The 2-Representation Theory of Soergel Bimodules of finite Coxeter type

Marco Mackaay joint with Mazorchuk, Miemietz, Tubbenhauer and Zhang

CAMGSD and Universidade do Algarve

July 12, 2019

Marco Mackaay joint with Mazorchuk, Miemietz, Tubbenhauer a

• Introduction.

Marco Mackaay joint with Mazorchuk, Miemietz, Tubbenhauer a

注入 注

- Introduction.
- Coxeter groups, Hecke algebras, Soergel bimodules.

- Introduction.
- Coxeter groups, Hecke algebras, Soergel bimodules.
- Lusztig's asymptotic Hecke algebras and asymptotic Soergel categories.

- Introduction.
- Coxeter groups, Hecke algebras, Soergel bimodules.
- Lusztig's asymptotic Hecke algebras and asymptotic Soergel categories.
- Conjectural relation between the 2-representation theories of Soergel bimodules and asymptotic Soergel bimodules for finite Coxeter type.

- Introduction.
- Coxeter groups, Hecke algebras, Soergel bimodules.
- Lusztig's asymptotic Hecke algebras and asymptotic Soergel categories.
- Conjectural relation between the 2-representation theories of Soergel bimodules and asymptotic Soergel bimodules for finite Coxeter type.
- Duflo involutions and cell 2-representations.

Classification Problem

Classify all graded, simple transitive 2-representations of ${\mathcal S}$ up to equivalence.

Classification Problem

Classify all graded, simple transitive 2-representations of ${\mathcal S}$ up to equivalence.

WARNING:

 \bullet Etingof-Nikshych-Ostrik: If ${\mathcal C}$ is semisimple, then

 $\# \ \{ \text{simple transitive 2-representations of } \mathcal{C} \} \, / \simeq \, < \infty.$

Classification Problem

Classify all graded, simple transitive 2-representations of ${\mathcal S}$ up to equivalence.

WARNING:

 \bullet Etingof-Nikshych-Ostrik: If ${\mathcal C}$ is semisimple, then

{simple transitive 2-representations of \mathcal{C} } / $\simeq < \infty$.

• This is not true in general, e.g. $C := T_n - \text{mod}$, where T_n is the Taft Hopf algebra.

Classification Problem

Classify all graded, simple transitive 2-representations of ${\mathcal S}$ up to equivalence.

WARNING:

 \bullet Etingof-Nikshych-Ostrik: If ${\mathcal C}$ is semisimple, then

{simple transitive 2-representations of \mathcal{C} } / $\simeq < \infty$.

• This is not true in general, e.g. $C := T_n - \text{mod}$, where T_n is the Taft Hopf algebra.

• \mathcal{S} is not even abelian, let alone semisimple...

Recall that every simple transitive (graded) 2-representation has an apex and that the classification problem can be studied per apex.

Recall that every simple transitive (graded) 2-representation has an apex and that the classification problem can be studied per apex.

Prior to our recent results, a complete classification was only known in the following cases:

- Arbitrary finite Coxeter type and strongly regular apex (e.g. in Coxeter type A_n , for all $n \ge 1$) [Mazorchuk-Miemietz].
- Coxeter type B_n and arbitrary apex, for $n \le 4$ [Zimmermann, M-Mazorchuk-Miemietz-Zhang].

• Arbitrary finite Coxeter type and subregular apex [Kildetoft-M-Mazorchuk-Zimmermann, M-Tubbenhauer].

• Coxeter type $I_2(n)$ and arbitrary apex, for all $n \ge 2$ [Kildetoft-M-Mazorchuk-Zimmermann, M-Tubbenhauer].

Coxeter groups, Hecke algebras, Soergel bimodules

Let $M = (m_{ij})_{i,i=1}^n \in \operatorname{Mat}(n,\mathbb{N})$ be a symmetric matrix such that

$$m_{ij} = \begin{cases} 1 & \text{if } i = j; \\ \geq 2 & \text{if } i \neq j. \end{cases}$$

Definition (Coxeter system)

A Coxeter system (W, S) with Coxeter matrix M is given by a set $S = \{s_1, \ldots, s_n\}$ (simple reflections) and a group W with presentation

$$\langle s_i \in S \mid i = 1, \ldots, n \rangle / ((s_i s_j)^{m_{ij}} = e).$$

We call *n* the rank of (W, S).

Examples

• The only Coxeter groups of rank 2 are the dihedral groups (Coxeter type $I_2(n)$):

$$D_{2n} = \langle s, t \mid s^2 = t^2 = e \land (st)^n = e \rangle.$$

The isomorphism with the usual presentation

$$\langle
ho, \sigma \mid \sigma^2 =
ho^n = e \ \land \ \rho \sigma = \sigma
ho^{-1} \rangle$$

is given by $s \mapsto \sigma$ and $t \to \sigma \rho$.

Examples

• The only Coxeter groups of rank 2 are the dihedral groups (Coxeter type $I_2(n)$):

$$D_{2n} = \langle s, t \mid s^2 = t^2 = e \land (st)^n = e \rangle.$$

The isomorphism with the usual presentation

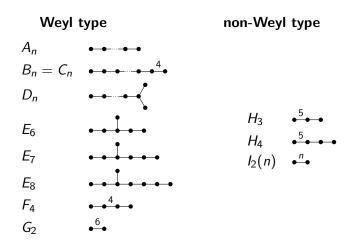
$$\langle \rho, \sigma \mid \sigma^2 = \rho^n = e \land \rho \sigma = \sigma \rho^{-1} \rangle$$

is given by $s \mapsto \sigma$ and $t \to \sigma \rho$.

• The Coxeter group of type A_n is isomorphic to S_{n+1} , generated by the simple transpositions s_1, \ldots, s_n , subject to

$$\begin{split} m_{ii} &= 1: \qquad (s_i s_i)^1 = e \Leftrightarrow s_i^2 = e; \\ m_{ij} &= 2: \qquad (s_i s_j)^2 = e \Leftrightarrow s_i s_j = s_j s_i \quad \text{if } j \neq i \pm 1; \\ m_{i(i\pm 1)} &= 3: \qquad (s_i s_{i\pm 1})^3 = e \Leftrightarrow s_i s_{i\pm 1} s_i = s_{i\pm 1} s_i s_{i\pm 1}. \end{split}$$

Coxeter diagrams of finite type



'문⊁ 문

Recall that H = H(W, S) is a deformation of $\mathbb{Z}[W]$ over $\mathbb{Z}[v, v^{-1}]$:

$$s_i^2 = e \quad \rightsquigarrow \quad s_i^2 = (v^{-2} - 1)s_i + v^{-2}.$$

Let $\{b_w \mid w \in W\}$ be the Kazhdan-Lusztig basis of H and write

$$b_u b_v = \sum_{w \in W} h_{u,v,w} b_w,$$

for $h_{u,v,w} \in \mathbb{Z}[v, v^{-1}]$.

Definition

Let $\mathfrak{h}^* := \mathbb{C} \{ \alpha_i \mid i = 1, ..., n \}$. The dual geometric representation of W on \mathfrak{h}^* is defined by

$$s_i(lpha_j) := lpha_j - 2\cos\left(rac{\pi}{m_{ij}}
ight) lpha_i.$$

Definition

Let $\mathfrak{h}^* := \mathbb{C} \{ \alpha_i \mid i = 1, ..., n \}$. The dual geometric representation of W on \mathfrak{h}^* is defined by

$$s_i(lpha_j) := lpha_j - 2\cos\left(rac{\pi}{m_{ij}}
ight) lpha_i.$$

Definition

Let $\tilde{R} := \operatorname{Sym}(\mathfrak{h}^*) \cong \mathbb{C}[\alpha_i \mid i = 1, ..., n]$. We define a \mathbb{Z} -grading on \tilde{R} by deg $(\mathfrak{h}^*) = 2$ and the *W*-action on \mathfrak{h}^* extends to a *W*-action on \tilde{R} by degree-preserving algebra-automorphisms. The coinvariant algebra is $R := \tilde{R}/(\tilde{R}^W_+)$.

Soergel bimodules

For every $i = 1, \ldots, n$, define the R - R bimodule

 $\mathbf{B}_{s_i} := R \otimes_{R^{s_i}} R \langle 1 \rangle.$

▲御▶ ▲臣▶ ▲臣▶ -

э

Soergel bimodules

For every $i = 1, \ldots, n$, define the R - R bimodule

$$\mathsf{B}_{s_i} := R \otimes_{R^{s_i}} R\langle 1 \rangle.$$

Definition (Soergel)

Let S be the additive closure in $R - \operatorname{bimod}_{\operatorname{gr}}^{\operatorname{fg}} - R$ of the full, additive, graded, monoidal subcategory generated by $\operatorname{B}_{s_i}\langle t \rangle$, for $i = 1, \ldots, n$ and $t \in \mathbb{Z}$.

Soergel bimodules

For every $i = 1, \ldots, n$, define the R - R bimodule

$$\mathsf{B}_{s_i} := R \otimes_{R^{s_i}} R\langle 1 \rangle.$$

Definition (Soergel)

Let S be the additive closure in $R - \operatorname{bimod}_{\operatorname{gr}}^{\operatorname{fg}} - R$ of the full, additive, graded, monoidal subcategory generated by $\operatorname{B}_{s_i}\langle t \rangle$, for $i = 1, \ldots, n$ and $t \in \mathbb{Z}$.

Remark: \mathcal{S} is not abelian, e.g. the kernel of

$$\mathbf{B}_{s_i} = R \otimes_{R^{s_i}} R \xrightarrow{a \otimes b \mapsto ab} R$$

is isomorphic to R as a right R-module but the left R-action is twisted by s_i .

Let $w \in W$ and $\underline{w} = s_{i_1} \cdots s_{i_r}$ a reduced expression (rex). The **Bott-Samelson bimodule** is defined as

$$\mathrm{BS}(\underline{w}) := \mathrm{B}_{s_{i_1}} \otimes_R \cdots \otimes_R \mathrm{B}_{s_{i_r}}.$$

Theorem (Soergel)

S is idempotent complete and Krull-Schmidt. For every $w \in W$, there is an indecomposable bimodule $B_w \in S$, unique up to degree-preserving isomorphism, such that

(1) B_w is isomorphic to a direct summand, with multiplicity one, of $BS(\underline{w})$ for any rex \underline{w} of w;

(2) For all $t \in \mathbb{Z}$, $B_w \langle t \rangle$ is not isomorphic to a direct summand of $BS(\underline{u})$ for any u < w and any rex \underline{u} of u.

(3) Every indecomposable Soergel bimodule is isomorphic to $B_w \langle t \rangle$ for some $w \in W$ and $t \in \mathbb{Z}$.

Theorem (Soergel, Elias-Williamson)

The $\mathbb{Z}[v, v^{-1}]$ -linear map given by

$b_w\mapsto [\mathrm{B}_w]$

defines an algebra isomorphism between H and $[S]_{\oplus}$ (split Grothendieck group).

The categorification theorem

Let $p = \sum_{i=-r}^{s} a_i v^i \in \mathbb{N}[v, v^{-1}]$. Define

$$\mathbf{B}^{\oplus p} := \bigoplus_{i=-r}^{s} \mathbf{B}^{\oplus a_{i}} \langle -i \rangle.$$

▲御▶ ▲臣▶ ▲臣▶ -

æ

Marco Mackaay joint with Mazorchuk, Miemietz, Tubbenhauer a

The categorification theorem

Let
$$p = \sum_{i=-r}^{s} a_i v^i \in \mathbb{N}[v, v^{-1}]$$
. Define

$$\mathbf{B}^{\oplus p} := \bigoplus_{i=-r}^{s} \mathbf{B}^{\oplus a_{i}} \langle -i \rangle.$$

Then the above theorem means:

Positive Integrality

For all $u, v \in W$, we have

$$\mathbf{B}_{u} \otimes_{\mathcal{R}} \mathbf{B}_{v} \cong \bigoplus_{w \in W} \mathbf{B}_{w}^{\oplus h_{u,v,w}},$$

whence

$$h_{u,v,w} \in \mathbb{N}[v,v^{-1}].$$

Marco Mackaay joint with Mazorchuk, Miemietz, Tubbenhauer a

Reduction to \mathcal{H} -cells

• Let $\mathcal{H} := \mathcal{L} \cap \mathcal{L}^*$ inside some two-sided cell \mathcal{J} . There exists a subquotient monoidal category $\mathcal{S}_{\mathcal{H}}$ of \mathcal{S} , whose indecomposable objects are all of the form $B_x \langle t \rangle$ for some $x \in \mathcal{H}$ and $t \in \mathbb{Z}$.

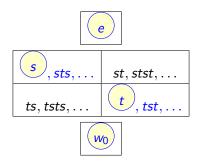
Let *H* := *L* ∩ *L*^{*} inside some two-sided cell *J*. There exists a subquotient monoidal category *S*_{*H*} of *S*, whose indecomposable objects are all of the form B_x⟨t⟩ for some x ∈ *H* and t ∈ Z.
Recall:

{Graded simple transitive 2-reps of \mathcal{S} with apex J}/ $\simeq \xrightarrow{1:1}{}$

 $\{ \text{Graded simple transitive 2-reps of } \mathcal{S}_{\mathcal{H}} \text{ with apex } \mathcal{H} \} / \simeq \xrightarrow{1:1}$

{absolutely cosimple coalgebra objects in $\operatorname{add}(\mathcal{H})\}/\simeq_{\operatorname{MT}}$.

The table below contains all Kazhdan-Lusztig cells of D_{2n} (the \mathcal{H} -cells are in blue).



Remark: d is the so called **Duflo involution** of the \mathcal{H} -cell.

Lusztig's a-function

Fact: $h_{x,y,z}$ is symmetric in v and v⁻¹.

Proposition (Lusztig)

Let $\mathcal{H} := \mathcal{L} \cap \mathcal{L}^*$. There exists $\mathbf{a} \in \mathbb{N}$ such that for all $x, y, z \in \mathcal{H}$:

$$h_{x,y,z} = \gamma_{x,y,z^{-1}} \mathbf{v}^{\mathbf{a}} + \dots + \gamma_{x,y,z^{-1}} \mathbf{v}^{-\mathbf{a}}.$$

Moreover, there exists a unique $d \in \mathcal{H}$ (Duflo involution) such that $d^2 = e$ in W and

$$\gamma_{\boldsymbol{d},\boldsymbol{x},\boldsymbol{y}^{-1}} = \gamma_{\boldsymbol{x},\boldsymbol{d},\boldsymbol{y}^{-1}} = \gamma_{\boldsymbol{x},\boldsymbol{y}^{-1},\boldsymbol{d}} = \delta_{\boldsymbol{x},\boldsymbol{y}}$$

for all $x, y \in \mathcal{H}$.

Lusztig's a-function

Fact:
$$h_{x,y,z}$$
 is symmetric in v and v⁻¹.

Proposition (Lusztig)

Let $\mathcal{H} := \mathcal{L} \cap \mathcal{L}^*$. There exists $\mathbf{a} \in \mathbb{N}$ such that for all $x, y, z \in \mathcal{H}$:

$$h_{x,y,z} = \gamma_{x,y,z^{-1}} \mathbf{v}^{\mathbf{a}} + \dots + \gamma_{x,y,z^{-1}} \mathbf{v}^{-\mathbf{a}}.$$

Moreover, there exists a unique $d \in \mathcal{H}$ (Duflo involution) such that $d^2 = e$ in W and

$$\gamma_{d,x,y^{-1}} = \gamma_{x,d,y^{-1}} = \gamma_{x,y^{-1},d} = \delta_{x,y}$$

for all $x, y \in \mathcal{H}$.

Asymptotic limit:

$$\gamma_{x,y,z^{-1}} = \lim_{\mathbf{v} \to +\infty} \mathbf{v}^{-\mathbf{a}} h_{x,y,z} \in \mathbb{N}.$$

Definition (Lusztig's asymptotic Hecke algebra)

The algebra $A_{\mathcal{H}}$ is spanned (over $\mathbb{Z}[v, v^{-1}]$) by a_w , $w \in \mathcal{H}$, with multiplication

$$a_u a_v = \sum_{w \in \mathcal{H}} \gamma_{u,v,w^{-1}} a_w.$$

The unit is given by a_d .

Definition (Lusztig's asymptotic Hecke algebra)

The algebra $A_{\mathcal{H}}$ is spanned (over $\mathbb{Z}[v, v^{-1}]$) by $a_w, w \in \mathcal{H}$, with multiplication

$$a_u a_v = \sum_{w \in \mathcal{H}} \gamma_{u,v,w^{-1}} a_w.$$

The unit is given by a_d .

Lusztig defined an injective homomorphism of $\mathbb{Z}[v, v^{-1}]$ -algebras $\phi \colon \mathcal{H}_{\mathcal{H}} \to \mathcal{A}_{\mathcal{H}} \otimes_{\mathbb{Z}} \mathbb{Z}[v, v^{-1}]$ by

$$b_u\mapsto \sum_{v\in\mathcal{H}}h_{u,d,v}a_v.$$

He also proved that ϕ is invertible over $\mathbb{Q}(\mathbf{v})$.

Example: $A_{\mathcal{H}_s}$ for Coxeter type $I_2(n)$.

First consider n = 4. Recall $\mathcal{H}_s = \{s, sts\}$. We have

$$b_s^2 = [2]_v b_s, \ b_s b_{sts} = b_{sts} b_s = [2]_v b_{sts}, \ b_{sts}^2 = [2]_v b_s,$$

where $[2]_{v} = v + v^{-1}$. We see that $\mathbf{a} = 1$ and

$$t_s^2 = t_s, \ t_s t_{sts} = t_{sts} t_s = t_{sts}, \ t_{sts}^2 = t_s.$$

御 と く き と く き と 一 き

This shows that $A_{\mathcal{H}_s} \cong [U_q(\mathfrak{so}_3)\operatorname{-mod}_{\mathrm{ss}}]$ for $q = e^{\frac{\pi i}{4}}$.

Example: $A_{\mathcal{H}_s}$ for Coxeter type $I_2(n)$.

First consider n = 4. Recall $\mathcal{H}_s = \{s, sts\}$. We have

$$b_s^2 = [2]_v b_s, \ b_s b_{sts} = b_{sts} b_s = [2]_v b_{sts}, \ b_{sts}^2 = [2]_v b_s,$$

where $[2]_{v} = v + v^{-1}$. We see that $\mathbf{a} = 1$ and

$$t_s^2 = t_s, \ t_s t_{sts} = t_{sts} t_s = t_{sts}, \ t_{sts}^2 = t_s.$$

This shows that $A_{\mathcal{H}_s} \cong [U_q(\mathfrak{so}_3)\operatorname{-mod}_{\mathrm{ss}}]$ for $q = e^{\frac{\pi i}{4}}$.

Proposition

For any $n \in \mathbb{N}_{\geq 2}$, we have

 $A_{\mathcal{H}_s} \cong [U_q(\mathfrak{so}_3)\operatorname{-mod}_{\mathrm{ss}}]$

for $q = e^{\frac{\pi i}{n}}$.

Let $\mathcal{H} := \mathcal{L} \cap \mathcal{L}^*$.

Theorem (Lusztig, Elias-Williamson)

There exists a (weak) fusion category $(\mathcal{A}_{\mathcal{H}}, \star, \vee)$ s.t. (1) For every $x \in \mathcal{H}$, there exists a simple object A_x . (2) The A_x , for $x \in \mathcal{H}$, form a complete set of pairwise non-isomorphic simple objects. (3) For any $x, y \in \mathcal{H}$, we have $\mathbf{A}_{\mathbf{x}} \star \mathbf{A}_{\mathbf{y}} \cong \bigoplus \mathbf{A}_{\mathbf{z}}^{\oplus \gamma_{\mathbf{x},\mathbf{y},\mathbf{z}^{-1}}}.$ $z \in \mathcal{H}$ (4) The identity object is A_d , where d is the Duflo involution. (5) For every $x \in \mathcal{H}$, we have $A_{x}^{\vee} \cong A_{x^{-1}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Soergel, Elias-Williamson)

$$\dim \left(\hom(\mathbf{B}_x, \mathbf{B}_y \langle t \rangle) \right) = \begin{cases} \delta_{x,y}, & \text{if } t = 0; \\ 0 & \text{if } t < 0. \end{cases}$$

э

Theorem (Soergel, Elias-Williamson)

$$\dim \left(\hom(\mathbf{B}_x, \mathbf{B}_y \langle t \rangle) \right) = \begin{cases} \delta_{x,y}, & \text{if } t = 0; \\ 0 & \text{if } t < 0. \end{cases}$$

This implies that $\mathcal{S}_{\mathcal{H}}$ is a filtered category. By the properties of $h_{x,y,z},$ the part

$$\mathcal{X}_{\leq -\mathbf{a}} := \mathrm{add}ig(\{\mathrm{B}_{w}\langle k
angle \mid w \in \mathcal{H}, k \leq -\mathbf{a}\}ig)$$

is lax monoidal: It is strictly associative with lax identity object ${\rm B}_d\langle -{\bf a}\rangle.$

Theorem (Soergel, Elias-Williamson)

$$\dim \left(\hom(\mathbf{B}_x, \mathbf{B}_y \langle t \rangle) \right) = \begin{cases} \delta_{x,y}, & \text{if } t = 0; \\ 0 & \text{if } t < 0. \end{cases}$$

This implies that $S_{\mathcal{H}}$ is a filtered category. By the properties of $h_{x,y,z}$, the part

$$\mathcal{X}_{\leq -\mathbf{a}} := \mathrm{add}ig(\{\mathrm{B}_w\langle k
angle \mid w \in \mathcal{H}, k \leq -\mathbf{a}\}ig)$$

is lax monoidal: It is strictly associative with lax identity object ${\rm B}_d\langle -{\bf a}\rangle.$ Define

$$\mathcal{A}_{\mathcal{H}} := \mathcal{X}_{\leq -\mathbf{a}}/(\mathcal{X}_{<-\mathbf{a}}).$$

Theorem (Bezrukavnikov-Finkelberg-Ostrik, Ostrik, Elias)

In all but a handful of cases, $\mathcal{A}_{\mathcal{H}}$ is biequivalent to one of the following fusion categories:

(a) Vect_G or Rep(G), with
$$G = (\mathbb{Z}/2\mathbb{Z})^k, S_3, S_4, S_5;$$

(b) $U_q(\mathfrak{so}_3)$ -mod_{ss} for $q = e^{\frac{\pi i}{n}}$ for some $n \in \mathbb{N}_{\geq 2}$.

• Recall that we have a complete classification of all cosimple coalgebra objects in these fusion categories, up to MT-equivalence.

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

For any finite Coxeter group W and any diagonal \mathcal{H} -cell \mathcal{H} of W, there exists an oplax monoidal functor

 $\Theta\colon \mathcal{A}_{\mathcal{H}} \ \rightarrow \ \mathcal{S}_{\mathcal{H}}$

with $\Theta(A_x) \cong B_x \langle -a \rangle$ and (non-invertible) natural transformations

$$\eta_{x,y} \colon \Theta(\mathbf{A}_x \star \mathbf{A}_y) \to \Theta(\mathbf{A}_x) \Theta(\mathbf{A}_y)$$

for all $x, y \in \mathcal{H}$.

Main result 2 and main conjecture

General fact: Oplax monoidal functors send coalgebra objects to coalgebra objects and comodule categories to comodule categories.

Main result 2 and main conjecture

General fact: Oplax monoidal functors send coalgebra objects to coalgebra objects and comodule categories to comodule categories.

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

 Θ preserves cosimplicity and MT-equivalence and induces an injection

 $\widehat{\Theta} \colon \{ \textit{Simple transitive 2-reps of } \mathcal{A}_{\mathcal{H}} \} / \simeq$

 \rightarrow

 $\{ \text{Graded simple transitive 2-reps of } \mathcal{S}_{\mathcal{H}} \text{ with apex } \mathcal{H} \} / \simeq .$

Main result 2 and main conjecture

General fact: Oplax monoidal functors send coalgebra objects to coalgebra objects and comodule categories to comodule categories.

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

 Θ preserves cosimplicity and MT-equivalence and induces an injection

$$\widehat{\Theta}$$
 : {Simple transitive 2-reps of $\mathcal{A}_{\mathcal{H}}\}/\simeq$

 \rightarrow

 $\{\textit{Graded simple transitive 2-reps of } \mathcal{S}_{\mathcal{H}} \textit{ with apex } \mathcal{H}\}/\simeq.$

Conjecture (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

 $\widehat{\Theta}$ is a bijection.

• We have proved the conjecture for all \mathcal{H} which contain the longest element of a parabolic subgroup of W.

- We have proved the conjecture for all \mathcal{H} which contain the longest element of a parabolic subgroup of W.
- If true, the conjecture implies that there are finitely many equivalence classes of simple transitive 2-representations of S.

- We have proved the conjecture for all \mathcal{H} which contain the longest element of a parabolic subgroup of W.
- If true, the conjecture implies that there are finitely many equivalence classes of simple transitive 2-representations of S.
- For almost all W and \mathcal{H} , we would get a complete classification of the graded, simple transitive 2-representations of $S_{\mathcal{H}}$ with apex \mathcal{H} (and therefore of those of S).

The cell 2-representation

We know quite a bit about the graded, simple transtive 2-representations of $S_{\mathcal{H}}$ in the image of $\widehat{\Theta}$, e.g. the cell 2-representation $C_{\mathcal{H}}$ with apex \mathcal{H} .

We know quite a bit about the graded, simple transtive 2-representations of $S_{\mathcal{H}}$ in the image of $\widehat{\Theta}$, e.g. the cell 2-representation $C_{\mathcal{H}}$ with apex \mathcal{H} .

Theorem (MMMTZ)

Let $d \in \mathcal{H}$ be the Duflo involution and **a** the a-value of \mathcal{H} .

• B_d is a graded Frobenius object in S_H . More precisely, $B_d \langle \mathbf{a} \rangle$ is a graded algebra object, $B_d \langle -\mathbf{a} \rangle$ a graded coalgebra object and the product and coproduct morphisms satisfy the compatibility condition.

• $\operatorname{inj}_{\mathcal{S}_{\mathcal{H}}}(\operatorname{B}_{d}\langle -\mathbf{a}\rangle) \simeq \mathcal{C}_{\mathcal{H}}$ as 2-representations of $\mathcal{S}_{\mathcal{H}}$.

We know quite a bit about the graded, simple transtive 2-representations of $S_{\mathcal{H}}$ in the image of $\widehat{\Theta}$, e.g. the cell 2-representation $C_{\mathcal{H}}$ with apex \mathcal{H} .

Theorem (MMMTZ)

Let $d \in \mathcal{H}$ be the Duflo involution and **a** the a-value of \mathcal{H} .

• B_d is a graded Frobenius object in S_H . More precisely, $B_d \langle \mathbf{a} \rangle$ is a graded algebra object, $B_d \langle -\mathbf{a} \rangle$ a graded coalgebra object and the product and coproduct morphisms satisfy the compatibility condition.

• $\operatorname{inj}_{\mathcal{S}_{\mathcal{H}}}(\operatorname{B}_{d}\langle -\mathbf{a}\rangle) \simeq \mathcal{C}_{\mathcal{H}}$ as 2-representations of $\mathcal{S}_{\mathcal{H}}$.

Remark: Klein and, separately, Elias-Hogancamp conjectured that B_d is a Frobenius algebra object in S, which is a stronger statement, but we do not know how to prove that.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Proposition

• The underlying basic algebra A of $C_{\mathcal{H}}$ is a positively graded, weakly symmetric Frobenius algebra of graded length $2\mathbf{a}$.

The cell 2-representation

Proposition

- The underlying basic algebra A of $C_{\mathcal{H}}$ is a positively graded, weakly symmetric Frobenius algebra of graded length $2\mathbf{a}$.
- Let $1=\sum_{w\in\mathcal{H}}e_w.$ The action of $\mathrm{B}_w\langle-a\rangle$ on A-mod_{\mathrm{gr}} is given by tensoring A with

$$\bigoplus_{u,v\in\mathcal{H}}Ae_v\otimes e_uA^{\oplus\gamma_{w,u,v-1}}.$$

Proposition

- The underlying basic algebra A of C_H is a positively graded, weakly symmetric Frobenius algebra of graded length 2**a**.
- Let $1=\sum_{w\in\mathcal{H}}e_w.$ The action of $\mathrm{B}_w\langle-a\rangle$ on A-mod_{\mathrm{gr}} is given by tensoring A with

$$\bigoplus_{u,v\in\mathcal{H}}Ae_v\otimes e_uA^{\oplus\gamma_{w,u,v-1}}.$$

In particular,

$$\mathrm{B}_{d}\langle -\mathbf{a}
angle\mapsto igoplus_{u\in\mathcal{H}}\mathcal{A}e_{u}\otimes e_{u}\mathcal{A}$$

and $\mu_d, \delta_d, \iota_d, \epsilon_d$ are mapped to the A-A bimodule maps from my first talk (possibly up to some scalars).

Proposition

For any $u, w \in \mathcal{H}$, we have

$$\operatorname{grdim}(e_u A e_w) = v^{\mathbf{a}} h_{u^{-1},w,d}.$$

In particular,

$$\operatorname{grdim}(e_u A) = \operatorname{v}^{\mathbf{a}} \sum_{w \in \mathcal{H}} h_{u^{-1},w,d}.$$

→ < Ξ → <</p>

문▶ 문

When is *A* symmetric?

For any $u \in \mathcal{H}$, define

$$\lambda_u := \sum_{w \in \mathcal{H}} h_{u^{-1},w,d}(1) \in \mathbb{N}.$$

Note that $\lambda_u = \dim(e_u A)$.

When is A symmetric?

For any $u \in \mathcal{H}$, define

$$\lambda_u := \sum_{w \in \mathcal{H}} h_{u^{-1},w,d}(1) \in \mathbb{N}.$$

Note that $\lambda_u = \dim(e_u A)$.

Proposition (MMMTZ)

If A is symmetric, then

$$\lambda_u = \lambda_v \quad \forall u, v \in \mathcal{H}.$$

When is A symmetric?

For any $u \in \mathcal{H}$, define

$$\lambda_u := \sum_{w \in \mathcal{H}} h_{u^{-1},w,d}(1) \in \mathbb{N}.$$

Note that $\lambda_u = \dim(e_u A)$.

Proposition (MMMTZ)

If A is symmetric, then

$$\lambda_u = \lambda_v \quad \forall u, v \in \mathcal{H}.$$

Fact: Let W be a Coxeter group of type E_6, E_7, E_8, F_4, H_3 or H_4 . There are \mathcal{H} -cells of W which contain u, v such that $\lambda_u \neq \lambda_v$, so for those \mathcal{H} -cells A is weakly symmetric but not symmetric. Note that $A_0 = \oplus_{w \in \mathcal{H}} \mathbb{C}e_w$. The asymptotic cell 2-representation of $\mathcal{A}_{\mathcal{H}}$ is equivalent to

 A_0 -mod

and the action of A_w on $\mathcal{A}_0\operatorname{-mod}$ is given by tensoring with

$$\bigoplus_{u,v\in\mathcal{H}}\mathbb{C}e_v\otimes e_u\mathbb{C}^{\oplus\gamma_{w,u,v^{-1}}}.$$

Note that $A_0 = \oplus_{w \in \mathcal{H}} \mathbb{C}e_w$. The asymptotic cell 2-representation of $\mathcal{A}_{\mathcal{H}}$ is equivalent to

 A_0 -mod

and the action of A_w on $\mathcal{A}_0\operatorname{-mod}$ is given by tensoring with

$$\bigoplus_{u,v\in\mathcal{H}} \mathbb{C}e_v \otimes e_u \mathbb{C}^{\oplus \gamma_{w,u,v^{-1}}}.$$

In particular, the action of A_d is given by tensoring with

$$\bigoplus_{u\in\mathcal{H}}\mathbb{C}e_u\otimes e_u\mathbb{C}.$$

THANKS!!!

Ð,

《曰》《聞》《臣》《臣》