Finitary 2-Representations and (co)algebra 1-morphisms

Marco Mackaay

joint with Mazorchuk, Miemietz, Tubbenhauer and Zhang

CAMGSD and Universidade do Algarve

$$
\text { July 11, } 2019
$$

Outline

- In this talk, I will explain the role of (co)algebra objects in the 2-representation theory of (graded) fiat monoidal categories (which are not necessarily abelian), generalizing results by Ostrik for tensor categories.

Outline

- In this talk, I will explain the role of (co)algebra objects in the 2-representation theory of (graded) fiat monoidal categories (which are not necessarily abelian), generalizing results by Ostrik for tensor categories.
- Time permitting, I will also recall the \mathcal{H}-reduction result, which Mazorchuk presented in his talk, giving a concrete example which is relevant for my second talk tomorrow.

2-Representation Theory in two slides

Let $\mathcal{C}=(\mathcal{C}, \oplus, \otimes, \mathbb{1}, \mathbb{O})$ be a finitary monoidal category, possibly with some additional nice properties (e.g. fiat, semisimple ...).

Definition

A 2-representation of \mathcal{C} is a finitary category \mathcal{M} (possibly with some additional nice properties) together with a linear, monoidal functor

$$
\mathcal{C} \rightarrow \operatorname{End}(\mathcal{M}):=\operatorname{Func}(\mathcal{M}, \mathcal{M})
$$

called the 2-action.
There is a natural notion of 2-intertwiners and 2-equivalence of 2-representations.

Classification Problem

Mazorchuk and Miemietz proved a categorical Jordan-Hölder theorem for finitary 2 -representations. The role of the simples is played by the so-called simple transitive 2-representations.

Classification Problem

Mazorchuk and Miemietz proved a categorical Jordan-Hölder theorem for finitary 2-representations. The role of the simples is played by the so-called simple transitive 2-representations.

General classification Problem

Given a finitary 2-category \mathcal{C}, classify its simple transitive 2-representations up to equivalence.

Classification Problem

Mazorchuk and Miemietz proved a categorical Jordan-Hölder theorem for finitary 2 -representations. The role of the simples is played by the so-called simple transitive 2-representations.

General classification Problem

Given a finitary 2-category \mathcal{C}, classify its simple transitive 2-representations up to equivalence.

Our goal

Solve the classification problem for the monoidal category of Soergel bimodules \mathcal{S} of any finite Coxeter type.

Remark: \mathcal{S} is not abelian, let alone semisimple.

Ways to construct simple transitive 2-representations

- Using the principal/regular 2-representation (e.g. simple transitive 2-reps of $\operatorname{Rep}(G)$, cell 2-representations of arbitrary finitary 2-categories).

Ways to construct simple transitive 2-representations

- Using the principal/regular 2-representation (e.g. simple transitive 2-reps of $\operatorname{Rep}(G)$, cell 2-representations of arbitrary finitary 2-categories).
- Using symmetries on a given simple transitive 2-representation (e.g. [M-Mazorchuk]).

Ways to construct simple transitive 2-representations

- Using the principal/regular 2-representation (e.g. simple transitive 2-reps of $\operatorname{Rep}(G)$, cell 2-representations of arbitrary finitary 2-categories).
- Using symmetries on a given simple transitive 2-representation (e.g. [M-Mazorchuk]).
- Using a presentation of \mathcal{C} by generating morphisms and relations to define a concrete monoidal functor to $\mathcal{C}_{A}:=\operatorname{add}(A \oplus(A \otimes A))$ for some f.d. algebra A (e.g. for dihedral Soergel bimodules [M-Tubbenhauer]).

Ways to construct simple transitive 2-representations

- Using the principal/regular 2-representation (e.g. simple transitive 2-reps of $\operatorname{Rep}(G)$, cell 2-representations of arbitrary finitary 2-categories).
- Using symmetries on a given simple transitive 2-representation (e.g. [M-Mazorchuk]).
- Using a presentation of \mathcal{C} by generating morphisms and relations to define a concrete monoidal functor to $\mathcal{C}_{A}:=\operatorname{add}(A \oplus(A \otimes A))$ for some f.d. algebra A (e.g. for dihedral Soergel bimodules [M-Tubbenhauer]).
- Using (co)simple (co)algebra objects in \mathcal{C}. (All simple transitive 2-representations can be constructed in this way).

Coalgebra objects

Definition (Coalgebra object)

A coalgebra object in a monoidal category \mathcal{C} is an object $\mathrm{C} \in \mathcal{C}$ together with a comultiplication morphism $\delta: \mathrm{C} \rightarrow \mathrm{CC}$ and a counit morphism $\epsilon: \mathrm{C} \rightarrow \mathbb{1}$ satisfying coassociativity and counitality.

$$
\delta_{\mathrm{C}}=\underbrace{\mathrm{C}}_{\mathrm{C}}
$$

$$
\varepsilon_{\mathrm{C}}=\boldsymbol{\varphi}_{\mathrm{C}}^{\mathbb{1}}
$$

Algebra objects

Definition (Algebra object)

An algebra object in a monoidal category \mathcal{C} is an object $\mathrm{A} \in \mathcal{C}$ together with a multiplication morphism $\mu_{\mathrm{A}}: \mathrm{AA} \rightarrow \mathrm{A}$ and a unit morphism $\iota_{\mathrm{A}}: \mathbb{1} \rightarrow \mathrm{A}$ satisfying associativity and unitality.

$$
\mu_{\mathrm{A}}=\underbrace{\mathrm{A}}_{\mathrm{A}}
$$

$$
\iota_{\mathrm{A}}={\underset{⿺}{\mathbb{1}}}_{\mathrm{A}}^{\substack{\mathrm{A}}}
$$

Frobenius algebra objects

Definition (Frobenius algebra object)

A Frobenius algebra object in a monoidal category \mathcal{C} is an algebra-and-coalgebra object satisfying an additional compatibility condition.

$$
\eta=\beta=\$
$$

(Co)module objects

Let $\mathrm{C}=\left(\mathrm{C}, \delta_{\mathrm{C}}, \epsilon_{\mathrm{C}}\right)$ be a coalgebra object in \mathcal{C}.

Definition

A right comodule object of C is an object $\mathrm{M} \in \mathcal{C}$ together with a coaction morphism $\delta_{\mathrm{M}}: \mathrm{M} \rightarrow \mathrm{MC}$ satisfying the usual axioms for comodules. (Module objects of algebra objects are defined similarly.)

The category of comodule objects

Let C be a coalgebra object and A an algebra object in \mathcal{C}.

Definition

Let $\operatorname{comod}_{\mathcal{C}}(\mathrm{C})$ be the category of comodule objects of C and intertwiners between them. (Similarly, let $\bmod _{\mathcal{C}}(\mathrm{A})$ be the category of module objects of A and intertwiners between them.)

The category of comodule objects

Let C be a coalgebra object and A an algebra object in \mathcal{C}.

Definition

Let $\operatorname{comod}_{\mathcal{C}}(\mathrm{C})$ be the category of comodule objects of C and intertwiners between them. (Similarly, let $\bmod _{\mathcal{C}}(\mathrm{A})$ be the category of module objects of A and intertwiners between them.)

Fact

Left multiplication defines a left 2-action of \mathcal{C} on $\operatorname{comod}_{\mathcal{C}}(\mathrm{C})$ (resp. $\bmod _{\mathcal{C}}(\mathrm{A})$).

Let \mathcal{C} be fiat.

- The involution sends coalgebra/algebra objects to algebra/coalgebra objects, sending left/right comodule/module objects to right/left module/comodule objects.

Let \mathcal{C} be fiat.

- The involution sends coalgebra/algebra objects to algebra/coalgebra objects, sending left/right comodule/module objects to right/left module/comodule objects.
- The involution sends Frobenius objects to Frobenius objects.

Abelianizations

- If \mathcal{C} is not abelian, we can consider its injective abelianization $\underline{\mathcal{C}}$ or its projective abelianization $\overline{\mathcal{C}}$, which contains \mathcal{C} as the full subcategory of injective/projective objects.

Abelianizations

- If \mathcal{C} is not abelian, we can consider its injective abelianization $\underline{\mathcal{C}}$ or its projective abelianization $\overline{\mathcal{C}}$, which contains \mathcal{C} as the full subcategory of injective/projective objects.
- Even if \mathcal{C} is fiat, $\overline{\mathcal{C}}$ and $\underline{\mathcal{C}}$ are not in general, but the weak involution extends to an equivalence $\underline{\mathcal{C}} \simeq \overline{\mathcal{C}}$ sending injectives to projectives.

Abelianizations

- If \mathcal{C} is not abelian, we can consider its injective abelianization $\underline{\mathcal{C}}$ or its projective abelianization $\overline{\mathcal{C}}$, which contains \mathcal{C} as the full subcategory of injective/projective objects.
- Even if \mathcal{C} is fiat, $\overline{\mathcal{C}}$ and $\underline{\mathcal{C}}$ are not in general, but the weak involution extends to an equivalence $\underline{\mathcal{C}} \simeq \overline{\mathcal{C}}$ sending injectives to projectives.
- if \mathcal{M} is a 2-representation of \mathcal{C}, then $\frac{\mathcal{M}}{\overline{\mathcal{C}}}($ resp. $\overline{\mathcal{M}})$ is naturally a 2 -representation of $\underline{\mathcal{C}}$ (resp. $\overline{\mathcal{C}})$.

Abelianizations

- If \mathcal{C} is not abelian, we can consider its injective abelianization $\underline{\mathcal{C}}$ or its projective abelianization $\overline{\mathcal{C}}$, which contains \mathcal{C} as the full subcategory of injective/projective objects.
- Even if \mathcal{C} is fiat, $\overline{\mathcal{C}}$ and $\underline{\mathcal{C}}$ are not in general, but the weak involution extends to an equivalence $\underline{\mathcal{C}} \simeq \overline{\mathcal{C}}$ sending injectives to projectives.
- if \mathcal{M} is a 2-representation of \mathcal{C}, then $\frac{\mathcal{M}}{\overline{\mathcal{C}}}(\operatorname{resp} . \overline{\mathcal{M}})$ is naturally a 2 -representation of $\underline{\mathcal{C}}$ (resp. $\overline{\mathcal{C}}$).
- If \mathcal{C} is fiat, then the objects of \mathcal{C} act by exact endofunctors on $\underline{\mathcal{M}}$ and $\overline{\mathcal{M}}$.

Abelianizations

- If \mathcal{C} is not abelian, we can consider its injective abelianization $\underline{\mathcal{C}}$ or its projective abelianization $\overline{\mathcal{C}}$, which contains \mathcal{C} as the full subcategory of injective/projective objects.
- Even if \mathcal{C} is fiat, $\overline{\mathcal{C}}$ and $\underline{\mathcal{C}}$ are not in general, but the weak involution extends to an equivalence $\underline{\mathcal{C}} \simeq \overline{\mathcal{C}}$ sending injectives to projectives.
- if \mathcal{M} is a 2-representation of \mathcal{C}, then $\frac{\mathcal{M}}{\overline{\mathcal{C}}}($ resp. $\overline{\mathcal{M}})$ is naturally a 2 -representation of $\underline{\mathcal{C}}$ (resp. $\overline{\mathcal{C}}$).
- If \mathcal{C} is fiat, then the objects of \mathcal{C} act by exact endofunctors on $\underline{\mathcal{M}}$ and $\overline{\mathcal{M}}$.
- There is a natural notion of Morita(-Takeuchi) equivalence between (co)algebra objects in $\underline{\mathcal{C}}$ and $\overline{\mathcal{C}}$.

Framing (co)algebra objects

Let \mathcal{C} be fiat and C a coalgebra object in \mathcal{C}. Let $\mathrm{F} \in \mathcal{C}$ be such that $\mathrm{FCF}^{\star} \neq 0$ and draw the (co)unit of the adjunction ($\mathrm{F}, \mathrm{F}^{\star}$) as follows

$$
\epsilon_{\mathrm{F}}=\underset{\mathrm{FF}}{\underset{\mathrm{~F}}{\star}} \stackrel{\mathbb{1}}{\stackrel{1}{*}}, \quad \eta_{\mathrm{F}}=\stackrel{\mathrm{F}^{\star} \mathrm{F}}{\underset{\mathbb{F}}{\succ}} .
$$

Lemma

$\mathrm{FCF}^{\star} \in \underline{\mathcal{C}}$ has a coalgebra structure with

Coassociativity and counitality:

Simple transitive 2-representations

Let \mathcal{C} be fiat and \mathcal{J}-simple for a given two-sided cell \mathcal{J}. Below, absolutely cosimple means cosimple in $\underline{\mathcal{C}}$.

Simple transitive 2-representations

Let \mathcal{C} be fiat and \mathcal{J}-simple for a given two-sided cell \mathcal{J}. Below, absolutely cosimple means cosimple in $\underline{\mathcal{C}}$.

Theorem (MMMT, MMMZ, MMMTZ)

Let \mathcal{M} be a simple transitive 2-representation of \mathcal{C} with apex \mathcal{J} and $0 \neq \mathrm{X} \in \mathcal{M}$. There is an absolutely cosimple coalgebra object C_{X} in $\operatorname{add}(\mathcal{J}) \subseteq \mathcal{C}$ such that

$$
\operatorname{inj}_{\underline{\mathcal{C}}}\left(\mathrm{C}_{\mathrm{X}}\right) \simeq \mathcal{M}
$$

Simple transitive 2-representations

Let \mathcal{C} be fiat and \mathcal{J}-simple for a given two-sided cell \mathcal{J}. Below, absolutely cosimple means cosimple in $\underline{\mathcal{C}}$.

Theorem (MMMT, MMMZ, MMMTZ)

Let \mathcal{M} be a simple transitive 2-representation of \mathcal{C} with apex \mathcal{J} and $0 \neq \mathrm{X} \in \mathcal{M}$. There is an absolutely cosimple coalgebra object C_{X} in $\operatorname{add}(\mathcal{J}) \subseteq \mathcal{C}$ such that

$$
\operatorname{inj}_{\underline{\mathcal{C}}}\left(\mathrm{C}_{\mathrm{X}}\right) \simeq \mathcal{M}
$$

$\{$ simple transitive 2 -reps of \mathcal{C} with apex $\mathcal{J}\} / \simeq$

$$
\stackrel{1: 1}{\leftrightarrows}
$$

$\{$ Absolutely cosimple coalgebra objects in $\operatorname{add}(\mathcal{J})\} / \simeq_{\text {MT }}$.

Sketch of the proof of the Theorem

Choose $\mathrm{X} \in \mathcal{M}$.

- Internal hom [Ostrik]: Take $\mathrm{C}_{\mathrm{X}}:=[\mathrm{X}, \mathrm{X}] \in \operatorname{add}(\mathcal{J})$, defined such that for all $\mathrm{F} \in \mathcal{\mathcal { C }}$:
$\operatorname{Hom}_{\underline{\mathcal{S}}}([\mathrm{X}, \mathrm{X}], \mathrm{F}) \cong \operatorname{Hom}_{\underline{\mathcal{M}}}(\mathrm{X}, \mathrm{FX})$.

Sketch of the proof of the Theorem

Choose $\mathrm{X} \in \mathcal{M}$.

- Internal hom [Ostrik]: Take $\mathrm{C}_{\mathrm{X}}:=[\mathrm{X}, \mathrm{X}] \in \operatorname{add}(\mathcal{J})$, defined such that for all $\mathrm{F} \in \underline{\mathcal{C}}$:

$$
\operatorname{Hom}_{\underline{\mathcal{S}}}([\mathrm{X}, \mathrm{X}], \mathrm{F}) \cong \operatorname{Hom}_{\underline{\mathcal{M}}}(\mathrm{X}, \mathrm{FX}) .
$$

- Since \mathcal{M} is simple transitive and \mathcal{C} is \mathcal{J}-simple, $[\mathrm{X}, \mathrm{X}]$ is absolutely cosimple.

Sketch of the proof of the Theorem

Choose $\mathrm{X} \in \mathcal{M}$.

- Internal hom [Ostrik]: Take $\mathrm{C}_{\mathrm{X}}:=[\mathrm{X}, \mathrm{X}] \in \operatorname{add}(\mathcal{J})$, defined such that for all $\mathrm{F} \in \underline{\mathcal{C}}$:

$$
\operatorname{Hom}_{\underline{\mathcal{S}}}([\mathrm{X}, \mathrm{X}], \mathrm{F}) \cong \operatorname{Hom}_{\underline{\mathcal{M}}}(\mathrm{X}, \mathrm{FX}) .
$$

- Since \mathcal{M} is simple transitive and \mathcal{C} is \mathcal{J}-simple, $[\mathrm{X}, \mathrm{X}]$ is absolutely cosimple.
- For any $\mathrm{G} \in \operatorname{add}(\mathcal{J})$, the coalgebra object $\mathrm{G}[\mathrm{X}, \mathrm{X}] \mathrm{G}^{*}$ is isomorphic to [GX, GX], whence MT-equivalent to C_{X}.

Sketch of the proof of the Theorem

Choose $\mathrm{X} \in \mathcal{M}$.

- Internal hom [Ostrik]: Take $\mathrm{C}_{\mathrm{X}}:=[\mathrm{X}, \mathrm{X}] \in \operatorname{add}(\mathcal{J})$, defined such that for all $\mathrm{F} \in \underline{\mathcal{C}}$:

$$
\operatorname{Hom}_{\underline{\mathcal{S}}}([\mathrm{X}, \mathrm{X}], \mathrm{F}) \cong \operatorname{Hom}_{\underline{\mathcal{M}}}(\mathrm{X}, \mathrm{FX}) .
$$

- Since \mathcal{M} is simple transitive and \mathcal{C} is \mathcal{J}-simple, $[\mathrm{X}, \mathrm{X}]$ is absolutely cosimple.
- For any $\mathrm{G} \in \operatorname{add}(\mathcal{J})$, the coalgebra object $\mathrm{G}[\mathrm{X}, \mathrm{X}] \mathrm{G}^{*}$ is isomorphic to [GX, GX], whence MT-equivalent to C_{X}.
- For any $\mathrm{G} \in \operatorname{add}(\mathcal{J}), \mathrm{GC}_{X} \mathrm{G}^{\star} \in \operatorname{add}(\mathcal{J})=\operatorname{inj}(\underline{\operatorname{add}(\mathcal{J})})$.

Sketch of the proof of the Theorem

Choose $\mathrm{X} \in \mathcal{M}$.

- Internal hom [Ostrik]: Take $\mathrm{C}_{\mathrm{X}}:=[\mathrm{X}, \mathrm{X}] \in \operatorname{add}(\mathcal{J})$, defined such that for all $\mathrm{F} \in \underline{\mathcal{C}}$:

$$
\operatorname{Hom}_{\underline{\mathcal{S}}}([\mathrm{X}, \mathrm{X}], \mathrm{F}) \cong \operatorname{Hom}_{\underline{\mathcal{M}}}(\mathrm{X}, \mathrm{FX}) .
$$

- Since \mathcal{M} is simple transitive and \mathcal{C} is \mathcal{J}-simple, $[\mathrm{X}, \mathrm{X}]$ is absolutely cosimple.
- For any $\mathrm{G} \in \operatorname{add}(\mathcal{J})$, the coalgebra object $\mathrm{G}[\mathrm{X}, \mathrm{X}] \mathrm{G}^{*}$ is isomorphic to [GX, GX], whence MT-equivalent to C_{X}.
- For any $\mathrm{G} \in \operatorname{add}(\mathcal{J}), \mathrm{GC}_{\mathrm{X}} \mathrm{G}^{\star} \in \operatorname{add}(\mathcal{J})=\operatorname{inj}(\operatorname{add}(\mathcal{J}))$.
- Choose G such that $\mathrm{X} \subseteq_{\oplus} \mathrm{GX}$. Then $[\mathrm{X}, \mathrm{X}] \subseteq_{\oplus}$ [GX, GX], so $\mathrm{C}_{\mathrm{X}}=[\mathrm{X}, \mathrm{X}] \in \operatorname{add}(\mathcal{J})$.

Grouplike examples

Let G be a finite group and $\mathcal{C}:=\operatorname{Vect}_{G}$ (semisimple). For every subgroup $H \subseteq G$ and every normalized $\omega \in \mathrm{Z}^{2}\left(H, \mathbb{C}^{*}\right)$, the group algebra $\mathbb{C}[H]$ is a Frobenius algebra object in Vect_{G} with

$$
\begin{aligned}
& \mu_{H}^{\omega}(x, y):=\omega(x, y)^{-1} x y \iota(1): \\
& \delta_{H}^{\omega}(h):=\sum_{x y=h} \omega(x, y) x \otimes y, \quad \epsilon_{H}(h):=\delta_{h, e}
\end{aligned}
$$

Grouplike examples

Let G be a finite group and $\mathcal{C}:=\operatorname{Vect}_{G}$ (semisimple). For every subgroup $H \subseteq G$ and every normalized $\omega \in \mathrm{Z}^{2}\left(H, \mathbb{C}^{*}\right)$, the group algebra $\mathbb{C}[H]$ is a Frobenius algebra object in Vect_{G} with

$$
\begin{aligned}
& \mu_{H}^{\omega}(x, y):=\omega(x, y)^{-1} x y \iota(1): \\
& \delta_{H}^{\omega}(h):=\sum_{x y=h} \omega(x, y) x \otimes y, \quad \epsilon_{H}(h):=\delta_{h, e}
\end{aligned}
$$

- For any $g \in G$ and $\omega \in Z^{2}\left(H, \mathbb{C}^{*}\right)$, define

$$
\omega^{g}(x, y):=\omega\left(g x g^{-1}, g y g^{-1}\right) \in \mathrm{Z}^{2}\left(g H g^{-1}, \mathbb{C}^{*}\right)
$$

Grouplike examples

Let G be a finite group and $\mathcal{C}:=\operatorname{Vect}_{G}$ (semisimple). For every subgroup $H \subseteq G$ and every normalized $\omega \in \mathrm{Z}^{2}\left(H, \mathbb{C}^{*}\right)$, the group algebra $\mathbb{C}[H]$ is a Frobenius algebra object in Vect_{G} with

$$
\begin{aligned}
& \mu_{H}^{\omega}(x, y):=\omega(x, y)^{-1} x y \iota(1): \\
& \delta_{H}^{\omega}(h):=e \\
& x y=h
\end{aligned} \omega(x, y) x \otimes y, \quad \epsilon_{H}(h):=\delta_{h, e} .
$$

- For any $g \in G$ and $\omega \in Z^{2}\left(H, \mathbb{C}^{*}\right)$, define

$$
\omega^{g}(x, y):=\omega\left(g x g^{-1}, g y g^{-1}\right) \in \mathrm{Z}^{2}\left(g H g^{-1}, \mathbb{C}^{*}\right)
$$

- We have

$$
\begin{aligned}
\left(\mathbb{C}[H], \delta_{H}, \epsilon_{H}\right) & \simeq_{M T}\left(\mathbb{C}\left[H^{\prime}\right], \delta_{H^{\prime}}, \epsilon_{H^{\prime}}\right) \\
& \Leftrightarrow \\
\exists g \in G: \quad H^{\prime}=g H g^{-1} & \wedge\left[\omega^{\prime}\right]=\left[\omega^{g}\right] \in \mathrm{H}^{2}\left(H^{\prime}, \mathbb{C}^{*}\right) .
\end{aligned}
$$

Comodule objects

Let $H \subseteq G$ and $\omega \in \mathrm{Z}^{2}\left(H, \mathbb{C}^{*}\right)$. The simple comodule objects of $\mathbb{C}[H]=\left(\mathbb{C}[H], \delta_{H}^{\omega}, \epsilon_{H}\right)$ are indexed by G / H : Let $\bar{g}=g H$ and define

$$
\mathrm{L}_{\bar{g}}:=\bigoplus_{h \in H} \mathbb{C}_{g h} \quad \delta_{\bar{g}}\left(1_{g h}\right):=\sum_{x y=h} \omega(x, y) 1_{g x} \otimes y
$$

Comodule objects

Let $H \subseteq G$ and $\omega \in \mathrm{Z}^{2}\left(H, \mathbb{C}^{*}\right)$. The simple comodule objects of $\mathbb{C}[H]=\left(\mathbb{C}[H], \delta_{H}^{\omega}, \epsilon_{H}\right)$ are indexed by G / H : Let $\bar{g}=g H$ and define

$$
\mathrm{L}_{\bar{g}}:=\bigoplus_{h \in H} \mathbb{C}_{g h} \quad \delta_{\bar{g}}\left(1_{g h}\right):=\sum_{x y=h} \omega(x, y) 1_{g x} \otimes y
$$

The $\operatorname{Vect}_{G} 2$-action on $\bmod _{V^{\prime}}{ }_{G}(\mathbb{C}[H])$ is given by

$$
\mathbb{C}_{g_{1}} \boxtimes \mathrm{~L}_{\overline{g_{2}}} \mapsto \mathrm{~L}_{\overline{g_{1} g_{2}}}
$$

Quantum $\mathfrak{s l}_{2}$ examples

Let $\mathrm{q}^{2 n}=1$ and $\mathcal{C}:=\mathrm{U}_{\mathrm{q}}\left(\mathfrak{s L}_{2}\right)-\bmod _{\mathrm{sS}}$. There is a complete and irredundant set of simples $L_{0}, \ldots, L_{n-2}\left(\operatorname{dim}_{\mathrm{q}}\left(L_{i}\right)=[i+1]_{\mathrm{q}}\right)$.

Theorem (Kirillov-Ostrik)

Up to Morita equivalence, simple algebra objects in $\mathrm{U}_{\mathrm{q}}\left(\mathfrak{s l}_{2}\right)-\bmod _{\mathrm{ss}}$ are classified by ADE Dynkin diagrams with $h=n$. For each such diagram 「
a) the isoclasses of the simple module objects correspond to the vertices of Γ;
b) the 2-action of L_{1} on the category of module objects decategorifies to $2 I-A(\Gamma)$, where $A(\Gamma)$ is the Cartan matrix.

Quantum $\mathfrak{s l}_{2}$ examples. Type A_{n-1}

Quantum $\mathfrak{s l}_{2}$ examples. Type A_{n-1}

- $\mathrm{A}_{A_{n-1}}:=L_{0}$ is a simple algebra object with μ the canonical isomorphism $L_{0} L_{0} \cong L_{0}$ and ι the identity on L_{0}.

Quantum $\mathfrak{s l}_{2}$ examples. Type A_{n-1}

- $\mathrm{A}_{A_{n-1}}:=L_{0}$ is a simple algebra object with μ the canonical isomorphism $L_{0} L_{0} \cong L_{0}$ and ι the identity on L_{0}.
- Every L_{i} is canonically a simple L_{0} right module object, with action given by the canonical isomorphism $L_{i} L_{0} \cong L_{i}$. Thus $\bmod _{\mathcal{C}}\left(\mathrm{A}_{A_{n-1}}\right)$ is equivalent to the regular 2-representation of \mathcal{C}.

Quantum $\mathfrak{s l}_{2}$ examples. Type A_{n-1}

- $\mathrm{A}_{A_{n-1}}:=L_{0}$ is a simple algebra object with μ the canonical isomorphism $L_{0} L_{0} \cong L_{0}$ and ι the identity on L_{0}.
- Every L_{i} is canonically a simple L_{0} right module object, with action given by the canonical isomorphism $L_{i} L_{0} \cong L_{i}$. Thus $\bmod _{\mathcal{C}}\left(\mathrm{A}_{A_{n-1}}\right)$ is equivalent to the regular 2-representation of \mathcal{C}.
- When $n=2 m+2$, there is an interesting $\mathbb{Z} / 2 \mathbb{Z}$ symmetry on $\bmod _{\mathcal{C}}\left(\mathrm{A}_{A_{n-1}}\right)$ given by $L_{i} \leftrightarrow L_{m-i}$. It has one fixed point: L_{m}.

Quantum $\mathfrak{s l}_{2}$ examples: Type $D_{m+1}(n=2 m+2)$

Quantum $\mathfrak{s l}_{2}$ examples: Type $D_{m+1}(n=2 m+2)$

- $\mathrm{A}_{D_{m+1}}:=L_{0} \oplus L_{2 m}$ is a simple algebra object, with μ given by suitably normalized isomorphisms $L_{0} L_{0} \rightarrow L_{0}$, $L_{0} L_{2 m} \rightarrow L_{2 m}, L_{2 m} L_{0} \rightarrow L_{2 m}$ and $L_{2 m} L_{2 m} \rightarrow L_{0}$, and ι by the canonical embedding $L_{0} \hookrightarrow L_{0} \oplus L_{2 m}$.

Quantum $\mathfrak{s l}_{2}$ examples: Type $D_{m+1}(n=2 m+2)$

- $\mathrm{A}_{D_{m+1}}:=L_{0} \oplus L_{2 m}$ is a simple algebra object, with μ given by suitably normalized isomorphisms $L_{0} L_{0} \rightarrow L_{0}$, $L_{0} L_{2 m} \rightarrow L_{2 m}, L_{2 m} L_{0} \rightarrow L_{2 m}$ and $L_{2 m} L_{2 m} \rightarrow L_{0}$, and ι by the canonical embedding $L_{0} \hookrightarrow L_{0} \oplus L_{2 m}$.
- For each vertex, the decomposition in \mathcal{C} of the corresponding simple module object is given.

Quantum $\mathfrak{s l}_{2}$ examples: Type $D_{m+1}(n=2 m+2)$

- $\mathrm{A}_{D_{m+1}}:=L_{0} \oplus L_{2 m}$ is a simple algebra object, with μ given by suitably normalized isomorphisms $L_{0} L_{0} \rightarrow L_{0}$, $L_{0} L_{2 m} \rightarrow L_{2 m}, L_{2 m} L_{0} \rightarrow L_{2 m}$ and $L_{2 m} L_{2 m} \rightarrow L_{0}$, and ι by the canonical embedding $L_{0} \hookrightarrow L_{0} \oplus L_{2 m}$.
- For each vertex, the decomposition in \mathcal{C} of the corresponding simple module object is given.
- $\bmod _{\mathcal{C}}\left(\mathrm{A}_{D_{m+1}}\right) \simeq \Omega_{\mathbb{Z} / 2 \mathbb{Z}}\left(\bmod _{\mathcal{C}}\left(\mathrm{A}_{A_{n-1}}\right)\right)$ (orbit category).

Let A be a finite-dimensional, complex, connected, basic algebra and let $e_{1}, \ldots, e_{n} \in A$ be a complete set of orthogonal primitive idempotents. Let

$$
\mathcal{C}_{A}:=\operatorname{add}(A \oplus(A \otimes A)) \subseteq \operatorname{bim}(A, A)
$$

- \mathcal{C}_{A} is always finitary, but not abelian in general.

Let A be a finite-dimensional, complex, connected, basic algebra and let $e_{1}, \ldots, e_{n} \in A$ be a complete set of orthogonal primitive idempotents. Let

$$
\mathcal{C}_{A}:=\operatorname{add}(A \oplus(A \otimes A)) \subseteq \operatorname{bim}(A, A)
$$

- \mathcal{C}_{A} is always finitary, but not abelian in general.
- Any projective $A-A$ bimodule belongs to \mathcal{C}_{A} and is isomorphic to a direct sum of bimodules of the form $A e_{i} \otimes e_{j} A$, for $1 \leq i, j \leq n$.

Let A be a finite-dimensional, complex, connected, basic algebra and let $e_{1}, \ldots, e_{n} \in A$ be a complete set of orthogonal primitive idempotents. Let

$$
\mathcal{C}_{A}:=\operatorname{add}(A \oplus(A \otimes A)) \subseteq \operatorname{bim}(A, A)
$$

- \mathcal{C}_{A} is always finitary, but not abelian in general.
- Any projective $A-A$ bimodule belongs to \mathcal{C}_{A} and is isomorphic to a direct sum of bimodules of the form $A e_{i} \otimes e_{j} A$, for $1 \leq i, j \leq n$.
- \otimes_{A} defines a monoidal structure on \mathcal{C}_{A} with identity object equal to A.

Projective bimodules

Let A be a finite-dimensional, complex, connected, basic algebra and let $e_{1}, \ldots, e_{n} \in A$ be a complete set of orthogonal primitive idempotents. Let

$$
\mathcal{C}_{A}:=\operatorname{add}(A \oplus(A \otimes A)) \subseteq \operatorname{bim}(A, A)
$$

- \mathcal{C}_{A} is always finitary, but not abelian in general.
- Any projective $A-A$ bimodule belongs to \mathcal{C}_{A} and is isomorphic to a direct sum of bimodules of the form $A e_{i} \otimes e_{j} A$, for $1 \leq i, j \leq n$.
- \otimes_{A} defines a monoidal structure on \mathcal{C}_{A} with identity object equal to A.
- \otimes_{A} with a projective $A-A$ bimodule is an exact endofunctor on A-mod which sends any object to a projective object.
- $A e_{i} \otimes e_{i} A$ is a coalgebra object in \mathcal{C}_{A}, for $i=1, \ldots, n$, with

$$
\begin{array}{ll}
\delta: A e_{i} \otimes e_{i} A \rightarrow A e_{i} \otimes e_{i} A e_{i} \otimes e_{i} A, & \delta(a \otimes b):=a \otimes e_{i} \otimes b ; \\
\epsilon: A e_{i} \otimes e_{i} A \rightarrow A, & \epsilon(a \otimes b):=a b .
\end{array}
$$

- If A is a weakly symmetric Frobenius algebra with trace $\operatorname{tr}: A \rightarrow \mathbb{C}$, then $A e_{i} \otimes e_{i} A$ is a Frobenius object. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a basis of $e_{i} A$ and $\left\{a^{1}, \ldots, a^{n}\right\}$ a basis of $A e_{i}$ such that $\operatorname{tr}\left(a_{i} a^{j}\right)=\delta_{i, j}$, then

$$
\begin{array}{ll}
\mu: A e_{i} \otimes e_{i} A e_{i} \otimes e_{i} A \rightarrow A e_{i} \otimes e_{i} A, & \mu(a \otimes b \otimes c):=\operatorname{tr}(b) a \otimes c ; \\
\iota: A \rightarrow: A e_{i} \otimes e_{i} A, & \iota(1):=\sum_{j=1}^{n} a^{j} \otimes a_{j} .
\end{array}
$$

Zigzag algebras

Let Γ be any bipartite graph, e.g. the type A_{n-1} Dynkin diagram. Define the double quiver:

$$
Q(\Gamma):=0 \rightleftarrows 1 \rightleftarrows \underset{\rightleftarrows}{\rightleftarrows}
$$

Zigzag algebras

Let Γ be any bipartite graph, e.g. the type A_{n-1} Dynkin diagram. Define the double quiver:

$$
Q(\Gamma):=0 \rightleftarrows 1 \rightleftarrows \stackrel{\square}{\rightleftarrows} \rightleftarrows n-2 .
$$

Definition (Zigzag algebra)

Let $A(\Gamma)$ denote the quotient of the path algebra of $Q(\Gamma)$ by the following relations:

$$
i \longrightarrow j \longrightarrow i^{\prime}=0, \quad i \longrightarrow j \longrightarrow i=i \longrightarrow j^{\prime} \longrightarrow i=: i \mid i
$$

Zigzag algebras

Let Γ be any bipartite graph, e.g. the type A_{n-1} Dynkin diagram. Define the double quiver:

Definition (Zigzag algebra)

Let $A(\Gamma)$ denote the quotient of the path algebra of $Q(\Gamma)$ by the following relations:

$$
i \longrightarrow j \longrightarrow i^{\prime}=0, \quad i \longrightarrow j \longrightarrow i=i \longrightarrow j^{\prime} \longrightarrow i=: i \mid i
$$

$A(\Gamma)$ is a finite-dimensional, positively graded, symmetric algebra. (grading=path length and $\operatorname{tr}(i \mid j)=\delta_{i, j}, \operatorname{tr}\left(e_{i}\right)=0$.)

Zigzag algebras

The graded, projective $A(\Gamma)-A(\Gamma)$ bimodule

$$
\mathrm{F}:=\bigoplus_{i \text { even }} A(\Gamma) e_{i} \otimes e_{i} A(\Gamma)
$$

is a Frobenius algebra object in $\mathcal{C}_{A(\Gamma)}$, with structural morphisms given by

$$
\begin{gathered}
\delta_{\Gamma}(a \otimes b):=a \otimes e_{i} \otimes b ; \\
\epsilon_{\Gamma}(a \otimes b):=a b ; \\
\mu_{\Gamma}(a \otimes b \otimes c)=\delta_{b, i \mid i} a \otimes c ; \\
\iota_{\Gamma}\left(e_{i}\right):= \begin{cases}i\left|i \otimes e_{i}+e_{i} \otimes i\right| i, & i \text { even } \\
\sum_{j: i \neq j} i|j \otimes j| i, & i \text { odd. }\end{cases}
\end{gathered}
$$

Simple transitive 2-representations

Suppose that \mathcal{C} is fiat and \mathcal{J}-simple for a certain two-sided cell \mathcal{J}. Let \mathcal{M} be a simple transitive 2-representation of \mathcal{C} with apex \mathcal{J} and underlying algebra A (i.e. $\mathcal{M} \simeq A$-proj).

Simple transitive 2-representations

Suppose that \mathcal{C} is fiat and \mathcal{J}-simple for a certain two-sided cell \mathcal{J}. Let \mathcal{M} be a simple transitive 2-representation of \mathcal{C} with apex \mathcal{J} and underlying algebra A (i.e. $\mathcal{M} \simeq A$-proj).

- Mazorchuk-Miemietz: A is self-injective.

Simple transitive 2-representations

Suppose that \mathcal{C} is fiat and \mathcal{J}-simple for a certain two-sided cell \mathcal{J}. Let \mathcal{M} be a simple transitive 2-representation of \mathcal{C} with apex \mathcal{J} and underlying algebra A (i.e. $\mathcal{M} \simeq A$-proj).

- Mazorchuk-Miemietz: A is self-injective.

Theorem (Kildetoft-Mazorchuk-M-Zimmermann)

In the 2-representation on A-proj, objects in $\operatorname{add}(\mathcal{J})$ are mapped to endofunctors given by tensoring $/ A$ with projective $A-A$ bimodules and morphisms in $\operatorname{add}(\mathcal{J})$ are mapped to natural transformations given by $A-A$ bimodule maps.

Suppose that \mathcal{C} is fiat and \mathcal{J}-simple for a certain two-sided cell \mathcal{J}. Let \mathcal{M} be a simple transitive 2-representation of \mathcal{C} with apex \mathcal{J} and underlying algebra A (i.e. $\mathcal{M} \simeq A$-proj).

- Mazorchuk-Miemietz: A is self-injective.

Theorem (Kildetoft-Mazorchuk-M-Zimmermann)

In the 2-representation on A-proj, objects in $\operatorname{add}(\mathcal{J})$ are mapped to endofunctors given by tensoring ${ }_{/ A}$ with projective $A-A$ bimodules and morphisms in $\operatorname{add}(\mathcal{J})$ are mapped to natural transformations given by $A-A$ bimodule maps.

Example: The $A(\Gamma)-A(\Gamma)$ bimodule F is the image of the dihedral Soergel bimodule B_{s} in the cell 2-representation associated to the left cell containing s in $D_{2 n}$.

Reduction to \mathcal{H}-cells

- Maintaining the assumptions from the previous slide, let $\mathcal{L} \subseteq \mathcal{J}$ be any left cell and define $\mathcal{H}:=\mathcal{L} \cap \mathcal{L}^{*} \subseteq \mathcal{J}$.

Reduction to \mathcal{H}-cells

- Maintaining the assumptions from the previous slide, let $\mathcal{L} \subseteq \mathcal{J}$ be any left cell and define $\mathcal{H}:=\mathcal{L} \cap \mathcal{L}^{*} \subseteq \mathcal{J}$.
- Mazorchuk's talk: $\mathcal{C}_{\mathcal{H}}$ is a fiat monoidal category with only two cells: the trivial cell and \mathcal{H} (both of which are left, right and two-sided cells). Take $\mathcal{C}_{\mathcal{H}}$ to be \mathcal{H}-simple.

Reduction to \mathcal{H}-cells

- Maintaining the assumptions from the previous slide, let $\mathcal{L} \subseteq \mathcal{J}$ be any left cell and define $\mathcal{H}:=\mathcal{L} \cap \mathcal{L}^{*} \subseteq \mathcal{J}$.
- Mazorchuk's talk: $\mathcal{C}_{\mathcal{H}}$ is a fiat monoidal category with only two cells: the trivial cell and \mathcal{H} (both of which are left, right and two-sided cells). Take $\mathcal{C}_{\mathcal{H}}$ to be \mathcal{H}-simple.
- By Mazorchuk's talk and the theorem from some slides ago:
$\{$ Simple transitive 2-reps of \mathcal{C} with apex $\mathcal{J}\} / \simeq$

$$
\stackrel{1: 1}{\longleftrightarrow}
$$

$\left\{\right.$ Simple transitive 2-reps of $\mathcal{C}_{\mathcal{H}}$ with apex $\left.\mathcal{H}\right\} / \simeq$

$$
\stackrel{1: 1}{\longleftrightarrow}
$$

$\{$ Absolutely cosimple coalgebra objects in $\operatorname{add}(\mathcal{H})\} / \simeq_{\text {MT }}$.

Example: Dihedral Soergel bimodules

- Let \mathcal{S} be the category of Soergel bimodules of type $I_{2}(n)$. For the left cell $\mathcal{L}_{s}:=\{s, t s, s t s, \ldots\}$, we have $\mathcal{H}_{s}=\{s, s t s, \ldots\}$.

Example: Dihedral Soergel bimodules

- Let \mathcal{S} be the category of Soergel bimodules of type $I_{2}(n)$. For the left cell $\mathcal{L}_{s}:=\{s, t s, s t s, \ldots\}$, we have $\mathcal{H}_{s}=\{s, s t s, \ldots\}$.
- The underlying algebra of the cell 2-rep of $\mathcal{S}_{\mathcal{H}_{s}}$ with apex \mathcal{H}_{s} is

$$
A(\Gamma)_{s}:=\bigoplus_{i: \text { even }} e_{i} A(\Gamma) e_{i}
$$

Note that $A(\Gamma)_{s}$ is still postively graded and symmetric, but much simpler than $A(\Gamma)$:

$$
\operatorname{Hom}\left(A(\Gamma)_{s} e_{i}, A(\Gamma)_{s} e_{j}\right) \cong \begin{cases}\mathbb{C}[x] /\left(x^{2}\right) & i=j ; \\ \{0\} & i \neq j\end{cases}
$$

- Let \mathcal{S} be the category of Soergel bimodules of type $I_{2}(n)$. For the left cell $\mathcal{L}_{s}:=\{s, t s, s t s, \ldots\}$, we have $\mathcal{H}_{s}=\{s, s t s, \ldots\}$.
- The underlying algebra of the cell 2-rep of $\mathcal{S}_{\mathcal{H}_{s}}$ with apex \mathcal{H}_{s} is

$$
A(\Gamma)_{s}:=\bigoplus_{i: \text { even }} e_{i} A(\Gamma) e_{i}
$$

Note that $A(\Gamma)_{s}$ is still postively graded and symmetric, but much simpler than $A(\Gamma)$:

$$
\operatorname{Hom}\left(A(\Gamma)_{s} e_{i}, A(\Gamma)_{s} e_{j}\right) \cong \begin{cases}\mathbb{C}[x] /\left(x^{2}\right) & i=j \\ \{0\} & i \neq j\end{cases}
$$

- On $A(\Gamma)_{s}-\bmod _{g r}$, the object B_{s} acts by tensoring $/ A(\Gamma)_{s}$ with

$$
\mathrm{F}_{s}:=\bigoplus_{i: \text { even }} A(\Gamma)_{s} e_{i} \otimes e_{i} A(\Gamma)_{s}
$$

Tomorrow: Applications to Soergel bimodules!!!

