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Let A(Γ) be the adjacency matrix of a finite, connected, loopless graph Γ. Let
Ue+1(X) be the Chebyshev polynomial .

Classification problem (CP). Classify all Γ such that Ue+1(A(Γ)) = 0.

for e = 2

for e = 4

Smith ∼1969. The graphs solutions to (CP) are precisely
ADE graphs for e + 2 being (at most) the Coxeter number.

Type Am: • • • · · · • • • for e = m − 1

Type Dm: • • · · · • •

•

•

for e = 2m − 4

Type E6:
• • • • •

•
for e = 10

Type E7:
• • • • • •

•
for e = 16

Type E8:
• • • • • • •

•
for e = 28
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1 Dihedral representation theory
Classical vs. N-representation theory
Dihedral N-representation theory

2 Non-semisimple fusion rings
The asymptotic limit
The limit v→ 0 of the N-representations

3 Beyond
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The dihedral groups are of Coxeter type I2(e + 2):

We+2 = 〈s, t | s2 = t2 = 1, se+2 = . . . sts︸ ︷︷ ︸
e+2

= w0 = . . . tst︸ ︷︷ ︸
e+2

= te+2〉,

e.g. : W4 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2:

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/(e + 2)).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.
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Dihedral representation theory on one slide.

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, bs 7→ λs, bt 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M0,0, M2,0, M0,2, M2,2 M0,0, M2,2

Two-dimensional modules. Mz , z ∈ C, bs 7→ ( 2 z
0 0 ), bt 7→ ( 0 0

z 2 ).

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z ∈ V±e −{0} Mz , z ∈ V±e

Ve = roots(Ue+1(X)) and V±e the Z/2Z-orbits under z 7→ −z .

The Bott–Samelson (BS) generators bs = s + 1, bt = t + 1.
There is also a Kazhdan–Lusztig (KL) basis. We will nail it down later.

Proposition (Lusztig?).

The list of one- and two-dimensional We+2-modules
is a complete, irredundant list of simple modules.

I learned this construction in 2017.
Example.

M0,0 is the sign representation and M2,2 is the trivial representation.

In case e is odd, Ue+1(X) has a constant term, so M2,0, M0,2 are not representations.

Example.

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
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An algebra A with a fixed basis BA is called a (multi) N-algebra if

xy ∈ NBA (x, y ∈ BA).

A A-module M with a fixed basis BM is called a N-module if

xm ∈ NBM (x ∈ BA,m ∈ BM).

These are N-equivalent if there is a N-valued change of basis matrix.

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.

Example (group like).

Group algebras of finite groups with basis given by group elements are N-algebras.

The regular module is a N-module.

Example (group like).

Fusion rings are with basis given by classes of simples are N-algebras.

Key example: K0(Rep(G ,C)) (easy N-representation theory).

Key example: K0(Repss
q (Uq(g)) = Gq) (intricate N-representation theory).

Example (semigroup like).

Hecke algebras of (finite) Coxeter groups with
their KL basis are N-algebras.

Their N-representation theory is non-semisimple.
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Clifford, Munn, Ponizovskĭı, Green ∼1942++, Kazhdan–Lusztig ∼1979.
x ≤L y if y appears in zx with non-zero coefficient for z ∈ BA. x ∼L y if x ≤L y
and y ≤L x.
∼L partitions A into left cells L. Similarly for right R, two-sided cells LR or
N-modules.

A N-module M is transitive if all basis elements belong to the same ∼L

equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive N-module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive N-modules arise naturally as the decategorification of simple
transitive 2-modules.

Example (group like).

Group algebras with the group element basis have only one cell, G itself.

Transitive N-modules are C[G/H] for H ⊂ G subgroup/conjugacy. The apex is G .

Example (group like).

Fusion rings in general have only one cell
since each basis element [Vi ] has a dual [V ∗

i ]
such that [Vi ][V

∗
i ] contains 1 as a summand.

Cell theory is useless for them!

Example (Lusztig ≤2003; semigroup like).

Hecke algebras for the dihedral group with KL basis have the following cells:

1

s ts sts tsts ststs

t st tst stst tstst

w0

We will see the transitive N-modules in a second.

Left cells. Right cells.

Two-sided cells.
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N-modules via graphs.

Construct a W∞-module M associated to a bipartite graph Γ:

M = C〈1, 2, 3, 4, 5〉

1 3 2 4 5

H F H

F

F

bs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, bt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







The adjacency matrix A(Γ) of Γ is

A(Γ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







These are We+2-modules for some e
only if A(Γ) is killed by the Chebyshev polynomial Ue+1(X).

Morally speaking: These are constructed as the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev–braid-like relation can not hold otherwise.

Hence, by Smith’s (CP) and Lusztig: We get a representation of We+2

if Γ is a ADE Dynkin diagram for e + 2 being the Coxeter number.

That these are N-modules follows from categorification.

‘Smaller solutions’ are never N-modules.

Classification.

Complete, irredundant list of transitive N-modules of We+2:

apex 1 cell s – t cell w0 cell

N-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

I learned this from Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.

Fun fact about associated simples: Click .
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Example (I2(4), e = 2).

Cell structure:

s, sts st

ts t, tst

1

w0

number of elements−−−−−−−−−−−→ 2 1

1 2

1

1

2 1

1 2

1

1

left cells

“left modules”

2 1

1 2

1

1

right cells

“right modules”

2 1

1 2

1

1

two-sided cells

“bimodules”

2 1

1 2

1

1

H-cells

“subalgebras”

Example.

1 · 1 = v01.
(v is the Hecke parameter deforming e.g. s2 = 1 to T 2

s = (v−1 − v)Ts + 1.)

Example.

bs · bs = (v-1+bigger powers)bs.
bsts · bs = (v-1+bigger powers)bsts.

bsts · bsts = (v-1+bigger powers)bs+higher cell elements.
bsts · btst = (bigger powers)bst + higher cell elements.

Example.

bw0 · bw0 = (v-4+bigger powers)bw0 .

Fact (Lusztig ∼1980++).

For any Coxeter group W
there is a well-defined function

a : W→ N

which is constant on two-sided cells.

Asymptotic limit v→ 0 “=” kill non-leading terms of cw = vabw ,
e.g. cs = v1bs and c2s = (1+v2)cs.

Think: Positively graded, and asymptotic limit is taking degree 0 part.
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Compare multiplication tables. Example (e = 2).

a=asymptotic element and [2] = 1 + v2. (Note the “subalgebras”.)

as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst + cw0 cs + csts

csts [2]csts [2]cs + [2]2cw0 [2]cst + [2]cw0 cs + csts cs + [2]2cw0 cs + csts + [2]cw0

cts [2]cts [2]cts + [2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst + [2]cw0 2cts + cw0

ct cts cts + cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct + [2]2cw0 ct + ctst + [2]cw0 [2]ctst [2]ct + [2]2cw0 [2]cts + [2]cw0

cst cs + csts cs + csts + [2]cw0 2cst + cw0 [2]cst [2]cst + [2]cw0 [2]cs + [2]csts

The limit v→ 0 is much simpler! Have you seen this before ?
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Back to graphs. Example (e = 2).

M = C〈1, 2, 3〉

1 3 2

H F H

cs ;




1+v2 0 v

0 1+v2 v

0 0 0


 ct ;




0 0 0
0 0 0
v v 1+v2




csts ;




0 1+v2 v

1+v2 0 v

0 0 0


 ctst ;




0 0 0
0 0 0
v v 1+v2




cts ;




0 0 0
0 0 0

1+v2 1+v2 v


 cst ;



v v 1+v2

v v 1+v2

0 0 0




Example.

astats = as + asts
!

[L1][L1] = [L0] + [L2]
!


0 0 1
0 0 1
0 0 0







0 0 0
0 0 0
1 1 0


 =




1 1 0
1 1 0
0 0 0


 =




1 0 0
0 1 0
0 0 0


 +




0 1 0
1 0 0
0 0 0


.

This works in general and recovers the transitive N-modules
of K0(SL(2)q) found by

Etingof–Khovanov ∼1995, Kirillov–Ostrik ∼2001 and Ostrik ∼2003,
which are also ADE classified.

(For the experts: the bicoloring kills the tadpole solutions.)

However, at this point this was just an observation
and it took a while until we understood its meaning.

(Cliffhanger: Wait for Marco’s talk.)

Classification.

Complete, irredundant list of graded

simple transitive 2-modules of dihedral Soergel bimodules:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Construction

I learned this from Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.

Proof?

The first proof was “brute force”.
Now we have a much better way of doing this.

(Again: cliffhanger.)

Please stop!
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(Again: cliffhanger.)

Please stop!
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Where to find SL(m)q?

First try: What are the asymptotic limits of finite types?

I No luck in finite Weyl type: v→ 0 is (almost always) Rep((Z/2Z)k).

I No luck in dihedral type: v→ 0 is SL(2)q (q2(n−2) = 1).

I No luck for the pentagon types H3 and H4 .

B Maybe generalize the dihedral case?

Idea 1: Chebyshev knows everything!

So where have we seen the magic formula
XUm+1(X) = Um+2(X) + Um(X)

before?

Here:
[2] · [e + 1] = [e + 2] + [e]
L1 ⊗ Le+1

∼= Le+2 ⊕ Le

Le = eth symmetric power of the vector representation of (quantum) sl2.

Idea 2: The dihedral type is
a quotient of affine type A1.

Very vague philosophy I want to sell:

Fusion categories appear as degree 0 parts of Soergel bimodules.

Quantum Satake (Elias ∼2013, Mackaay–Mazorchuk–Miemietz ∼2018)
– rough version.

SL(m)q is the semisimple version of
a subquotient of Soergel bimodules for affine type Am−1.

The KL basis correspond to the images of Le .

Beware: Only the cases m = 2 (dihedral) and m = 3 (trihedral) are proven,
as everything gets combinatorially more complicated.

Summary of Nhedral.

Most questions are still open, but nice patterns appear.

Leaves the realm of groups. (No associated Coxeter group; only a subquotient.)

Generalized zigzag algebras, Chebyshev polynomials and ADE diagrams appear.

ADE-type classification(?) of 2-representations.

Fusion: SL(m)q appears.
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Dihedral representation theory on one slide.

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, bs 7→ λs, bt 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M0,0, M2,0, M0,2, M2,2 M0,0, M2,2

Two-dimensional modules. Mz , z ∈ C, bs 7→ ( 2 z
0 0 ), bt 7→ ( 0 0

z 2 ).

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z ∈ V±e −{0} Mz , z ∈ V±e

Ve = roots(Ue+1(X)) and V±e the Z/2Z-orbits under z 7→ −z .

The Bott–Samelson (BS) generators bs = s + 1, bt = t + 1.
There is also a Kazhdan–Lusztig (KL) basis. We will nail it down later.

Proposition (Lusztig?).

The list of one- and two-dimensional We+2-modules
is a complete, irredundant list of simple modules.

I learned this construction in 2017.
Example.

M0,0 is the sign representation and M2,2 is the trivial representation.

In case e is odd, Ue+1(X) has a constant term, so M2,0, M0,2 are not representations.

Example.

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
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The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the classical representations.

Example (I2(4), e = 2).

Cell structure:

s, sts st

ts t, tst

1

w0

number of elements−−−−−−−−−−−→ 2 1

1 2

1

1

2 1

1 2

1

1

left cells

“left modules”

2 1

1 2

1

1

right cells

“right modules”

2 1

1 2

1

1

two-sided cells

“bimodules”

2 1

1 2

1

1

H-cells

“subalgebras”

Example.

1 · 1 = v01.
(v is the Hecke parameter deforming e.g. s2 = 1 to T 2

s = (v−1 − v)Ts + 1.)

Example.

bs · bs = (v-1+bigger powers)bs.
bsts · bs = (v-1+bigger powers)bsts.

bsts · bsts = (v-1+bigger powers)bs+higher cell elements.
bsts · btst = (bigger powers)bst + higher cell elements.

Example.

bw0 · bw0 = (v-4+bigger powers)bw0 .

Fact (Lusztig ∼1980++).

For any Coxeter group W
there is a well-defined function

a : W→ N

which is constant on two-sided cells.

Asymptotic limit v→ 0 “=” kill non-leading terms of cw = vabw ,
e.g. cs = v1bs and c2s = (1+v2)cs.

Think: Positively graded, and asymptotic limit is taking degree 0 part.

Daniel Tubbenhauer Dihedral groups, SL(2)q and beyond July 2019 9 / 13

Compare multiplication tables. Example (e = 2).

a=asymptotic element and [2] = 1 + v2. (Note the “subalgebras”.)

as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst + cw0 cs + csts

csts [2]csts [2]cs + [2]2cw0 [2]cst + [2]cw0 cs + csts cs + [2]2cw0 cs + csts + [2]cw0

cts [2]cts [2]cts + [2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst + [2]cw0 2cts + cw0

ct cts cts + cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct + [2]2cw0 ct + ctst + [2]cw0 [2]ctst [2]ct + [2]2cw0 [2]cts + [2]cw0

cst cs + csts cs + csts + [2]cw0 2cst + cw0 [2]cst [2]cst + [2]cw0 [2]cs + [2]csts

The limit v→ 0 is much simpler! Have you seen this before ?
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Example (e = 2).

The fusion ring K0(SO(3)q) for q2e = 1 has simple objects [L0], [L2]. The H-cell
limit v→ 0 has simple objects as, asts.

Comparison of multiplication tables:

[L0] [L2]

[L0] [L0] [L2]

[L2] [L2] [L0]

&
as asts

as as asts

asts asts as

The H-cell limit v→ 0 is K0(SO(3)q):

as! [L0], asts! [L2].

Back

This is the slightly nicer statement.

Fact.

Both connections are always true (i.e. for any e).

The bicoloring is basically coming from slightly different fusion graphs e.g. for e = 6:

Back
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Back to graphs. Example (e = 2).

M = C〈1, 2, 3〉

1 3 2

H F H

cs ;




1+v2 0 v

0 1+v2 v

0 0 0


 ct ;




0 0 0
0 0 0
v v 1+v2




csts ;




0 1+v2 v

1+v2 0 v

0 0 0


 ctst ;




0 0 0
0 0 0
v v 1+v2




cts ;




0 0 0
0 0 0

1+v2 1+v2 v


 cst ;



v v 1+v2

v v 1+v2

0 0 0




Example.

astats = as + asts
!

[L1][L1] = [L0] + [L2]
!


0 0 1
0 0 1
0 0 0







0 0 0
0 0 0
1 1 0


 =




1 1 0
1 1 0
0 0 0


 =




1 0 0
0 1 0
0 0 0


 +




0 1 0
1 0 0
0 0 0


.

This works in general and recovers the transitive N-modules
of K0(SL(2)q) found by

Etingof–Khovanov ∼1995, Kirillov–Ostrik ∼2001 and Ostrik ∼2003,
which are also ADE classified.

(For the experts: the bicoloring kills the tadpole solutions.)

However, at this point this was just an observation
and it took a while until we understood its meaning.

(Cliffhanger: Wait for Marco’s talk.)

Classification.

Complete, irredundant list of graded

simple transitive 2-modules of dihedral Soergel bimodules:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Construction

I learned this from Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.

Proof?

The first proof was “brute force”.
Now we have a much better way of doing this.

(Again: cliffhanger.)

Please stop!
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The zigzag algebra Z(Γ)

u

d

u

d
H F H

uu = 0 = dd , ud = du

Apply the usual philosophy:

I Take projectives Ps =
⊕
H Pi and Pt =

⊕
F Pi .

I Get endofunctors Bs = Ps ⊗Z(Γ) − and Bt = Pt ⊗Z(Γ) −.

I Check: These decategorify to bs and bt. (Easy.)

I Check: These give a genuine 2-representation. (Bookkeeping.)

I Check: There are no graded deformations. (Bookkeeping.)

Difference to SL(2)q: There is an honest quiver as this is non-semisimple.

Back

Neat consequence. A characterization of ADE diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A(Γ)) do not grow when e → 0.

Γ is an affine type ADE graph
if and only if

entries of Ue(A(Γ)) grow linearly when e → 0.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A(Γ)) grow exponentially when e → 0.

Proof?

Use projective resolutions of Z(Γ).

Example (type H4).

cell 0 1 2 3 4 5 6=6′ 5′ 4′ 3′ 2′ 1′ 0′

size 1 32 162 512 625 1296 9144 1296 625 512 162 32 1

a 0 1 2 3 4 5 6 15 16 18 22 31 60

v→ 0 � 2� 2� 2� � � big � � 2� 2� 2� �

The big cell :
148,8 1310,8 146,8

138,10 1810,10 186,10

148,6 1810,6 246,6

148,8 :
PFdim(gen) = 1 +

√
5,

PFdim = 120(9 + 4
√

5).

Back
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Example (Fusion graphs for level 3).

In the non-semisimple case one gets quiver algebras supported on these graphs.
(“Trihedral zigzag algebras”.)

Stop - you are annoying!
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There is still much to do...

Thanks for your attention!
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In case e is odd, Ue+1(X) has a constant term, so M2,0, M0,2 are not representations.

Example.

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
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The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the classical representations.

Example (I2(4), e = 2).

Cell structure:

s, sts st

ts t, tst

1

w0

number of elements−−−−−−−−−−−→ 2 1

1 2

1

1

2 1

1 2

1

1

left cells

“left modules”

2 1

1 2

1

1

right cells

“right modules”

2 1

1 2

1

1

two-sided cells

“bimodules”

2 1

1 2

1

1

H-cells

“subalgebras”

Example.

1 · 1 = v01.
(v is the Hecke parameter deforming e.g. s2 = 1 to T 2

s = (v−1 − v)Ts + 1.)

Example.

bs · bs = (v-1+bigger powers)bs.
bsts · bs = (v-1+bigger powers)bsts.

bsts · bsts = (v-1+bigger powers)bs+higher cell elements.
bsts · btst = (bigger powers)bst + higher cell elements.

Example.

bw0 · bw0 = (v-4+bigger powers)bw0 .

Fact (Lusztig ∼1980++).

For any Coxeter group W
there is a well-defined function

a : W→ N

which is constant on two-sided cells.

Asymptotic limit v→ 0 “=” kill non-leading terms of cw = vabw ,
e.g. cs = v1bs and c2s = (1+v2)cs.

Think: Positively graded, and asymptotic limit is taking degree 0 part.
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Compare multiplication tables. Example (e = 2).

a=asymptotic element and [2] = 1 + v2. (Note the “subalgebras”.)

as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst + cw0 cs + csts

csts [2]csts [2]cs + [2]2cw0 [2]cst + [2]cw0 cs + csts cs + [2]2cw0 cs + csts + [2]cw0

cts [2]cts [2]cts + [2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst + [2]cw0 2cts + cw0

ct cts cts + cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct + [2]2cw0 ct + ctst + [2]cw0 [2]ctst [2]ct + [2]2cw0 [2]cts + [2]cw0

cst cs + csts cs + csts + [2]cw0 2cst + cw0 [2]cst [2]cst + [2]cw0 [2]cs + [2]csts

The limit v→ 0 is much simpler! Have you seen this before ?

Daniel Tubbenhauer Dihedral groups, SL(2)q and beyond July 2019 10 / 13

Example (e = 2).

The fusion ring K0(SO(3)q) for q2e = 1 has simple objects [L0], [L2]. The H-cell
limit v→ 0 has simple objects as, asts.

Comparison of multiplication tables:

[L0] [L2]

[L0] [L0] [L2]

[L2] [L2] [L0]

&
as asts

as as asts

asts asts as

The H-cell limit v→ 0 is K0(SO(3)q):

as! [L0], asts! [L2].

Back

This is the slightly nicer statement.

Fact.

Both connections are always true (i.e. for any e).

The bicoloring is basically coming from slightly different fusion graphs e.g. for e = 6:

Back
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Back to graphs. Example (e = 2).

M = C〈1, 2, 3〉

1 3 2

H F H

cs ;




1+v2 0 v

0 1+v2 v

0 0 0


 ct ;




0 0 0
0 0 0
v v 1+v2




csts ;




0 1+v2 v

1+v2 0 v

0 0 0


 ctst ;




0 0 0
0 0 0
v v 1+v2




cts ;




0 0 0
0 0 0

1+v2 1+v2 v


 cst ;



v v 1+v2

v v 1+v2

0 0 0




Example.

astats = as + asts
!

[L1][L1] = [L0] + [L2]
!


0 0 1
0 0 1
0 0 0







0 0 0
0 0 0
1 1 0


 =




1 1 0
1 1 0
0 0 0


 =




1 0 0
0 1 0
0 0 0


 +




0 1 0
1 0 0
0 0 0


.

This works in general and recovers the transitive N-modules
of K0(SL(2)q) found by

Etingof–Khovanov ∼1995, Kirillov–Ostrik ∼2001 and Ostrik ∼2003,
which are also ADE classified.

(For the experts: the bicoloring kills the tadpole solutions.)

However, at this point this was just an observation
and it took a while until we understood its meaning.

(Cliffhanger: Wait for Marco’s talk.)

Classification.

Complete, irredundant list of graded

simple transitive 2-modules of dihedral Soergel bimodules:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Construction

I learned this from Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.

Proof?

The first proof was “brute force”.
Now we have a much better way of doing this.

(Again: cliffhanger.)

Please stop!
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The zigzag algebra Z(Γ)

u

d

u

d
H F H

uu = 0 = dd , ud = du

Apply the usual philosophy:

I Take projectives Ps =
⊕
H Pi and Pt =

⊕
F Pi .

I Get endofunctors Bs = Ps ⊗Z(Γ) − and Bt = Pt ⊗Z(Γ) −.

I Check: These decategorify to bs and bt. (Easy.)

I Check: These give a genuine 2-representation. (Bookkeeping.)

I Check: There are no graded deformations. (Bookkeeping.)

Difference to SL(2)q: There is an honest quiver as this is non-semisimple.

Back

Neat consequence. A characterization of ADE diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A(Γ)) do not grow when e → 0.

Γ is an affine type ADE graph
if and only if

entries of Ue(A(Γ)) grow linearly when e → 0.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A(Γ)) grow exponentially when e → 0.

Proof?

Use projective resolutions of Z(Γ).

Example (type H4).

cell 0 1 2 3 4 5 6=6′ 5′ 4′ 3′ 2′ 1′ 0′

size 1 32 162 512 625 1296 9144 1296 625 512 162 32 1

a 0 1 2 3 4 5 6 15 16 18 22 31 60

v→ 0 � 2� 2� 2� � � big � � 2� 2� 2� �

The big cell :
148,8 1310,8 146,8

138,10 1810,10 186,10

148,6 1810,6 246,6

148,8 :
PFdim(gen) = 1 +

√
5,

PFdim = 120(9 + 4
√

5).

Back
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Example (Fusion graphs for level 3).

In the non-semisimple case one gets quiver algebras supported on these graphs.
(“Trihedral zigzag algebras”.)

Stop - you are annoying!
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There is still much to do...

Thanks for your attention!
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U0(X) = 1, U1(X) = X, XUe+1(X) = Ue+2(X) + Ue(X)
U0(X) = 1, U1(X) = 2X, 2XUe+1(X) = Ue+2(X) + Ue(X)

Kronecker ∼1857. Any complete set of conjugate algebraic integers in ]− 2, 2[ is
a subset of roots(Ue+1(X)) for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

Back



The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the classical representations.
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H
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F
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Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the classical representations.



Example (e = 2). Simples associated to cells.

Classical representation theory. The simples from before.

M0,0 M2,0 M√2 M0,2 M2,2

atom sign trivial-sign rotation sign-trivial trivial
rank 1 1 2 1 1

apex(KL) 1 s – t s – t s – t w0

KL basis. ADE diagrams and ranks of transitive N-modules.

bottom cell H F H F H F top cell

atom sign M2,0⊕M√2 M0,2⊕M√2 trivial
rank 1 3 3 1

apex(KL) 1 s – t s – t w0

The simples are arranged according to cells. However, one cell might have more
than one associated simple.
(For the experts: This means that the Hecke algebra with the KL basis is in
general not cellular in the sense of Graham–Lehrer.)

Back



Example (e = 2).

The fusion ring K0(SL(2)q) for q2e = 1 has simple objects [L0], [L1], [L2]. The
limit v→ 0 has simple objects as, asts, ast, at, atst, ats.

Comparison of multiplication tables:

[L0] [L2] [L1]

[L0] [L0] [L2] [L1]

[L2] [L2] [L0] [L1]

[L1] [L1] [L1] [L0] + [L2]

&

as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

The limit v→ 0 is a bicolored version of K0(SL(2)q):

as&at! [L0], asts&atst! [L2], ast&ats! [L1].

Back

This is the slightly nicer statement.

Fact.

Both connections are always true (i.e. for any e).

The bicoloring is basically coming from slightly different fusion graphs e.g. for e = 6:

Back
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Example (e = 2).

The fusion ring K0(SO(3)q) for q2e = 1 has simple objects [L0], [L2]. The H-cell
limit v→ 0 has simple objects as, asts.

Comparison of multiplication tables:

[L0] [L2]

[L0] [L0] [L2]

[L2] [L2] [L0]

&
as asts

as as asts

asts asts as

The H-cell limit v→ 0 is K0(SO(3)q):

as! [L0], asts! [L2].

Back

This is the slightly nicer statement.

Fact.

Both connections are always true (i.e. for any e).

The bicoloring is basically coming from slightly different fusion graphs e.g. for e = 6:

Back
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This is the slightly nicer statement.

Fact.

Both connections are always true (i.e. for any e).

The bicoloring is basically coming from slightly different fusion graphs e.g. for e = 6:
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The zigzag algebra Z(Γ)

u

d

u

d
H F H

uu = 0 = dd , ud = du

Apply the usual philosophy:

I Take projectives Ps =
⊕
H Pi and Pt =

⊕
F Pi .

I Get endofunctors Bs = Ps ⊗Z(Γ) − and Bt = Pt ⊗Z(Γ) −.

I Check: These decategorify to bs and bt. (Easy.)

I Check: These give a genuine 2-representation. (Bookkeeping.)

I Check: There are no graded deformations. (Bookkeeping.)

Difference to SL(2)q: There is an honest quiver as this is non-semisimple.

Back

Neat consequence. A characterization of ADE diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A(Γ)) do not grow when e → 0.

Γ is an affine type ADE graph
if and only if

entries of Ue(A(Γ)) grow linearly when e → 0.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A(Γ)) grow exponentially when e → 0.

Proof?

Use projective resolutions of Z(Γ).
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Example (type H4).

cell 0 1 2 3 4 5 6=6′ 5′ 4′ 3′ 2′ 1′ 0′

size 1 32 162 512 625 1296 9144 1296 625 512 162 32 1

a 0 1 2 3 4 5 6 15 16 18 22 31 60

v→ 0 � 2� 2� 2� � � big � � 2� 2� 2� �

The big cell :
148,8 1310,8 146,8

138,10 1810,10 186,10

148,6 1810,6 246,6

148,8 :
PFdim(gen) = 1 +

√
5,

PFdim = 120(9 + 4
√

5).

Back
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Example (Fusion graphs for level 3).

In the non-semisimple case one gets quiver algebras supported on these graphs.
(“Trihedral zigzag algebras”.)

Stop - you are annoying!
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