w_0}$
C _t	Cts	$c_{ts} + c_{w_0}$	$c_{t} + c_{tst}$	[2] <i>c</i> t	$[2]c_{tst}$	[2] <i>c</i> ts
Ctst	$c_{t} + c_{tst}$	$c_{t} + [2]^{2} c_{w_{0}}$	$c_{t} + c_{tst} + [2]c_{w_0}$	$[2]c_{tst}$	$[2]c_t + [2]^2 c_{w_0}$	$[2]c_{ts} + [2]c_{w_0}$
Cst	$c_{\rm s} + c_{\rm sts}$	$c_{\rm s}+c_{\rm sts}+[2]c_{\rm w_0}$	$2c_{st} + c_{w_0}$	[2]c _{st}	$[2]c_{st} + [2]c_{w_0}$	$[2]c_{\rm s} + [2]c_{\rm sts}$

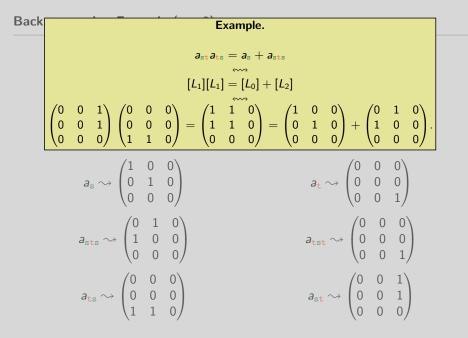
The limit $v \rightarrow 0$ is much simpler! Have you seen this \checkmark before ?

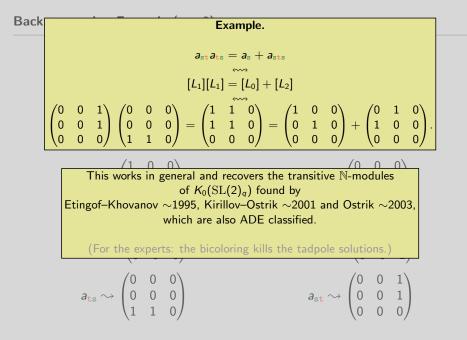
$$\begin{split} \mathbf{M} &= \mathbb{C}\langle 1,2,3\rangle \\ & \overbrace{1}^{*} & \overbrace{3}^{*} & \overbrace{2}^{*} \\ c_{\mathrm{s}} &\leadsto \begin{pmatrix} 1+\mathbf{v}^{2} & 0 & \mathbf{v} \\ 0 & 1+\mathbf{v}^{2} & \mathbf{v} \\ 0 & 0 & 0 \end{pmatrix} & c_{\mathrm{t}} &\leadsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \mathbf{v} & \mathbf{v} & 1+\mathbf{v}^{2} \end{pmatrix} \\ c_{\mathrm{sts}} &\leadsto \begin{pmatrix} 0 & 1+\mathbf{v}^{2} & \mathbf{v} \\ 1+\mathbf{v}^{2} & 0 & \mathbf{v} \\ 0 & 0 & 0 \end{pmatrix} & c_{\mathrm{tst}} &\leadsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \mathbf{v} & \mathbf{v} & 1+\mathbf{v}^{2} \end{pmatrix} \\ c_{\mathrm{ts}} &\leadsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1+\mathbf{v}^{2} & 1+\mathbf{v}^{2} & \mathbf{v} \end{pmatrix} & c_{\mathrm{st}} &\leadsto \begin{pmatrix} \mathbf{v} & \mathbf{v} & 1+\mathbf{v}^{2} \\ \mathbf{v} & \mathbf{v} & 1+\mathbf{v}^{2} \\ 0 & 0 & 0 \end{pmatrix} \end{split}$$

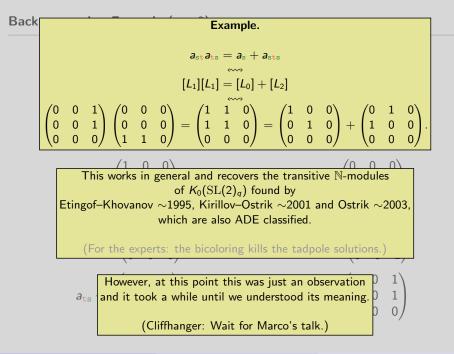
$$\begin{split} \mathbf{M} &= \mathbb{C}\langle 1,2,3\rangle \\ & \overbrace{1}^{*} & \overbrace{2}^{*} & \overbrace{2}^{*} \\ \mathbf{1} & \mathbf{3} & \mathbf{2} \end{split}$$

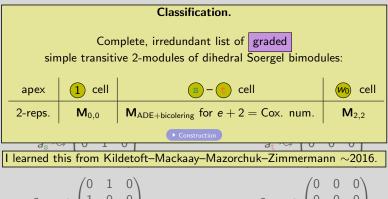
$$c_{\mathrm{s}} & \sim \begin{pmatrix} 1+\mathrm{v}^{2} & 0 & \mathrm{v} \\ 0 & 1+\mathrm{v}^{2} & \mathrm{v} \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad c_{\mathrm{t}} & \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \mathrm{v} & \mathrm{v} & 1+\mathrm{v}^{2} \end{pmatrix} \\ c_{\mathrm{sts}} & \sim \begin{pmatrix} 0 & 1+\mathrm{v}^{2} & \mathrm{v} \\ 1+\mathrm{v}^{2} & 0 & \mathrm{v} \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad c_{\mathrm{tst}} & \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \mathrm{v} & \mathrm{v} & 1+\mathrm{v}^{2} \end{pmatrix} \\ c_{\mathrm{ts}} & \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1+\mathrm{v}^{2} & 1+\mathrm{v}^{2} & \mathrm{v} \end{pmatrix} \qquad \qquad c_{\mathrm{st}} & \sim \begin{pmatrix} \mathrm{v} & \mathrm{v} & 1+\mathrm{v}^{2} \\ \mathrm{v} & \mathrm{v} & 1+\mathrm{v}^{2} \\ 0 & 0 & 0 \end{pmatrix} \end{split}$$



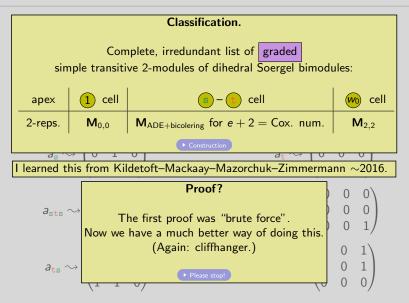




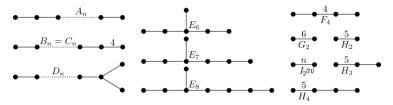




$a_{\tt sts} \sim \to$	1	0	0	$a_{ t tst} \sim$	0	0	0
$a_{\rm sts} \sim 0$	$\langle 0 \rangle$	0	0/	$a_{ m tst} \sim$	$\langle 0 \rangle$	0	1/
$a_{ m ts} \sim$	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$	0 0 1	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	$a_{ m st} \sim$	$\begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$	0 0 0	$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

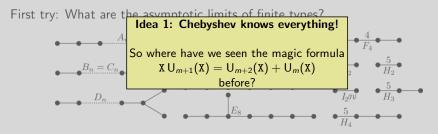


First try: What are the asymptotic limits of finite types?

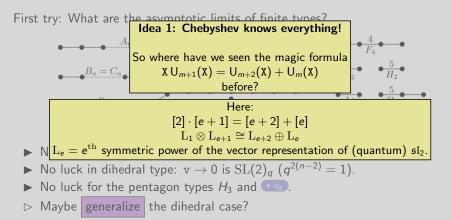


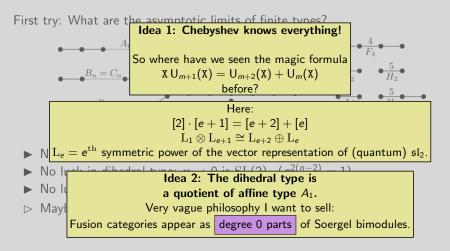
▶ No luck in finite Weyl type: $v \to 0$ is (almost always) $\mathcal{R}ep((\mathbb{Z}/2\mathbb{Z})^k)$.

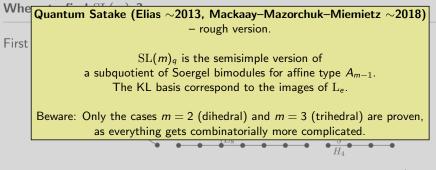
- ▶ No luck in dihedral type: $v \to 0$ is $SL(2)_q$ $(q^{2(n-2)} = 1)$.
- ▶ No luck for the pentagon types H_3 and H_4 .
- ▷ Maybe generalize the dihedral case?



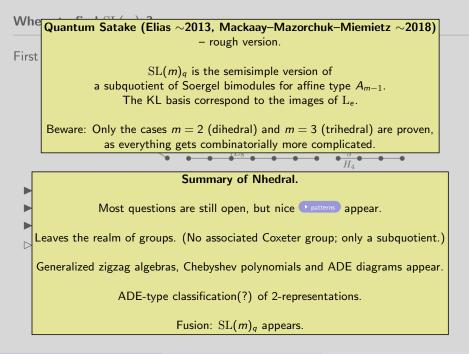
- ▶ No luck in finite Weyl type: $v \to 0$ is (almost always) $\mathcal{R}ep((\mathbb{Z}/2\mathbb{Z})^k)$.
- ▶ No luck in dihedral type: $v \to 0$ is $SL(2)_q$ $(q^{2(n-2)} = 1)$.
- ▶ No luck for the pentagon types H_3 and $\frown H_4$.
- ▷ Maybe generalize the dihedral case?

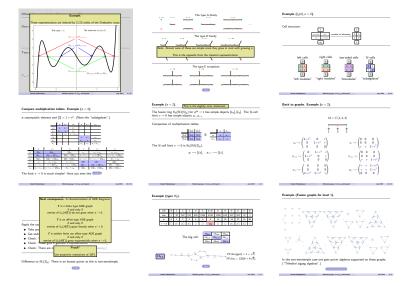




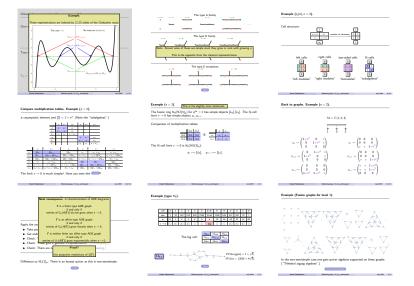


- ▶ No luck in finite Weyl type: $v \to 0$ is (almost always) $\mathcal{R}ep((\mathbb{Z}/2\mathbb{Z})^k)$.
- ▶ No luck in dihedral type: $v \rightarrow 0$ is $SL(2)_q$ $(q^{2(n-2)} = 1)$.
- ▶ No luck for the pentagon types H_3 and $\frown H_4$.
- ▷ Maybe generalize the dihedral case?





There is still much to do...



Thanks for your attention!

$$\begin{array}{l} U_0(X) = 1, \ U_1(X) = X, \ X U_{e+1}(X) = U_{e+2}(X) + U_e(X) \\ U_0(X) = 1, \ U_1(X) = 2X, \ 2X U_{e+1}(X) = U_{e+2}(X) + U_e(X) \end{array}$$

Kronecker ~1857. Any complete set of conjugate algebraic integers in]-2, 2[is a subset of $roots(U_{e+1}(X))$ for some *e*.

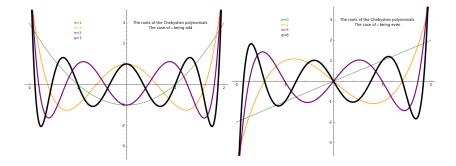
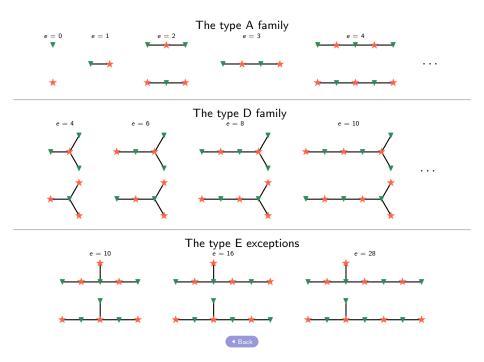
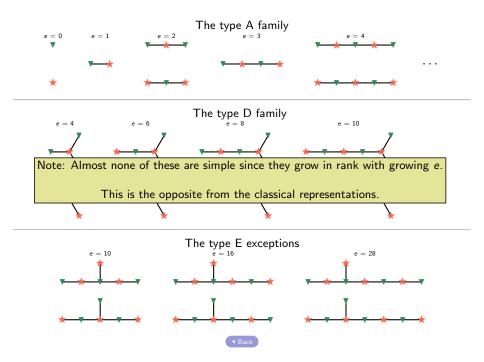


Figure: The roots of the Chebyshev polynomials (of the second kind).





Example (e = 2). Simples associated to cells.

Classical representation theory. The simples from before.

	M _{0,0}	M _{2,0}	$M_{\sqrt{2}}$	M _{0,2}	M _{2,2}
atom	sign	trivial-sign	rotation	sign-trivial	trivial
rank	1	1	2	1	1
apex(KL)	1	<u>s</u> –	<mark>(5)</mark> – (<u>s</u> –	wo

KL basis. ADE diagrams and ranks of transitive \mathbb{N} -modules.

	bottom cell	▼ ★ ▼	* * *	top cell
atom	sign	$M_{2,0} \oplus M_{\sqrt{2}}$	$M_{0,2} \oplus M_{\sqrt{2}}$	trivial
rank	1	3	3	1
apex(KL)	1	(5) – (5)	S – O	wo

The simples are arranged according to cells. However, one cell might have more than one associated simple.

(For the experts: This means that the Hecke algebra with the KL basis is in general not cellular in the sense of Graham–Lehrer.)

The fusion ring $K_0(SL(2)_q)$ for $q^{2e} = 1$ has simple objects $[L_0], [L_1], [L_2]$. The limit $v \to 0$ has simple objects $a_s, a_{sts}, a_s, a_{st}, a_t, a_{ts}, a_{ts}$.

Comparison of multiplication tables:

		a₅	a _{sts}	a _{st}	a _t	a _{tst}	a _{ts}
$\ [L_0] \ [L_2] \ [L_1]$	as	as	a _{sts}	a _{st}			
	a _{sts}	a _{sts}	as	a _{st}			
	k a _{ts}	a _{ts}	a _{ts}	$a_{t} + a_{tst}$			
$\begin{bmatrix} L_2 \end{bmatrix} \begin{bmatrix} L_2 \end{bmatrix} \begin{bmatrix} L_0 \end{bmatrix} \begin{bmatrix} L_1 \end{bmatrix}$	a _t				at	a_{tst}	ats
$[L_1] \mid [L_1] \mid [L_1] \mid [L_0] + [L_2]$					-		
	a _{tst}				a _{tst}	a _t	a _{ts}
	a _{st}				a _{st}	a _{st}	$a_{s} + a_{sts}$

The limit $v \to 0$ is a bicolored version of $K_0(SL(2)_q)$:

 $a_{\mathrm{s}}\&a_{\mathrm{t}}\longleftrightarrow [L_0], \quad a_{\mathrm{sts}}\&a_{\mathrm{tst}}\longleftrightarrow [L_2], \quad a_{\mathrm{st}}\&a_{\mathrm{ts}} \longleftrightarrow [L_1].$

The fusion ring $K_0(SO(3)_q)$ for $q^{2e} = 1$ has simple objects $[L_0], [L_2]$. The \mathcal{H} -cell limit $v \to 0$ has simple objects a_s, a_{sts} .

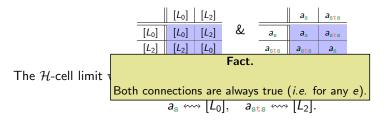
Comparison of multiplication tables:

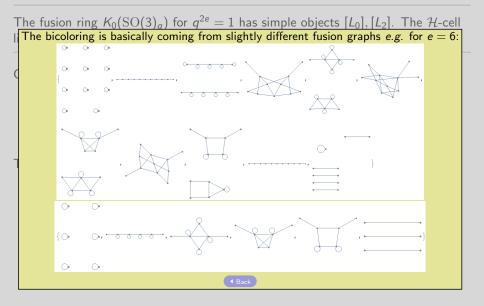
The \mathcal{H} -cell limit $v \to 0$ is $K_0(SO(3)_q)$:

$$a_{s} \iff [L_{0}], \quad a_{sts} \iff [L_{2}].$$

The fusion ring $K_0(SO(3)_q)$ for $q^{2e} = 1$ has simple objects $[L_0], [L_2]$. The \mathcal{H} -cell limit $v \to 0$ has simple objects a_s, a_{sts} .

Comparison of multiplication tables:





The zigzag algebra $Z(\mathbf{\Gamma})$

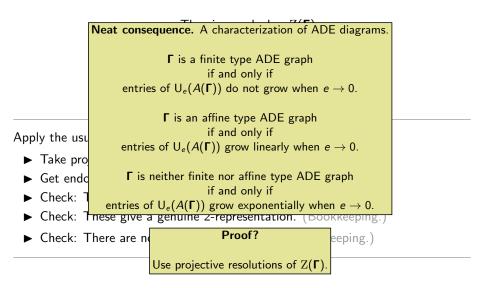
$$\checkmark \stackrel{u}{\longleftrightarrow} \bigstar \stackrel{u}{\longleftrightarrow} \checkmark \stackrel{u}{\longleftrightarrow} \checkmark$$

$$uu = 0 = dd, ud = du$$

Apply the usual philosophy:

- Take projectives $P_s = \bigoplus_{\mathsf{T}} P_i$ and $P_t = \bigoplus_{\mathsf{T}} P_i$.
- Get endofunctors $B_s = P_s \otimes_{Z(\Gamma)} and B_t = P_t \otimes_{Z(\Gamma)} -$.
- ▶ Check: These decategorify to b_s and b_t . (Easy.)
- ► Check: These give a genuine 2-representation. (Bookkeeping.)
- ► Check: There are no graded deformations. (Bookkeeping.)

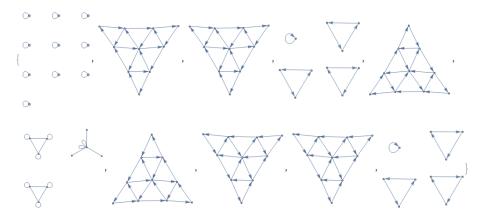
Difference to $SL(2)_q$: There is an honest quiver as this is non-semisimple.



Difference to $SL(2)_q$: There is an honest quiver as this is non-semisimple.

cell	0	1	2	3	4	5	6=6′	5′	4′	3′	2′	1′	0′
size	1	32	162	512	625	1296	9144	1296	625	512	162	32	1
а	0	1	2	3	4	5	6	15	16	18	22	31	60
$\mathtt{v}\to 0$		2□	2□	2□			big			2□	2□	2□	

Example (Fusion graphs for level 3).



In the non-semisimple case one gets quiver algebras supported on these graphs. ("Trihedral zigzag algebras".)

Stop - you are annoying!