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Outline

• In this talk, I will explain the role of (co)algebra objects in
the 2-representation theory of (graded) fiat monoidal categories
(which are not necessarily abelian), generalizing results by
Ostrik for tensor categories.

• Time permitting, I will also recall the H-reduction result,
which Mazorchuk presented in his talk, giving a concrete
example which is relevant for my second talk tomorrow.
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2-Representation Theory in two slides

Let C = (C,⊕,⊗,1, 0) be a finitary monoidal category, possibly
with some additional nice properties (e.g. fiat, semisimple ...).

Definition

A 2-representation of C is a finitary category M (possibly with
some additional nice properties) together with a linear, monoidal
functor

C → End(M) := Func(M,M),

called the 2-action.

There is a natural notion of 2-intertwiners and 2-equivalence of
2-representations.
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Classification Problem

Mazorchuk and Miemietz proved a categorical Jordan-Hölder
theorem for finitary 2-representations. The role of the simples is
played by the so-called simple transitive 2-representations.

General classification Problem

Given a finitary 2-category C, classify its simple transitive
2-representations up to equivalence.

Our goal

Solve the classification problem for the monoidal category of Soergel
bimodules S of any finite Coxeter type.

Remark: S is not abelian, let alone semisimple.

Marco Mackaay joint with Mazorchuk, Miemietz, Tubbenhauer and ZhangFinitary 2-Representations and (co)algebra 1-morphisms



Classification Problem

Mazorchuk and Miemietz proved a categorical Jordan-Hölder
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Ways to construct simple transitive 2-representations

• Using the principal/regular 2-representation (e.g. simple
transitive 2-reps of Rep(G ), cell 2-representations of arbitrary
finitary 2-categories).

• Using symmetries on a given simple transitive
2-representation (e.g. [M-Mazorchuk]).

• Using a presentation of C by generating morphisms and
relations to define a concrete monoidal functor to
CA := add(A⊕ (A⊗ A)) for some f.d. algebra A (e.g. for
dihedral Soergel bimodules [M-Tubbenhauer]).

• Using (co)simple (co)algebra objects in C. (All simple
transitive 2-representations can be constructed in this way).
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Coalgebra objects

Definition (Coalgebra object)

A coalgebra object in a monoidal category C is an object C ∈ C
together with a comultiplication morphism δ : C→ CC and a counit
morphism ε : C→ 1 satisfying coassociativity and counitality.

δC =

C

C C

εC =

1

C

= (coass) = = (counital)
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Algebra objects

Definition (Algebra object)

An algebra object in a monoidal category C is an object A ∈ C
together with a multiplication morphism µA : AA→ A and a unit
morphism ιA : 1→ A satisfying associativity and unitality.

µA =

A

A A

ιA =

A

1

= (ass) = = (unital)
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Frobenius algebra objects

Definition (Frobenius algebra object)

A Frobenius algebra object in a monoidal category C is an
algebra-and-coalgebra object satisfying an additional compatibility
condition.

= =
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(Co)module objects

Let C = (C, δC, εC) be a coalgebra object in C.

Definition

A right comodule object of C is an object M ∈ C together with a
coaction morphism δM : M→ MC satisfying the usual axioms for
comodules. (Module objects of algebra objects are defined similarly.)

δM =

M

M C

= =
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The category of comodule objects

Let C be a coalgebra object and A an algebra object in C.

Definition

Let comodC(C) be the category of comodule objects of C and
intertwiners between them. (Similarly, let modC(A) be the category
of module objects of A and intertwiners between them.)

Fact

Left multiplication defines a left 2-action of C on comodC(C) (resp.
modC(A)).
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Fiatness

Let C be fiat.

• The involution sends coalgebra/algebra objects to
algebra/coalgebra objects, sending left/right comodule/module
objects to right/left module/comodule objects.

• The involution sends Frobenius objects to Frobenius objects.
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Abelianizations

• If C is not abelian, we can consider its injective abelianization
C or its projective abelianization C, which contains C as the full
subcategory of injective/projective objects.

• Even if C is fiat, C and C are not in general, but the weak
involution extends to an equivalence C ' C sending injectives
to projectives.

• if M is a 2-representation of C, then M (resp. M) is
naturally a 2-representation of C (resp. C).

• If C is fiat, then the objects of C act by exact endofunctors
on M and M.

• There is a natural notion of Morita(-Takeuchi) equivalence
between (co)algebra objects in C and C.
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Framing (co)algebra objects

Let C be fiat and C a coalgebra object in C. Let F ∈ C be such that
FCF? 6= 0 and draw the (co)unit of the adjunction (F,F?) as follows

εF =
1

F F?
, ηF =

1

F? F

.

Lemma

FCF? ∈ C has a coalgebra structure with

δFCF? := , εFCF? := .

Coassociativity and counitality:

= , = = .
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Simple transitive 2-representations

Let C be fiat and J -simple for a given two-sided cell J . Below,
absolutely cosimple means cosimple in C.

Theorem (MMMT, MMMZ, MMMTZ)

Let M be a simple transitive 2-representation of C with apex J and
0 6= X ∈M. There is an absolutely cosimple coalgebra object CX

in add(J ) ⊆ C such that

injC (CX) 'M.

•

{simple transitive 2-reps of C with apex J }/ '
1:1←→

{Absolutely cosimple coalgebra objects in add(J )}/ 'MT .
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Sketch of the proof of the Theorem

Choose X ∈M.

• Internal hom [Ostrik]: Take CX := [X,X] ∈ add(J ), defined
such that for all F ∈ C:

HomS([X,X],F) ∼= HomM(X,FX).

• Since M is simple transitive and C is J -simple, [X,X] is
absolutely cosimple.

• For any G ∈ add(J ), the coalgebra object G[X,X]G∗ is
isomorphic to [GX,GX], whence MT-equivalent to CX.

• For any G ∈ add(J ), GCXG
? ∈ add(J ) = inj(add(J )).

• Choose G such that X ⊆⊕ GX. Then [X,X] ⊆⊕ [GX,GX],
so CX = [X,X] ∈ add(J ).
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Grouplike examples

Let G be a finite group and C := VectG (semisimple). For every
subgroup H ⊆ G and every normalized ω ∈ Z2(H,C∗), the group
algebra C[H] is a Frobenius algebra object in VectG with

µωH(x , y) := ω(x , y)−1xy ι(1) := e;

δωH(h) :=
∑
xy=h

ω(x , y)x ⊗ y , εH(h) := δh,e .

• For any g ∈ G and ω ∈ Z2(H,C∗), define

ωg (x , y) := ω(gxg−1, gyg−1) ∈ Z2(gHg−1,C∗).

• We have

(C[H], δH , εH) 'MT (C[H ′], δH′ , εH′)

⇐⇒
∃g ∈ G : H ′ = gHg−1 ∧ [ω′] = [ωg ] ∈ H2(H ′,C∗).

Marco Mackaay joint with Mazorchuk, Miemietz, Tubbenhauer and ZhangFinitary 2-Representations and (co)algebra 1-morphisms



Grouplike examples

Let G be a finite group and C := VectG (semisimple). For every
subgroup H ⊆ G and every normalized ω ∈ Z2(H,C∗), the group
algebra C[H] is a Frobenius algebra object in VectG with

µωH(x , y) := ω(x , y)−1xy ι(1) := e;

δωH(h) :=
∑
xy=h

ω(x , y)x ⊗ y , εH(h) := δh,e .

• For any g ∈ G and ω ∈ Z2(H,C∗), define

ωg (x , y) := ω(gxg−1, gyg−1) ∈ Z2(gHg−1,C∗).

• We have

(C[H], δH , εH) 'MT (C[H ′], δH′ , εH′)

⇐⇒
∃g ∈ G : H ′ = gHg−1 ∧ [ω′] = [ωg ] ∈ H2(H ′,C∗).

Marco Mackaay joint with Mazorchuk, Miemietz, Tubbenhauer and ZhangFinitary 2-Representations and (co)algebra 1-morphisms



Grouplike examples

Let G be a finite group and C := VectG (semisimple). For every
subgroup H ⊆ G and every normalized ω ∈ Z2(H,C∗), the group
algebra C[H] is a Frobenius algebra object in VectG with

µωH(x , y) := ω(x , y)−1xy ι(1) := e;

δωH(h) :=
∑
xy=h

ω(x , y)x ⊗ y , εH(h) := δh,e .

• For any g ∈ G and ω ∈ Z2(H,C∗), define

ωg (x , y) := ω(gxg−1, gyg−1) ∈ Z2(gHg−1,C∗).

• We have

(C[H], δH , εH) 'MT (C[H ′], δH′ , εH′)

⇐⇒
∃g ∈ G : H ′ = gHg−1 ∧ [ω′] = [ωg ] ∈ H2(H ′,C∗).

Marco Mackaay joint with Mazorchuk, Miemietz, Tubbenhauer and ZhangFinitary 2-Representations and (co)algebra 1-morphisms



Comodule objects

Let H ⊆ G and ω ∈ Z2(H,C∗). The simple comodule objects of
C[H] = (C[H], δωH , εH) are indexed by G/H: Let g = gH and define

Lg :=
⊕
h∈H

Cgh δg (1gh) :=
∑
xy=h

ω(x , y)1gx ⊗ y

The VectG 2-action on modVectG (C[H]) is given by

Cg1 � Lg2 7→ Lg1g2
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Quantum sl2 examples

Let q2n = 1 and C := Uq(sl2)-modss. There is a complete and
irredundant set of simples L0, . . . , Ln−2 (dimq(Li ) = [i + 1]q).

Theorem (Kirillov-Ostrik)

Up to Morita equivalence, simple algebra objects in Uq(sl2)-modss
are classified by ADE Dynkin diagrams with h = n. For each such
diagram Γ

a) the isoclasses of the simple module objects correspond to
the vertices of Γ;

b) the 2-action of L1 on the category of module objects
decategorifies to 2I − A(Γ), where A(Γ) is the Cartan matrix.
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Quantum sl2 examples. Type An−1

0 1 n − 3 n − 2

• AAn−1 := L0 is a simple algebra object with µ the canonical
isomorphism L0L0

∼= L0 and ι the identity on L0.

• Every Li is canonically a simple L0 right module object, with
action given by the canonical isomorphism LiL0

∼= Li . Thus
modC(AAn−1) is equivalent to the regular 2-representation of C.

• When n = 2m + 2, there is an interesting Z/2Z symmetry on
modC(AAn−1) given by Li ↔ Lm−i . It has one fixed point: Lm.
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modC(AAn−1) is equivalent to the regular 2-representation of C.

• When n = 2m + 2, there is an interesting Z/2Z symmetry on
modC(AAn−1) given by Li ↔ Lm−i . It has one fixed point: Lm.
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Quantum sl2 examples: Type Dm+1 (n = 2m + 2)

0 + (2m) 1 + (2m − 1) (m − 2) + (m + 2)
(m − 1) + (m + 1)

m

m

• ADm+1 := L0 ⊕ L2m is a simple algebra object, with µ given
by suitably normalized isomorphisms L0L0 → L0,
L0L2m → L2m, L2mL0 → L2m and L2mL2m → L0, and ι by the
canonical embedding L0 ↪→ L0 ⊕ L2m.

• For each vertex, the decomposition in C of the corresponding
simple module object is given.

• modC(ADm+1) ' ΩZ/2Z

(
modC(AAn−1)

)
(orbit category).
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Projective bimodules

Let A be a finite-dimensional, complex, connected, basic algebra
and let e1, . . . , en ∈ A be a complete set of orthogonal primitive
idempotents. Let

CA := add (A⊕ (A⊗ A)) ⊆ bim(A,A)

• CA is always finitary, but not abelian in general.

• Any projective A-A bimodule belongs to CA and is isomorphic
to a direct sum of bimodules of the form Aei ⊗ ejA, for
1 ≤ i , j ≤ n.

• ⊗A defines a monoidal structure on CA with identity object
equal to A.

• ⊗A with a projective A-A bimodule is an exact endofunctor
on A-mod which sends any object to a projective object.
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Projective bimodules

• Aei ⊗ eiA is a coalgebra object in CA, for i = 1, . . . , n, with

δ : Aei ⊗ eiA→ Aei ⊗ eiAei ⊗ eiA, δ(a⊗ b) := a⊗ ei ⊗ b;

ε : Aei ⊗ eiA→ A, ε(a⊗ b) := ab.

• If A is a weakly symmetric Frobenius algebra with trace
tr : A→ C, then Aei ⊗ eiA is a Frobenius object. Let
{a1, . . . , an} be a basis of eiA and {a1, . . . , an} a basis of Aei
such that tr(aia

j) = δi ,j , then

µ : Aei ⊗ eiAei ⊗ eiA→ Aei ⊗ eiA, µ(a⊗ b ⊗ c) := tr(b)a⊗ c ;

ι : A→ : Aei ⊗ eiA, ι(1) :=
∑n

j=1 a
j ⊗ aj .
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Zigzag algebras

Let Γ be any bipartite graph, e.g. the type An−1 Dynkin diagram.
Define the double quiver:

Q(Γ) := 0 1 n − 3 n − 2 .

Definition (Zigzag algebra)

Let A(Γ) denote the quotient of the path algebra of Q(Γ) by the
following relations:

i j i ′ = 0, i j i = i j ′ i =: i |i .

A(Γ) is a finite-dimensional, positively graded, symmetric algebra.
(grading=path length and tr(i |j) = δi ,j , tr(ei ) = 0.)
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Zigzag algebras

The graded, projective A(Γ)-A(Γ) bimodule

F :=
⊕
i even

A(Γ)ei ⊗ eiA(Γ)

is a Frobenius algebra object in CA(Γ), with structural morphisms
given by

δΓ(a⊗ b) := a⊗ ei ⊗ b;

εΓ(a⊗ b) := ab;

µΓ(a⊗ b ⊗ c) = δb,i |i a⊗ c ;

ιΓ(ei ) :=

{
i |i ⊗ ei + ei ⊗ i |i , i even∑

j : i 6=j i |j ⊗ j |i , i odd.
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Simple transitive 2-representations

Suppose that C is fiat and J -simple for a certain two-sided cell J .
Let M be a simple transitive 2-representation of C with apex J and
underlying algebra A (i.e. M' A-proj).

• Mazorchuk-Miemietz: A is self-injective.

Theorem (Kildetoft-Mazorchuk-M-Zimmermann)

In the 2-representation on A-proj, objects in add(J ) are mapped to
endofunctors given by tensoring/A with projective A-A bimodules
and morphisms in add(J ) are mapped to natural transformations
given by A-A bimodule maps.

Example: The A(Γ)-A(Γ) bimodule F is the image of the dihedral
Soergel bimodule Bs in the cell 2-representation associated to the
left cell containing s in D2n.
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Reduction to H-cells

• Maintaining the assumptions from the previous slide, let
L ⊆ J be any left cell and define H := L ∩ L∗ ⊆ J .

• Mazorchuk’s talk: CH is a fiat monoidal category with only
two cells: the trivial cell and H (both of which are left, right
and two-sided cells). Take CH to be H-simple.

• By Mazorchuk’s talk and the theorem from some slides ago:

{Simple transitive 2-reps of C with apex J }/ '
1:1←→

{Simple transitive 2-reps of CH with apex H}/ '
1:1←→

{Absolutely cosimple coalgebra objects in add(H)}/ 'MT .
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Example: Dihedral Soergel bimodules

• Let S be the category of Soergel bimodules of type I2(n). For
the left cell Ls := {s, ts, sts, . . .}, we have Hs = {s, sts, . . .}.

• The underlying algebra of the cell 2-rep of SHs with apex Hs

is
A(Γ)s :=

⊕
i : even

eiA(Γ)ei .

Note that A(Γ)s is still postively graded and symmetric, but
much simpler than A(Γ):

Hom(A(Γ)sei ,A(Γ)sej) ∼=

{
C[x ]/(x2) i = j ;

{0} i 6= j .

• On A(Γ)s -modgr, the object Bs acts by tensoring/A(Γ)s with

Fs :=
⊕

i : even

A(Γ)sei ⊗ eiA(Γ)s .
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Tomorrow: Applications to Soergel bimodules!!!

Marco Mackaay joint with Mazorchuk, Miemietz, Tubbenhauer and ZhangFinitary 2-Representations and (co)algebra 1-morphisms


