## Dihedral groups, $\mathrm{SL}(2)_{q}$ and beyond

Or: Who colored my Dynkin diagrams?

## Daniel Tubbenhauer


"left modules" "right modules" "bimodules" "subalgebras"
Joint with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang
July 2019

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsiser polymmill.

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsher polymial

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{gathered}
\mathrm{U}_{3}(\mathrm{X})=\left(\mathrm{X}-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{X}\left(\mathrm{X}-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
\mathrm{A}_{3}=\stackrel{1}{2} \quad 2 \\
\longrightarrow
\end{gathered}
$$

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsher polymial

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{aligned}
& U_{3}(X)=\left(X-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{X}\left(\mathrm{X}-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
& A_{3}=\stackrel{1}{2} \xrightarrow{3} \sim A\left(A_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \longrightarrow \quad S_{A_{3}}=\left\{2 \cos \left(\frac{\pi}{4}\right), 0,2 \cos \left(\frac{3 \pi}{4}\right)\right\} \\
& \mathrm{U}_{5}(\mathrm{x})=\left(\mathrm{x}-2 \cos \left(\frac{\pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{2 \pi}{6}\right)\right) \mathrm{x}\left(\mathrm{x}-2 \cos \left(\frac{4 \pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{5 \pi}{6}\right)\right) \\
& D_{4}=\stackrel{1}{\curvearrowleft} \rightarrow \int_{3}^{2} A\left(D_{4}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \longrightarrow S_{D_{4}}=\left\{2 \cos \left(\frac{\pi}{6}\right), 0^{2}, 2 \cos \left(\frac{5 \pi}{6}\right)\right\}
\end{aligned}
$$

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsher polymial

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{aligned}
& U_{3}(X)=\left(X-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{X}\left(\mathrm{X}-2 \cos \left(\frac{3 \pi}{4}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{U}_{5}(\mathrm{x})=\left(\mathrm{x}-2 \cos \left(\frac{\pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{2 \pi}{6}\right)\right) \mathrm{x}\left(\mathrm{x}-2 \cos \left(\frac{4 \pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{5 \pi}{6}\right)\right) \\
& D_{4}=1 .\left\{\begin{array}{ll}
4 \\
4
\end{array} A_{3}^{2}\left(D_{4}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \longrightarrow \quad S_{D_{4}}=\left\{2 \cos \left(\frac{\pi}{6}\right), 0^{2}, 2 \cos \left(\frac{5 \pi}{6}\right)\right\}\right. \\
& \text { for } e=4
\end{aligned}
$$

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let

(1) Dihedral representation theory

- Classical vs. $\mathbb{N}$-representation theory
- Dihedral $\mathbb{N}$-representation theory
(2) Non-semisimple fusion rings
- The asymptotic limit
- The limit $\mathrm{v} \rightarrow 0$ of the $\mathbb{N}$-representations
(3) Beyond

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$ :

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ :


The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$ :

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$




The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$ :

$$
\begin{gathered}
W_{e+2}=\left\langle\frac{2}{\left\langle\frac{2}{\text { Fact. The symmetries are given by exchanging flags. }}\right.}=\overline{\mathrm{t}}_{e+2}\right\rangle, \\
\text { e.g. } \left.: W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$




The dihedral groups are of Coxeter type $I_{2}(e+2)$ :

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

 Fix a hyperplane $H_{0}$ permuting the adjacent 0 -cells of $F$.


The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$ :

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

 Fix a hyperplane $H_{0}$ permuting the adjacent 0 -cells of $F$.

Fix a hyperplane $H_{1}$ permuting the adjacent 1-cells of $F$, etc.


The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$ :

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

 Fix a hyperplane $H_{0}$ permuting the adjacent 0 -cells of $F$.

Fix a hyperplane $H_{1}$ permuting the adjacent 1-cells of $F$, etc.
Write a vertex $i$ for each $H_{i}$.


The dihedral groups aro of Covotor tunn $10(0+?)$.

$$
\begin{aligned}
& \text { This gives a generator-relation presentation. }
\end{aligned}
$$

$$
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\mathrm{stst}\right\rangle
$$

 Fix a hyperplane $H_{0}$ permuting the adjacent 0 -cells of $F$.

Fix a hyperplane $H_{1}$ permuting the adjacent 1 -cells of $F$, etc.

Write a vertex $i$ for each $H_{i}$.
Connect $i, j$ by an $n$-edge for $H_{i}, H_{j}$ having angle $\cos (\pi /(e+2))$.


The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$ :

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ :


The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$ :

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ :


The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$ :

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ :


The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$ :

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ :


The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$ :

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ :


Dihedral representation theory on one slide.
The Bott-Samelson (BS) generators $b_{\mathrm{s}}=\mathrm{s}+1, b_{\mathrm{t}}=\mathrm{t}+1$.
There is also a Kazhdan-Lusztig (KL) basis. We will nail it down later.

One-dimensional modules. $\mathrm{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, b_{\mathrm{s}} \mapsto \lambda_{\mathrm{s}}, b_{\mathrm{t}} \mapsto \lambda_{\mathrm{t}}$.

| $e \equiv 0 \bmod 2$ | $e \not \equiv 0 \bmod 2$ |
| :---: | :---: |
| $\mathrm{M}_{0,0}, \mathrm{M}_{2,0}, \mathrm{M}_{0,2}, \mathrm{M}_{2,2}$ | $\mathrm{M}_{0,0}, \mathrm{M}_{2,2}$ |

Two-dimensional modules. $\mathrm{M}_{z}, z \in \mathbb{C}, b_{\mathrm{s}} \mapsto\left(\begin{array}{cc}2 & z \\ 0 & 0\end{array}\right), b_{\mathrm{t}} \mapsto\left(\begin{array}{cc}0 & 0 \\ z & 2\end{array}\right)$.

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

## Dihedral representation theory on one slide.

| One-dimension | Proposition (Lusztig?). |  |
| :---: | :---: | :---: |
|  | The list of one- and two-dimensional $\mathrm{W}_{\mathrm{e}+2}$-modules is a complete, irredundant list of simple modules. |  |
|  | $\mathrm{M}_{0,0}, \mathrm{M}_{2,0}, \mathrm{M}_{0,2}, \mathrm{M}_{2,2}$ | $\mathrm{M}_{0,0}, \mathrm{M}_{2,2}$ |
| learned this construction in 2017. |  |  |

Two-dimensional modules. $\mathrm{M}_{z}, z \in \mathbb{C}, b_{\mathrm{s}} \mapsto\left(\begin{array}{cc}2 & z \\ 0 & 2\end{array}\right), b_{\mathrm{t}} \mapsto\left(\begin{array}{ll}0 & 0 \\ z & 2\end{array}\right)$.

| $e \equiv 0 \bmod 2$ | $e \not \equiv 0 \bmod 2$ |
| :---: | :---: |
| $\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}-\{0\}$ | $\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}$ |

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{x})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

## Dihedral representation theory on one slide.

One-dimensional modules. $\mathrm{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, b_{\mathrm{s}} \mapsto \lambda_{\mathrm{s}}, b_{\mathrm{t}} \mapsto \lambda_{\mathrm{t}}$.


## Example.

$\mathrm{M}_{0,0}$ is the sign representation and $\mathrm{M}_{2,2}$ is the trivial representation.
In case $e$ is odd, $\mathrm{U}_{e+1}(\mathrm{X})$ has a constant term, so $\mathrm{M}_{2,0}, \mathrm{M}_{0,2}$ are not representations.

$$
\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}-\{0\}
$$

$$
\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}
$$

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.


An algebra A with a fixed basis $\mathrm{B}^{\mathrm{A}}$ is called a (multi) $\mathbb{N}$-algebra if

$$
\mathrm{xy} \in \mathbb{N B}^{\mathrm{A}} \quad\left(\mathrm{x}, \mathrm{y} \in \mathrm{~B}^{\mathrm{A}}\right)
$$

A A-module M with a fixed basis $\mathrm{B}^{\mathrm{M}}$ is called a $\mathbb{N}$-module if

$$
\mathrm{xm} \in \mathbb{N B}^{\mathrm{M}} \quad\left(\mathrm{x} \in \mathrm{~B}^{\mathrm{A}}, \mathrm{~m} \in \mathrm{~B}^{\mathrm{M}}\right)
$$

These are $\mathbb{N}$-equivalent if there is a $\mathbb{N}$-valued change of basis matrix.

Example. $\mathbb{N}$-algebras and $\mathbb{N}$-modules arise naturally as the decategorification of 2 -categories and 2 -modules, and $\mathbb{N}$-equivalence comes from 2-equivalence.

## Example (group like).

Group algebras of finite groups with basis given by group elements are $\mathbb{N}$-algebras.
The regular module is a $\mathbb{N}$-module.
A A-module M with a fixed basis $\mathrm{B}^{\mathrm{M}}$ is called a $\mathbb{N}$-module if

$$
x m \in \mathbb{N B}^{\mathrm{M}} \quad\left(\mathrm{x} \in \mathrm{~B}^{\mathrm{A}}, \mathrm{~m} \in \mathrm{~B}^{\mathrm{M}}\right)
$$

These are $\mathbb{N}$-equivalent if there is a $\mathbb{N}$-valued change of basis matrix.

Example. $\mathbb{N}$-algebras and $\mathbb{N}$-modules arise naturally as the decategorification of 2-categories and 2-modules, and $\mathbb{N}$-equivalence comes from 2-equivalence.

## Example (group like).

Group algebras of finite groups with basis given by group elements are $\mathbb{N}$-algebras.

The regular module is a $\mathbb{N}$-module.
Example (group like).
Fusion rings are with basis given by classes of simples are $\mathbb{N}$-algebras.
Key example: $K_{0}(\mathcal{R e p}(G, \mathbb{C}))$ (easy $\mathbb{N}$-representation theory).
Examere example: $K_{0}\left(\mathcal{R e p}_{q}^{s s}\left(\mathrm{U}_{q}(\mathfrak{g})\right)=\mathrm{G}_{q}\right)$ (intricate $\mathbb{N}$-representation theory).
2-categories and 2-modules, and $\mathbb{N}$-equivalence comes from 2-equivalence.

## Example (group like).

Group algebras of finite groups with basis given by group elements are $\mathbb{N}$-algebras.
The regular module is a $\mathbb{N}$-module.


Clifford, Munn, Ponizovskiï, Green $\sim 1942+$, Kazhdan-Lusztig $\sim 1979$. $\mathrm{x} \leq_{L} \mathrm{y}$ if y appears in zx with non-zero coefficient for $\mathrm{z} \in \mathrm{B}^{\mathrm{A}} . \mathrm{x} \sim_{L} \mathrm{y}$ if $\mathrm{x} \leq_{L} \mathrm{y}$ and $\mathrm{y} \leq \mathrm{L}$.
$\sim_{L}$ partitions A into left cells L. Similarly for right R, two-sided cells LR or $\mathbb{N}$-modules.

A $\mathbb{N}$-module M is transitive if all basis elements belong to the same $\sim_{L}$ equivalence class. An apex of $M$ is a maximal two-sided cell not killing it.

Fact. Each transitive $\mathbb{N}$-module has a unique apex.
Hence, one can study them cell-wise.

Example. Transitive $\mathbb{N}$-modules arise naturally as the decategorification of simple transitive 2-modules.


A $\mathbb{N}$-module M is transitive if all basis elements belong to the same $\sim_{L}$ equivalence class. An apex of $M$ is a maximal two-sided cell not killing it.

Fact. Each transitive $\mathbb{N}$-module has a unique apex.
Hence, one can study them cell-wise.

Example. Transitive $\mathbb{N}$-modules arise naturally as the decategorification of simple transitive 2-modules.


| A $\mathbb{N}$-module M is t equivalence class. <br> Fac <br> Hence, one can stu | Example (group like). <br> Fusion rings in general have only one cell since each basis element $\left[V_{i}\right]$ has a dual $\left[V_{i}^{*}\right]$ such that $\left[V_{i}\right]\left[V_{i}^{*}\right]$ contains 1 as a summand. <br> Cell theory is useless for them! | same $\sim_{L}$ ot killing it. pex. |
| :---: | :---: | :---: |







| A $\mathbb{N}$-module M is t equivalence class. A <br> Fac <br> Hence, one can stu | Example (group like). <br> Fusion rings in general have only one cell since each basis element $\left[V_{i}\right]$ has a dual $\left[V_{i}^{*}\right]$ such that $\left[V_{i}\right]\left[V_{i}^{*}\right]$ contains 1 as a summand. <br> Cell theory is useless for them! | same $\sim_{L}$ pt killing it. pex. |
| :---: | :---: | :---: |
| Exar <br> trans <br> Hecke algebras | Example (Lusztig $\leq 2003$; semigroup like). <br> for the dihedral group with KL basis have the <br> Two-sided cells. | following cells |

## $\mathbb{N}$-modules via graphs.

Construct a $\mathrm{W}_{\infty}$-module M associated to a bipartite graph $\boldsymbol{\Gamma}$ :

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

## $\mathbb{N}$-modules via graphs.

Construct a $\mathrm{W}_{\infty}$-module M associated to a bipartite graph $\boldsymbol{\Gamma}$ :

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$



$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

## $\mathbb{N}$-modules via graphs.

Construct a $\mathrm{W}_{\infty}$-module M associated to a bipartite graph $\boldsymbol{\Gamma}$ :

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$



$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{c|c|ccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

## $\mathbb{N}$-modules via graphs.

Construct a $\mathrm{W}_{\infty}$-module M associated to a bipartite graph $\boldsymbol{\Gamma}$ :

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$



$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{cc|c|cc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

## $\mathbb{N}$-modules via graphs.

Construct a $\mathrm{W}_{\infty}$-module M associated to a bipartite graph $\boldsymbol{\Gamma}$ :

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$



$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccc|c|c}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

## $\mathbb{N}$-modules via graphs.

Construct a $\mathrm{W}_{\infty}$-module M associated to a bipartite graph $\boldsymbol{\Gamma}$ :

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$



$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{cccc|c}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

## $\mathbb{N}$-modules via graphs.

Construct a $\mathrm{W}_{\infty}$-module M associated to a bipartite graph $\boldsymbol{\Gamma}$ :

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$



$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

## $\mathbb{N}$-modules via graphs.

Construct a $\mathrm{W}_{\infty}$-module M associated to a bipartite graph $\boldsymbol{\Gamma}$ :

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$



$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{l|l|lll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

## $\mathbb{N}$-modules via graphs.

Construct a $\mathrm{W}_{\infty}$-module M associated to a bipartite graph $\boldsymbol{\Gamma}$ :

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$



$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ll|l|l}
0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2
\end{array}\right)
$$

## $\mathbb{N}$-modules via graphs.

Construct a $\mathrm{W}_{\infty}$-module M associated to a bipartite graph $\boldsymbol{\Gamma}$ :

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$



$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lll|l|l}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

## $\mathbb{N}$-modules via graphs.

Construct a $\mathrm{W}_{\infty}$-module M associated to a bipartite graph $\boldsymbol{\Gamma}$ :

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$



$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

## $\mathbb{N}$-modules via graphs.

## Construct a Wh_module M associated to a binartite oranh $\Gamma$.

The adjacency matrix $A(\Gamma)$ of $\Gamma$ is

$$
A(\boldsymbol{\Gamma})=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
\hline 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

These are $\mathrm{W}_{e+2}$-modules for some $e$ only if $A(\Gamma)$ is killed by the Chebyshev polynomial $\mathrm{U}_{e+1}(\mathrm{x})$.

Morally speaking: These are constructed as the simples but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev-braid-like relation can not hold otherwise.

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
\begin{array}{llll}
1 & 1 & 2 & 0
\end{array} & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

## $\mathbb{N}$-modules via graphs.

Construct a $\mathrm{W}_{\infty}$-module M associated to a bipartite graph $\boldsymbol{\Gamma}$ :

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

Hence, by Smith's (CP) and Lusztig: We get a representation of $\mathrm{W}_{e+2}$ if $\Gamma$ is a ADE Dynkin diagram for $e+2$ being the Coxeter number.

That these are $\mathbb{N}$-modules follows from categorification.

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 \\
0 \\
0 & 1 & 0 & 2
\end{array}\right)
$$

## $\mathbb{N}$-modules via graphs.

Construct a $\mathrm{W}_{\infty}$-module M associated to a bipartite graph $\boldsymbol{\Gamma}$ :

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

| Classification. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Complete, irredundant |  |  |  |  |
| apex list | of transitive $\mathbb{N}$-modules of $\mathrm{W}_{e+2}$ : |  |  |  |
| $\mathbb{N}$-reps. | $\mathrm{M}_{0,0}$ | $\mathrm{M}_{\mathrm{ADE}+\text { bicolering }}$ for $e+2=$ Cox. num. | $\mathrm{M}_{2,2}$ |  |

I learned this from Kildetoft-Mackaay-Mazorchuk-Zimmermann ~2016.

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc} 
\\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{cccc}
0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 \\
0 \\
0 & 1 & 0 & 2
\end{array} 0\right.
$$

## Example ( $\left.I_{2}(4), e=2\right)$.

Cell structure:

left cells


1

"right modules"
two-sided cells

"bimodules"
$\mathcal{H}$-cells

"subalgebras"

## Example ( $\left.I_{2}(4), e=2\right)$.

## Cell structure:

| Example. |
| :---: |
| $1 \cdot 1=\mathrm{v}^{0} 1$. |
| (v is the Hecke parameter deforming e.g. $\mathrm{s}^{2}=1$ to $\left.T_{\mathrm{s}}^{2}=\left(\mathrm{v}^{-1}-\mathrm{v}\right) T_{\mathrm{s}}+1.\right)$ |

left cells

"left modules" "right modules"

"bimodules"

"subalgebras"

## Example $\left(I_{2}(4), e=2\right)$.

## Cell structure:

## Example.

$1 \cdot 1=\mathrm{v}^{0} 1$.
( v is the Hecke parameter deforming e.g. $\mathrm{s}^{2}=1$ to $T_{\mathrm{s}}^{2}=\left(\mathrm{v}^{-1}-\mathrm{v}\right) T_{\mathrm{s}}+1$.)


## Example ( $\left.I_{2}(4), e=2\right)$.

## Cell structure:

## Example.

$1 \cdot 1=\mathrm{v}^{0} 1$.
( v is the Hecke parameter deforming e.g. $\mathrm{s}^{2}=1$ to $T_{\mathrm{s}}^{2}=\left(\mathrm{v}^{-1}-\mathrm{v}\right) T_{\mathrm{s}}+1$.)


## Example (1, (4), $e=2$ ).

## Fact (Lusztig $\sim 1980++$ ).

For any Coxeter group W there is a well-defined function

$$
\mathbf{a}: W \rightarrow \mathbb{N}
$$

which is constant on two-sided cells.

Asymptotic limit $\mathrm{v} \rightarrow 0 "=$ " kill non-leading terms of $c_{w}=\mathrm{v}^{\mathrm{a}} b_{w}$, e.g. $c_{\mathrm{s}}=\mathrm{v}^{1} b_{\mathrm{s}}$ and $c_{\mathrm{s}}^{2}=\left(1+\mathrm{v}^{2}\right) c_{\mathrm{s}}$.

Think: Positively graded, and asymptotic limit is taking degree 0 part.

| +1 |  |
| :--- | :--- |
| 2 | 1 |
| 1 | 2 |
|  | 1 |


"right modules"

"bimodules"

"subalgebras"

Compare multiplication tables. Example ( $e=2$ ).
$a=$ asymptotic element and $[2]=1+\mathrm{v}^{2}$. (Note the "subalgebras".)

|  | $a_{\mathrm{s}}$ | $a_{\mathrm{sts}}$ | $a_{\mathrm{st}}$ | $a_{\mathrm{t}}$ | $a_{\mathrm{tst}}$ | $a_{\mathrm{ts}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $a_{\mathrm{s}}$ | $a_{\mathrm{s}}$ | $a_{\mathrm{sts}}$ | $a_{\mathrm{st}}$ |  |  |  |
| $a_{\mathrm{sts}}$ | $a_{\mathrm{Sts}}$ | $a_{\mathrm{s}}$ | $a_{\mathrm{st}}$ |  |  |  |
| $a_{\mathrm{ts}}$ | $a_{\mathrm{ts}}$ | $a_{\mathrm{ts}}$ | $a_{\mathrm{t}}+a_{\mathrm{tst}}$ |  |  |  |
| $a_{\mathrm{t}}$ |  |  |  | $a_{\mathrm{t}}$ | $a_{\mathrm{tst}}$ | $a_{\mathrm{ts}}$ |
| $a_{\mathrm{tst}}$ |  |  |  | $a_{\mathrm{tst}}$ | $a_{\mathrm{t}}$ | $a_{\mathrm{ts}}$ |
| $a_{\mathrm{st}}$ |  |  |  | $a_{\mathrm{st}}$ | $a_{\mathrm{st}}$ | $a_{\mathrm{s}}+a_{\mathrm{sts}}$ |


|  | $C_{\text {S }}$ | $C_{\text {Sts }}$ | $C_{\text {st }}$ | $C_{\text {t }}$ | $C_{\text {tst }}$ | $C_{\text {ts }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $C_{\text {S }}$ | $[2] c_{\text {S }}$ | [2] $C_{\text {sts }}$ | $[2] c_{\text {st }}$ | $C_{\text {st }}$ | $C_{\text {st }}+C_{w_{0}}$ | $C_{\mathrm{s}}+C_{\mathrm{sts}}$ |
| $C_{\text {sts }}$ | [2] $C_{\text {sts }}$ | $[2] c_{s}+[2]^{2} c_{w_{0}}$ | $[2] c_{\text {st }}+[2] c_{w_{0}}$ | $C_{\mathrm{s}}+C_{\mathrm{sts}}$ | $c_{\mathrm{S}}+[2]^{2} C_{W_{0}}$ | $c_{\mathrm{s}}+c_{\mathrm{sts}}+[2] c_{w_{0}}$ |
| $C_{\text {ts }}$ | $[2] c_{\text {ts }}$ | $[2] c_{\mathrm{ts}}+[2] c_{w_{0}}$ | $[2] c_{\mathrm{t}}+[2] c_{\mathrm{tst}}$ | $C_{\mathrm{t}}+C_{\text {tst }}$ | $c_{\mathrm{t}}+c_{\mathrm{tst}}+[2] c_{w_{0}}$ | $2 c_{\mathrm{ts}}+C_{w_{0}}$ |
| $C_{\text {t }}$ | $C_{\text {ts }}$ | $C_{\mathrm{ts}}+C_{w_{0}}$ | $C_{\mathrm{t}}+C_{\mathrm{tst}}$ | [2]c | [2] $C_{\text {cst }}$ | $[2] c_{\text {ts }}$ |
| $C_{\text {tst }}$ | $C_{\mathrm{t}}+C_{\text {tst }}$ | $c_{\mathrm{t}}+[2]^{2} c_{w_{0}}$ | $c_{\mathrm{t}}+c_{\mathrm{tst}}+[2] c_{w_{0}}$ | [2] $\mathrm{ctst}^{\text {ct }}$ | $[2] c+[2]^{2} c_{w_{0}}$ | $[2] c_{\mathrm{ts}}+[2] c_{w_{0}}$ |
| $C_{\text {st }}$ | $C_{\mathrm{s}}+C_{\mathrm{sts}}$ | $C_{s}+C_{\text {sts }}+[2] c_{w_{0}}$ | $2 c_{s t}+c_{w_{0}}$ | $[2] c_{\text {st }}$ | $[2] c_{s t}+[2] c_{w_{0}}$ | $[2] c_{\text {s }}+[2] c_{\text {sts }}$ |

The limit $\mathrm{v} \rightarrow 0$ is much simpler! Have you seen this

Back to graphs. Example ( $e=2$ ).

\[

\]

Back to graphs. Example ( $e=2$ ).

\[

\]

Back to graphs. Example ( $e=2$ ).

$$
\begin{aligned}
& \mathrm{M}=\mathbb{C}\langle 1,2,3\rangle \\
& a_{\mathrm{s}} \sim\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& a_{\text {sts }} \leadsto\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& a_{\text {ts }} \leadsto\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)
\end{aligned}
$$

| Back | Example. $\begin{gathered} \begin{array}{c} a_{\mathrm{st}} a_{\mathrm{ts}}=a_{\mathrm{s}}+a_{\mathrm{sts}} \\ {\left[L_{1}\right]\left[L_{1}\right]=\left[L_{0}\right]+\left[L_{2}\right]} \end{array} \\ \left(\begin{array}{lll} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)\left(\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{array}\right)=\left(\begin{array}{lll} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)=\left(\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)+\left(\begin{array}{lll} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \end{gathered}$ |
| :---: | :---: |
|  | $a_{\mathrm{s}} \leadsto\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right) \quad a_{\mathrm{t}} \sim\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ |
|  | $a_{\text {sts }} \leadsto\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \quad a_{\text {tst }} \leadsto\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ |
|  | $a_{\text {ts }} \leadsto\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right) \quad a_{\text {st }} \leadsto\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ |

## Example.

$$
\begin{gathered}
a_{\mathrm{st}} a_{\mathrm{ts}}=a_{\mathrm{s}}+a_{\mathrm{sts}} \\
{\left[L_{1}\right]\left[L_{1}\right]=\left[L_{0}\right]+\left[L_{2}\right]}
\end{gathered}
$$

$$
\left.\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot\right]
$$

(1 0 n) $(0 \quad 0 \quad 0)$
This works in general and recovers the transitive $\mathbb{N}$-modules of $K_{0}\left(\mathrm{SL}(2)_{q}\right)$ found by
Etingof-Khovanov ~1995, Kirillov-Ostrik ~2001 and Ostrik ~2003, which are also ADE classified.
(For the experts: the bicoloring kills the tadpole solutions.)

$$
a_{\mathrm{ts}} \leadsto\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)
$$

$$
a_{\text {st }} \leadsto\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

## Example.

$$
\begin{gathered}
a_{\mathrm{st}} \boldsymbol{a}_{\mathrm{ts}}=a_{\mathrm{s}}+a_{\mathrm{sts}} \\
{\left[L_{1}\right]\left[L_{1}\right]=\left[L_{0}\right]+\left[L_{2}\right]}
\end{gathered}
$$

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot
$$

This works in general and recovers the transitive $\mathbb{N}$-modules of $K_{0}\left(\mathrm{SL}(2)_{q}\right)$ found by
Etingof-Khovanov ~1995, Kirillov-Ostrik ~2001 and Ostrik ~2003, which are also ADE classified.
(For the experts: the bicoloring kills the tadpole solutions.)
$a_{\mathrm{ts}}\left(\begin{array}{c|c}\hline \text { However, at this point this was just an observation } & 1 \\ \text { and it took a while until we understood its meaning. } & 1 \\ \text { (Cliffhanger: Wait for Marco's talk.) } & 0\end{array}\right)$

## Back to graphs. Example ( $e=2$ ).

## Classification.

Complete, irredundant list of graded simple transitive 2-modules of dihedral Soergel bimodules:


I learned this from Kildetoft-Mackaay-Mazorchuk-Zimmermann ~2016.

$$
\begin{aligned}
a_{\mathrm{sts}} & \leadsto\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & a_{\mathrm{tst}} & \leadsto\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
a_{\mathrm{ts}} & \leadsto\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right) & & a_{\mathrm{st}}
\end{aligned}>\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), ~ \$
$$

## Back to graphs. Example ( $e=2$ ).

## Classification.

## Complete, irredundant list of graded

 simple transitive 2-modules of dihedral Soergel bimodules:| apex | (1) cell | (S) $-\bigcirc$ cell | (W0) cell |
| :---: | :---: | :---: | :---: |
| 2-reps. | $\mathrm{M}_{0,0}$ | $\mathbf{M}_{\text {ADE+bicolering }}$ for $e+2=$ Cox. num. <br> Construction | $\mathbf{M}_{2,2}$ |
| $a_{\text {s }}$ | 10.1 | 1 at $a_{t}$ | 01 |

I learned this from Kildetoft-Mackaay-Mazorchuk-Zimmermann ~2016.


## Where to find $\mathrm{SL}(m)_{q}$ ?

First try: What are the asymptotic limits of finite types?


- No luck in finite Weyl type: $\mathrm{v} \rightarrow 0$ is (almost always) $\operatorname{Rep}\left((\mathbb{Z} / 2 \mathbb{Z})^{k}\right)$.
- No luck in dihedral type: $\mathrm{v} \rightarrow 0$ is $\mathrm{SL}(2)_{q}\left(q^{2(n-2)}=1\right)$.
- No luck for the pentagon types $\mathrm{H}_{3}$ and $\mathrm{H}_{4}$.
$\triangleright$ Maybe generalize the dihedral case?

Where to find $\mathrm{SL}(m)_{q}$ ?

First try: What are the asvmntotic limits of finite tunes? Idea 1: Chebyshev knows everything!


- No luck in finite Weyl type: $\mathrm{v} \rightarrow 0$ is (almost always) $\operatorname{Rep}\left((\mathbb{Z} / 2 \mathbb{Z})^{k}\right)$.
- No luck in dihedral type: $\mathrm{v} \rightarrow 0$ is $\mathrm{SL}(2)_{q}\left(q^{2(n-2)}=1\right)$.
- No luck for the pentagon types $\mathrm{H}_{3}$ and (H4).
$\triangleright$ Maybe generalize the dihedral case?


## Where to find $\mathrm{SL}(m)_{q}$ ?

First try: What are the asvmntotic limits of finite tunes?
Idea 1: Chebyshev knows everything!
So where have we seen the magic formula

$\mathrm{X} \mathrm{U}_{m+1}(\mathrm{X})=\mathrm{U}_{m+2}(\mathrm{X})+\mathrm{U}_{m}(\mathrm{X})$ before?

Here:

$$
[2] \cdot[e+1]=[e+2]+[e]
$$

$$
\mathrm{L}_{1} \otimes \mathrm{~L}_{e+1} \cong \mathrm{~L}_{e+2} \oplus \mathrm{~L}_{e}
$$

$>\mathrm{N} \mathrm{L}_{e}=e^{\mathrm{th}}$ symmetric power of the vector representation of (quantum) $\mathfrak{s l}_{2}$.

- No luck in dihedral type: $\mathrm{v} \rightarrow 0$ is $\mathrm{SL}(2)_{q}\left(q^{2(n-2)}=1\right)$.
- No luck for the pentagon types $\mathrm{H}_{3}$ and
$\triangleright$ Maybe generalize the dihedral case?


## Where to find $\mathrm{SL}(m)_{q}$ ?

First try: What are the asvmntatic limits of finite tunes?
Idea 1: Chebyshev knows everything!
So where have we seen the magic formula

$\mathrm{X} \mathrm{U}_{m+1}(\mathrm{X})=\mathrm{U}_{m+2}(\mathrm{X})+\mathrm{U}_{m}(\mathrm{X})$ before?

Here:

$$
\begin{gathered}
{[2] \cdot[e+1]=[e+2]+[e]} \\
\mathrm{L}_{1} \otimes \mathrm{~L}_{e+1} \cong \mathrm{~L}_{e+2} \oplus \mathrm{~L}_{e}
\end{gathered}
$$

$-\mathrm{N} \mathrm{L}_{e}=e^{\text {th }}$ symmetric power of the vector representation of (quantum) $\mathfrak{s l}_{2}$.

- No lyak in dibadeal tuna... 0 in ar (n) (a2(n-2)
$\rightarrow$ Noll Idea 2: The dihedral type is
$\triangleright$ Mayl Very vague philosophy I want to sell:
Fusion categories appear as degree 0 parts of Soergel bimodules.


# Whe Quantum Satake (Elias ~2013, Mackaay-Mazorchuk-Miemietz ~2018) 

- rough version.
$\mathrm{SL}(m)_{q}$ is the semisimple version of a subquotient of Soergel bimodules for affine type $A_{m-1}$.

The KL basis correspond to the images of $\mathrm{L}_{e}$.
Beware: Only the cases $m=2$ (dihedral) and $m=3$ (trihedral) are proven, as everything gets combinatorially more complicated.

- No luck in finite Weyl type: $\mathrm{v} \rightarrow 0$ is (almost always) $\mathcal{R e p}\left((\mathbb{Z} / 2 \mathbb{Z})^{k}\right)$.
- No luck in dihedral type: $\mathrm{v} \rightarrow 0$ is $\mathrm{SL}(2)_{q}\left(q^{2(n-2)}=1\right)$.
- No luck for the pentagon types $H_{3}$ and
$\triangleright$ Maybe generalize the dihedral case?


## Whe Quantum Satake (Elias ~2013, Mackaay-Mazorchuk-Miemietz ~2018)

- rough version.
$\mathrm{SL}(m)_{q}$ is the semisimple version of a subquotient of Soergel bimodules for affine type $A_{m-1}$.

The KL basis correspond to the images of $\mathrm{L}_{e}$.
Beware: Only the cases $m=2$ (dihedral) and $m=3$ (trihedral) are proven, as everything gets combinatorially more complicated.

## Summary of Nhedral.

Most questions are still open, but nice patterns appear.
Leaves the realm of groups. (No associated Coxeter group; only a subquotient.)
Generalized zigzag algebras, Chebyshev polynomials and ADE diagrams appear.
ADE-type classification(?) of 2-representations.
Fusion: $\mathrm{SL}(m)_{q}$ appears.


Compare multiplication tables. Example ( $e-2$ ).


The limit $\mathrm{v} \rightarrow 0$ is much simpler! Have you seen this ?




Example (type $\mathrm{H}_{4}$ ).


$\cdots$

Example $(1:(4) \cdot e-2)$.



|  | $\mathrm{M}-\mathrm{C}(1,2,3)$ |  |
| :---: | :---: | :---: |
|  | $1$ | $\frac{\pi}{2}$ |
| $a_{\sim} \sim\left(\begin{array}{ccc}1+v^{2} & 0 & \nu \\ 0 & 1+v^{2} & \eta \\ 0 & 0 & 0\end{array}\right)$ |  | $a_{c} \sim\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ v & v & 1 \\ 0 & v^{2}\end{array}\right)$ |
| $\underline{c o s} \sim\left(\begin{array}{ccc}0 & 1+v^{2} \\ 1+w^{2} & 0 & v \\ 0 & 0 & v\end{array}\right)$ |  | $c_{\text {wi }} \sim\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ v & v & 1+v^{2}\end{array}\right)$ |
| $c_{\Delta} \sim\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1+v^{2} & 1+v^{2} & 0\end{array}\right)$ |  | $c_{\sim} \sim \sim\left(\begin{array}{ccc}v & v & 1+v^{2} \\ v & v & 1+v^{2} \\ 0 & 0 & 0\end{array}\right)$ |

Example (Fusion graphs for level 3).


## There is still much to do.



Compare multiplication tables. Example ( $e-2$ ).


The limit $\mathrm{v} \rightarrow 0$ is much simpler! Have you seen this ?




Example (type $\mathrm{H}_{4}$ ).


$$
14,4: \ldots \underbrace{\text { Prdim }}_{\text {PFdim }-120(9+4 \sqrt{5})}
$$

cim

Example $\left(1_{2}(4), e-2\right)$.



|  | $\mathrm{M}=\mathrm{C}(1,2,3)$ |  |
| :---: | :---: | :---: |
|  | $1$ | $\stackrel{-}{4}$ |
| $c_{1} \sim\left(\begin{array}{cccc}1+v^{2} & 0 & \nu \\ 0 & 1+v^{2} & \nu \\ 0 & 0 & 0\end{array}\right)$ |  | $a_{c} \sim\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ v & v & 1 \\ 1 & v^{2}\end{array}\right)$ |
| $c \mathrm{cos} \sim \sim\left(\begin{array}{ccc}0 & 1+v^{2} & v \\ 1+v^{2} & 0 & v \\ 0 & 0 & 0\end{array}\right)$ |  | $c_{\text {wi }} \sim\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ v & v & 1+v^{2}\end{array}\right)$ |
| $c_{\Delta} \sim\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1+v^{2} & 1+v^{2} & 0\end{array}\right)$ |  | $c_{\sim} \sim\left(\begin{array}{ccc}v & v & 1+v^{2} \\ 0 & v & 1+v^{2} \\ 0 & 0 & 0\end{array}\right)$ |

Example (Fusion graphs for level 3).


## Thanks for your attention!

$$
\begin{array}{ll}
\mathrm{U}_{0}(\mathrm{X})=1, & \mathrm{U}_{1}(\mathrm{X})=\mathrm{X},
\end{array}, \mathrm{X} \mathrm{U}_{e+1}(\mathrm{X})=\mathrm{U}_{e+2}(\mathrm{X})+\mathrm{U}_{e}(\mathrm{X})
$$

Kronecker $\boldsymbol{\sim}$ 1857. Any complete set of conjugate algebraic integers in ] $-2,2$ [ is a subset of roots $\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ for some $e$.


Figure: The roots of the Chebyshev polynomials (of the second kind).

The type A family
$e=0$
$\nabla$
$e=1$

$e=3$

. .
$\star$


The type D family

$e=4$


$e=6$


The type E exceptions


The type A family


The type D family
$e=8$
$e=10$
$e=4$
$e=6$


Note: Almost none of these are simple since they grow in rank with growing e.
This is the opposite from the classical representations.





Example ( $e=2$ ). Simples associated to cells.
Classical representation theory. The simples from before.

|  | $\mathrm{M}_{0,0}$ | $\mathrm{M}_{2,0}$ | $\mathrm{M}_{\sqrt{2}}$ | $\mathrm{M}_{0,2}$ | $\mathrm{M}_{2,2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| atom | sign | trivial-sign | rotation | sign-trivial | trivial |
| rank | 1 | 1 | 2 | 1 | 1 |
| apex (KL) | 1 | S $-\bigcirc$ | S $-\bigcirc$ | S $-\bigcirc$ | $W_{0}$ |

$K L$ basis. ADE diagrams and ranks of transitive $\mathbb{N}$-modules.

|  | bottom cell | $\longrightarrow$ | $\star \longrightarrow$ | top cell |
| :---: | :---: | :---: | :---: | :---: |
| atom | sign | $\mathrm{M}_{2,0} \oplus \mathrm{M}_{\sqrt{2}}$ | $\mathrm{M}_{0,2} \oplus \mathrm{M}_{\sqrt{2}}$ | trivial |
| rank | 1 | 3 | 3 | 1 |
| apex (KL) | $(1)$ | S $-\bigcirc$ | S $-\bigcirc$ | $W_{0}$ |

The simples are arranged according to cells. However, one cell might have more than one associated simple.
(For the experts: This means that the Hecke algebra with the KL basis is in general not cellular in the sense of Graham-Lehrer.)

## Example ( $e=2$ ).

The fusion ring $K_{0}\left(\mathrm{SL}(2)_{q}\right)$ for $q^{2 e}=1$ has simple objects $\left[L_{0}\right],\left[L_{1}\right],\left[L_{2}\right]$. The limit $\mathrm{v} \rightarrow 0$ has simple objects $a_{\mathrm{s}}, a_{\mathrm{sts}}, a_{\mathrm{st}}, a_{\mathrm{t}}, a_{\mathrm{tst}}, a_{\mathrm{ts}}$.

Comparison of multiplication tables:

|  | $\left[L_{0}\right]$ | $\left[L_{2}\right]$ | $\left[L_{1}\right]$ |
| :---: | :---: | :---: | :---: |
| $\left[L_{0}\right]$ | $\left[L_{0}\right]$ | $\left[L_{2}\right]$ | $\left[L_{1}\right]$ |
| $\left[L_{2}\right]$ | $\left[L_{2}\right]$ | $\left[L_{0}\right]$ | $\left[L_{1}\right]$ |
| $\left[L_{1}\right]$ | $\left[L_{1}\right]$ | $\left[L_{1}\right]$ | $\left[L_{0}\right]+\left[L_{2}\right]$ |


|  | $a_{\mathrm{s}}$ | $a_{\mathrm{sts}}$ | $a_{\mathrm{st}}$ | $a_{\mathrm{t}}$ | $a_{\mathrm{tst}}$ | $a_{\mathrm{ts}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a_{\mathrm{s}}$ | $a_{\mathrm{s}}$ | $a_{\mathrm{sts}}$ | $a_{\mathrm{st}}$ |  |  |  |
| $a_{\mathrm{sts}}$ | $a_{\mathrm{sts}}$ | $a_{\mathrm{s}}$ | $a_{\mathrm{st}}$ |  |  |  |
| $a_{\mathrm{ts}}$ | $a_{\mathrm{ts}}$ | $a_{\mathrm{ts}}$ | $a_{\mathrm{t}}+a_{\mathrm{tst}}$ |  |  |  |
| $a_{\mathrm{t}}$ |  |  |  | $a_{\mathrm{t}}$ | $a_{\mathrm{tst}}$ | $a_{\mathrm{ts}}$ |
| $a_{\mathrm{tst}}$ |  |  |  | $a_{\mathrm{tst}}$ | $a_{\mathrm{t}}$ | $a_{\mathrm{ts}}$ |
| $a_{\mathrm{st}}$ |  |  |  | $a_{\mathrm{st}}$ | $a_{\mathrm{st}}$ | $a_{\mathrm{s}}+a_{\mathrm{sts}}$ |

The limit $\mathrm{v} \rightarrow 0$ is a bicolored version of $K_{0}\left(\mathrm{SL}(2)_{q}\right)$ :

$$
a_{\mathrm{s}} \& a_{\mathrm{t}} \nrightarrow\left[L_{0}\right], \quad a_{\mathrm{sts}} \& a_{\mathrm{tst}} \leftrightarrow M \rightarrow\left[L_{2}\right], \quad a_{\mathrm{st}} \& a_{\mathrm{ts}} \leftrightarrow m \rightarrow\left[L_{1}\right] .
$$

## Example ( $e=2$ ).

 This is the slightly nicer statement.The fusion ring $K_{0}\left(\mathrm{SO}(3)_{q}\right)$ for $q^{2 e}=1$ has simple objects [ $L_{0}$ ], [ $L_{2}$ ]. The $\mathcal{H}$-cell limit $\mathrm{v} \rightarrow 0$ has simple objects $a_{\mathrm{s}}, a_{\text {sts }}$.

Comparison of multiplication tables:

|  | $\left[L_{0}\right]$ | $\left[L_{2}\right]$ |
| :---: | :---: | :---: |
| $\left[L_{0}\right]$ | $\left[L_{0}\right]$ | $\left[L_{2}\right]$ |
| $\left[L_{2}\right]$ | $\left[L_{2}\right]$ | $\left[L_{0}\right]$ |


$\&$|  | $a_{\mathrm{s}}$ | $a_{\mathrm{sts}}$ |
| :---: | :---: | :---: |
| $a_{\mathrm{s}}$ | $a_{\mathrm{s}}$ | $a_{\mathrm{sts}}$ |
| $a_{\mathrm{sts}}$ | $a_{\mathrm{sts}}$ | $a_{\mathrm{s}}$ |

The $\mathcal{H}$-cell limit $\mathrm{v} \rightarrow 0$ is $K_{0}\left(\mathrm{SO}(3)_{q}\right)$ :

$$
a_{\mathrm{s}} \longleftrightarrow 4\left[L_{0}\right], \quad a_{\text {sts }} \leftrightarrow \leadsto\left[L_{2}\right] .
$$

Example ( $e=2$ ). This is the slightly nicer statement.

The fusion ring $K_{0}\left(\mathrm{SO}(3)_{q}\right)$ for $q^{2 e}=1$ has simple objects $\left[L_{0}\right]$, $\left[L_{2}\right]$. The $\mathcal{H}$-cell limit $\mathrm{v} \rightarrow 0$ has simple objects $a_{\mathrm{s}}, a_{\text {sts }}$.

Comparison of multiplication tables:


## Example ( $e=2$ ).

The fusion ring $K_{0}\left(\mathrm{SO}(3)_{a}\right)$ for $q^{2 e}=1$ has simple objects $\left[L_{0}\right],\left[L_{2}\right]$. The $\mathcal{H}$-cell The bicoloring is basically coming from slightly different fusion graphs e.g. for $e=6$ :


The zigzag algebra $\mathrm{Z}(\mathbf{\Gamma})$

$$
\begin{gathered}
\underset{\mathrm{v}}{\stackrel{\mathrm{u}}{\rightleftarrows} \star \stackrel{\mathrm{u}}{\underset{\mathrm{~d}}{\rightleftarrows}} \mathrm{\nabla}} \\
u u=0=d d, u d=d u
\end{gathered}
$$

Apply the usual philosophy:

- Take projectives $\mathrm{P}_{\mathrm{s}}=\bigoplus_{\nabla} P_{i}$ and $\mathrm{P}_{\mathrm{t}}=\bigoplus_{\star} P_{i}$.
- Get endofunctors $B_{s}=P_{s} \otimes_{Z(\Gamma)}$ - and $B_{t}=P_{t} \otimes_{Z(\Gamma)}$.
- Check: These decategorify to $b_{\mathrm{s}}$ and $b_{\mathrm{t}}$. (Easy.)
- Check: These give a genuine 2-representation. (Bookkeeping.)
- Check: There are no graded deformations. (Bookkeeping.)

Difference to $\mathrm{SL}(2)_{q}$ : There is an honest quiver as this is non-semisimple.


Difference to $\mathrm{SL}(2)_{q}$ : There is an honest quiver as this is non-semisimple.

## Example (type $H_{4}$ ).

| cell | 0 | 1 | 2 | 3 | 4 | 5 | $6=6^{\prime}$ | $5^{\prime}$ | $4^{\prime}$ | $3^{\prime}$ | $2^{\prime}$ | $1^{\prime}$ | $0^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| size | 1 | 32 | 162 | 512 | 625 | 1296 | 9144 | 1296 | 625 | 512 | 162 | 32 | 1 |
| $\mathbf{a}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 15 | 16 | 18 | 22 | 31 | 60 |
| $\mathrm{v} \rightarrow 0$ | $\square$ | $2 \square$ | $2 \square$ | $2 \square$ | $\square$ | $\square$ | big | $\square$ | $\square$ | $2 \square$ | $2 \square$ | $2 \square$ | $\square$ |

The big cell : $\quad$| $14_{8,8}$ | $13_{10,8}$ | $14_{6,8}$ |
| :---: | :---: | :---: |
| $13_{8,10}$ | $18_{10,10}$ | $18_{6,10}$ |
| $14_{8,6}$ | $18_{10,6}$ | $24_{6,6}$ |



## Example (Fusion graphs for level 3).



In the non-semisimple case one gets quiver algebras supported on these graphs. ("Trihedral zigzag algebras".)

