Fractals and modular representations of SL₂

Or: All I know about SL₂

Joint with Lousie Sutton, Paul Wedrich, Jieru Zhu

February 2021

Daniel Tubbenhauer

Fractals and modular representations of SL₂

Question. What can we say about finite-dimensional modules of $SL_2...$

- \bullet ...in the context of the representation theory of classical groups? \rightsquigarrow The modules and their structure.
- ...in the context of the representation theory of Hopf algebras? \rightsquigarrow Fusion rules *i.e.* tensor products rules.
- ...in the context of categories? → Morphisms of representations and their structure.

The most amazing things happen if the characteristic of the underlying field $\mathbb{K} = \overline{\mathbb{K}}$ of $\mathrm{SL}_2 = \mathrm{SL}_2(\mathbb{K})$ is finite, and we will see fractals, *e.g.*

Daniel Tubbenhauer

Fractals and modular representations of SL2

Question. What can we say about finite-dimensional modules of SL_2 ...

- ...in the context of the representation theory of classical groups? ~> The modu
 Spoiler: What will be the take away?
- ...in t Well, in some sense modular (char p < ∞) representation theory i.e. te so much harder than classical one (char ∞ a.k.a. char 0) because secretly we are doing fractal geometry.
 ...in t
- struct In my toy example SL_2 we can do everything explicitly. The most amazing times nappen in the characteristic of the underlying field $\mathbb{K} = \overline{\mathbb{K}}$ of $SL_2 = SL_2(\mathbb{K})$ is finite, and we will see fractals, *e.g.*

Daniel Tubbenhauer

Weyl ~1923. The ${\rm SL}_2$ (dual) Weyl modules $\Delta(\nu{-}1).$

$\Delta(1\!-\!1)$	X ⁰ Y ⁰
Δ(2-1)	$x^1 y^0 = x^0 y^1$
Δ(3-1)	$x^2 \gamma^0 \qquad \chi^1 \gamma^1 \qquad \chi^0 \gamma^2$
$\Delta(4-1)$	$\chi^3\gamma^0$ $\chi^2\gamma^1$ $\chi^1\gamma^2$ $\chi^0\gamma^3$
$\Delta(5-1)$	$x^4 y^0 x^3 y^1 x^2 y^2 x^1 y^3 x^0 y^4$
$\Delta(6-1)$	$x^5 \gamma^0$ $x^4 \gamma^1$ $x^3 \gamma^2$ $x^2 \gamma^3$ $x^1 \gamma^4$ $x^0 \gamma^5$
$\Delta(7-1)$	$x^{6}y^{0}$ $x^{5}y^{1}$ $x^{4}y^{2}$ $x^{3}y^{3}$ $x^{2}y^{4}$ $x^{1}y^{5}$ $x^{0}y^{6}$
$\begin{pmatrix} z \\ c \\ d \end{pmatrix} \mapsto matrix wr$	to s rows are expansions of $(aX + CY)^{2}$ $(bX + dY)^{2}$

The simples

Example $\Delta(7-1) = \mathbb{K} X^6 Y^0 \oplus \cdots \oplus \mathbb{K} X^0 Y^6$.					
$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ acts as	$\left(\begin{array}{ccc} a^6 & 6 a^5 c \\ a^5 b & 5 a^4 b c + a^5 d \\ a^4 b^2 & 4 a^3 b^2 c + 2 a^4 b d \\ a^3 b^3 & 3 a^2 b^3 c + 3 a^3 b^2 d \\ a^2 b^4 & 2 a b^4 c + 4 a^2 b^3 d \\ a b^5 & b^5 c + 5 a b^4 d \\ b^6 & 6 b^5 d \end{array} \right)$	$\begin{array}{c} 15 \ a^4 \ c^2 \\ 10 \ a^3 \ b \ c^2 + 5 \ a^4 \ c \ d \\ 6 \ a^2 \ b^2 \ c^2 + 8 \ a^3 \ b \ c^4 + a^4 \ d^2 \\ 3 \ a^3 \ c^2 + 9 \ a^2 \ b^2 \ c \ d + 3 \ a^3 \ b^2 \ c \\ b^4 \ c^2 + 8 \ a^3 \ c \ d + 6 \ a^2 \ b^2 \ c^2 \\ 5 \ b^4 \ c^4 + 10 \ a \ b^3 \ d^2 \\ 15 \ b^4 \ d^2 \end{array}$	$\begin{array}{c} 20 \ a^3 \ c^3 \\ 10 \ a^2 \ b \ c^3 + 10 \ a^3 \ c^2 \ d \\ 4 \ a^2 \ c^2 + 12 \ a^2 \ b \ c^2 \ d + 4 \ a^3 \ c \ d^2 \\ 3^2 \ a^3 + 9 \ a^2 \ c^2 \ d + 2 \ a^2 \ b^2 \ c \ d^2 + a^3 \ d^3 \\ 4 \ b^3 \ c^2 \ d + 12 \ a \ b^2 \ c^2 \ d^2 + 4 \ a^2 \ b \ d^3 \\ 16 \ b^3 \ c^2 \ d + 10 \ a \ b^2 \ d^3 \\ 20 \ b^3 \ d^3 \end{array}$	$\begin{array}{c} 15 \ a^2 \ c^4 \\ 5 \ a \ b \ c^4 + 10 \ a^2 \ c^3 \ d \\ b^2 \ c^4 + 8 \ a \ b \ c^3 \ d + 6 \ a^2 \ c^2 \ d^2 \\ 3 \ 3 \ b^2 \ c^3 \ d + 9 \ a \ b \ c^2 \ d^2 + 3 \ a^2 \ c^4 \\ 6 \ b^2 \ c^2 \ d^2 + 8 \ a \ b \ c^3 \ a^2 \ d^4 \\ 10 \ b^2 \ c^3 \ b \ a \ b \ d^4 \\ 15 \ b^2 \ d^4 \end{array}$	$\begin{array}{cccc} 6 \ a \ c^5 & c^6 \\ b \ c^5 \ + 5 \ a \ c^4 \ d & c^5 \ d \\ 2 \ b \ c^4 \ d \ + 4 \ a \ c^2 \ d^2 & c^4 \ d^2 \\ 3 \ b \ c^3 \ d^2 \ + 3 \ a \ c^2 \ d^3 & c^3 \ d^3 \\ 4 \ b \ c^2 \ d^3 \ + 2 \ a \ c \ d^4 & c^5 \\ 5 \ b \ c \ d^4 \ + a \ d^5 & c \ d^5 \\ 6 \ b \ d^5 & d^6 \end{array}$
Т	he rows are e	pansions of (<i>aX</i>	$(bX + cY)^{7-i}(bX + c)$	$dY)^{i-1}$. Binomia	ls!
	$\Delta(3-1)$ $\Delta(4-1)$	x ² x ³ y ⁰	$\begin{array}{cccc} Y^0 & X^1Y^1 & X^0Y^2 \\ & & & \\ & & $	χ ⁰ γ ³	
	$\Delta(5\!-\!1)$	$x^4 y^0 = x^3$	y^1 x^2y^2 x^1y^3	x ⁰ y ⁴	
	∆(6−1)	$x^5 y^0 = x^4 y^1$	$\chi^3\gamma^2$ $\chi^2\gamma^3$,	x ¹ Y ⁴ X ⁰ Y ⁵	
$\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \mapsto n$	∆(7−1) natrix who's r	$x^{6}y^{0}$ $x^{5}y^{1}$ x^{4} ows are expansi	$x^{2} x^{3} x^{3} x^{2} x^{4}$ ons of $(aX + c)$	$(bX + dY)^{v-i}(bX + dY)$	$()^{i-1}$.

• The simples

(0, 0, 0, 1, 0, 0, 0) is a common eigenvector, so we found a submodule.

d6

The simples

Ringel, Donkin ~1991. The indecomposable SL₂ tilting modules T(v-1) are the indecomposable summands of $\Delta(1)^{\otimes i} (\cong (\mathbb{K}^2)^{\otimes i})$.

Tilting modules T(v-1)

General. These facts hold in general, and the first bullet point is the general definition.

- are those modules with a $\Delta(w-1)$ and a $\nabla(w-1)$ -filtration;
- are parameterized by dominant integral weights;
- are highest weight modules;
- $(T(\nu-1): \Delta(w-1))$ determines $[\Delta(\nu-1): L(w-1)];$
- form a basis of the Grothendieck group unitriangular w.r.t. simples;
- satisfy (a version of) Schur's lemma dim_K Hom(T(ν -1), T(w-1)) = $\sum_{x < \min(\nu, w)} (T(\nu-1) : \Delta(x-1)) (T(w-1) : \Delta(x-1));$
- are simple generically;
- have a root-binomial-criterion to determine whether they are simple.

Slogan. Indecomposable tilting modules are akin to indecomposable projectives. Warning: SL_2 has finite-dimensional projectives if and only if $char(\mathbb{K}) = 0$.

Ringel, Don	kin \sim 1991. The indecomposable SL ₂ tilting modules T(v-1) are the
indecomposa	How many Weyl factors does $\mathtt{T}(extsf{v}{-}1)$ have?	
Tilting modu • are those	# Weyl factors of $T(v-1)$ is 2^k where	
	$k = \max\{\nu_p(\binom{1}{w-1}), w \le v\}. \text{ (Order of vanishing of } \binom{1}{w-1}.)$	
are paraare high	determined by (Lucas's theorem)	
• (T(v-1	non-zero non-leading digits of $v = [a_r, a_{r-1},, a_0]_p$.	
• form a b	Example $T(220540-1)$ for $p = 11$? mp	les;
• satisfy ($\sum_{x < \min}$	a v $v = 220540 = [1, 4, 0, 7, 7, 1]_{11};$ -1)) =
• are simp	Maximal vanishing for $w = 75594 = [0, 5, 1, 8, 8, 2]_{11};$	
• have a r	$(_{w-1}^{v-1}) = (HUGE) = [, \neq 0, 0, 0, 0, 0]_{11}.$	ple.
Slogan. Inde	\Rightarrow T(220540-1) has 2 ⁴ Weyl factors.	projectives.
Warning: SL	$_2$ has finite-dimensional projectives if and only if <i>char</i> (K)) = 0.

Ringel, Donkin ~1991. The indecomposable SL₂ tilting modules $T(\nu-1)$ are the indecomposable summands of $\Delta(1)^{\otimes i} (\cong (\mathbb{K}^2)^{\otimes i})$.

Slogan. Indecomposable tilting modules are akin to indecomposable projectives. Warning: SL_2 has finite-dimensional projectives if and only if $char(\mathbb{K}) = 0$.

Tilting modules form a braided monoidal category Tilt. Simple \otimes simple \neq simple, Weyl \otimes Weyl \neq Weyl, but tilting \otimes tilting=tilting.

The Grothendieck algebra [Tilt] of Tilt is a commutative algebra with basis [T(v-1)]. So what I would like to answer on the object level, *i.e.* for [Tilt]:

- What are the fusion rules? Answer
- Find the N^x_{v,w} ∈ N[0] in T(v − 1) ⊗ T(v − 1) ≅ ⊕_x N^x_{v,w}T(x − 1).
 ▷ For [*T*ilt] this means finding the structure constants.
- What are the thick \otimes -ideals? Answer

 \triangleright For [\mathcal{T} ilt] this means finding the ideals.

Tilting modules form a braided monoidal category Tilt. Simple \otimes simple \neq simple, Weyl \otimes Weyl \neq Weyl, but tilting \otimes tilting=tilting.

The Grothendieck algebra [Tilt] of Tilt is a commutative algebra with basis [T(v-1)]. So what I would like to answer on the object level, *i.e.* for [Tilt]:

- What are the fusion rules? Answer
- Find the N^x_{v,w} ∈ N[0] in T(v − 1) ⊗ T(v − 1) ≅ ⊕_x N^x_{v,w}T(x − 1).
 ▷ For [*T*ilt] this means finding the structure constants.
- What are the thick \otimes -ideals? Answer

 $\,\triangleright\,$ For $[{\cal T}{\rm ilt}]$ this means finding the ideals.

The morphism. There exists a \mathbb{K} -algebra \mathbb{Z}_p defined as a (very explicit) quotient of the path algebra of an infinite, fractal-like quiver. Let $p\mathcal{M}od$ - \mathbb{Z}_p denote the category of finitely-generated, projective (right-)modules for \mathbb{Z}_p . There is an equivalence of additive, \mathbb{K} -linear categories

$$\mathcal{F}\colon \mathcal{T}\mathrm{ilt} \xrightarrow{\cong} \mathrm{p}\mathcal{M}\mathrm{od}\text{-}\mathrm{Z}_{\rho},$$

sending indecomposable tilting modules to indecomposable projectives.

The morphism. There exists a \mathbb{K} -algebra \mathbb{Z}_p defined as a (very explicit) quotient of the path algebra of an infinite, fractal-like quiver. Let $p\mathcal{M}od$ - \mathbb{Z}_p denote the category of finitely-generated, projective (right-)modules for \mathbb{Z}_p . There is an equivalence of additive, \mathbb{K} -linear categories

Example, generation 2, i.e. up to p^3 .

In this case every connected component of the quiver is a bunch of type A graphs glued together in a matrix-grid. Each row and column is a zigzag algebra, with arrows acting on the 0th digit or 1digit, and there are "squares commute" relations.

Continuing this periodically gives a quiver for projective G_2T -modules (due to Andersen \sim 2019).

Daniel Tubbenhauer

The morphism. There exists a \mathbb{K} -algebra \mathbb{Z}_p defined as a (very explicit) quotient of the path algebra of an infinite, fractal-like quiver. Let $p\mathcal{M}od$ - \mathbb{Z}_p denote the category of finitely-generated, projective (right-)modules for \mathbb{Z}_p . There is an equivalence of additive, \mathbb{K} -linear categories

$$\mathcal{F}\colon \mathcal{T}\mathrm{ilt} \xrightarrow{\cong} \mathrm{p}\mathcal{M}\mathrm{od}\text{-}\mathrm{Z}_{p},$$

The whole story generalizes to Lusztig's quantum group over $\mathbb K$ with $q \in \mathbb K$ via:

- We need p, the characteristic of \mathbb{K} , and I, the order of q^2 .
- The *p*-*I*-adic expansion of $v = [a_r, ..., a_0]_{p,l}$ is $v = \sum_{i=0}^r a_i p^{(r)}$ with $p^{(0)} = 1$ and $p^{(k)} = p^{k-1}l$. Here $0 \le a_0 < l-1$ and $0 \le a_i < p-1$. \triangleright Example. For $\mathbb{K} = \overline{\mathbb{F}_7}$ and $q = 2 \in \mathbb{F}_7$, we have p = 7 and l = 3.
 - $\,\vartriangleright\,$ Example. 68 = [68]_{\it p,\infty} = [66,2]_{\infty,3} = [1,2,5]_{7,7} = [3,1,2]_{7,3}
- Repeat everything I told you for these expansions.

Here is the tilting-Cartan matrix in mixed characteristic p = 5 and l = 2:

Question. What can we say about finite-dimensional modules of SL2....

- ...in the context of the representation theory of classical groups?
 — The modules and their structure.
- ...in the context of the representation theory of Hopf algebras? --- Fusion rules i.e. tensor products rules.
- ...in the context of categories? --- Morphisms of representations and their structure.

The most amazing things happen if the characteristic of the underlying field $\mathbb{K}=\overline{\mathbb{K}}$ of $SL_2=SL_2(\mathbb{K})$ is finite, and we will see fractals, e.g.

e-ideals of Tilt are indexed by prime powers.

Every ⊗-ideal is thick, and any non-zero thick ⊗-ideal is of the form

And Anna are the strongly connected components of Fa-

• There is a chain of \otimes -ideals T lit $= \mathcal{J}_1 \supset \mathcal{J}_p \supset \mathcal{J}_{q^2} \supset \dots$ The cells, i.e.

-

 $J_{p^k} = \{T(v-1) | v \ge p^k\}.$

Example (p = 3).

Weyl ~1923. The SL₂ (dual) Weyl modules $\Delta(\nu-1)$.

$\Delta(1-1)$	2010
$\Delta t (P-1)$	2 ¹ 2 ⁴ 2 ¹ 2 ⁴
$\mathbf{A}(h-1)$	100 - 100 - 100
A(t-1)	x ¹¹
A(1-1)	11 11 11 11 11 11
$\mathbf{A}(k-1)$	~ ~ ~ ~ ~ ~ ~

 $\binom{a}{a} \stackrel{b}{d} \mapsto matrix$ who's rows are expansions of $(aX + cY)^{r-r}(bX + dY)^{r-1}$.

Fusion graphs.

The morphism. There exists a K-algebra Z_μ defined as a (very explicit) quotient of the path algebra of an infinite, fractal-like quiver. Let $p_i Mool-Z_\mu$ denote the category of finitely-generated, projective (right-)modules for Z_μ . There is an equivalence of additive, K-inear categories

 $\mathcal{F} \colon \mathcal{T}$ iht $\xrightarrow{\simeq} pMod \cdot \mathbb{Z}_{p}$, serding indecomposable triting modules to indecomposable projectives.

(1110) (11110)

Radd Satissian Portsh and matcher opmanistrates of Sky

There is still much to do...

Falmary 2555 5/4

Question. What can we say about finite-dimensional modules of SL2....

- ...in the context of the representation theory of classical groups?
 — The modules and their structure.
- ...in the context of the representation theory of Hopf algebras? --- Fusion rules i.e. tensor products rules.
- ...in the context of categories? --- Morphisms of representations and their structure.

The most amazing things happen if the characteristic of the underlying field $\mathbb{K}=\overline{\mathbb{K}}$ of $SL_2=SL_2(\mathbb{K})$ is finite, and we will see fractals, e.g.

e-ideals of Tilt are indexed by prime powers.

Every ⊗-ideal is thick, and any non-zero thick ⊗-ideal is of the form

And Anna are the strongly connected components of Fa-

• There is a chain of \otimes -ideals T lit $= \mathcal{J}_1 \supset \mathcal{J}_p \supset \mathcal{J}_{q^2} \supset \dots$ The cells, i.e.

-

 $J_{p^k} = \{T(v-1) | v \ge p^k\}.$

Example (p = 3).

Weyl ~1923. The ${\rm SL}_2 \ ({\rm dual})$ Weyl modules $\Delta(\nu{-}1).$

$\Delta (0-1)$	2 ¹⁰ 1 ⁰
$\Delta (P-1)$	2 ¹⁰ 1 2 ¹⁰ 1
A(2-1)	2010 2010 2010
$A(\theta-1)$	2 ¹⁰ 1 2 ¹⁰¹ 2 ¹⁰¹ 2 ¹⁰¹
4(1-1)	10 10 10 10 10 10
$\Delta(0-1)$	~ ~ ~ ~ ~ ~ ~

 $\binom{a}{a} \stackrel{b}{d} \mapsto$ matrix who's rows are expansions of $(aX + cY)^{r-r}(bX + dY)^{r-1}$.

Fusion graphs.

The morphism. There exists a K-algebra Z_μ defined as a (very explicit) quotient of the path algebra of an infinite, fractal-like quiver. Let $p_i Mod-Z_\mu$ denote the category of finitely-generated, projective (right-)modules for Z_μ . There is an equivalence of additive, K-linear categories

 $\mathcal{F} \colon \mathcal{T}$ iht $\xrightarrow{\simeq} pMod \cdot \mathbb{Z}_{p}$, serding indecomposable triting modules to indecomposable projectives.

(100) (100)

Radd Satissian Portsh and matcher opmanistrates of Sky

Thanks for your attention!

Falenary 265 6/4

Weyl ~1923. The SL₂ simples L(v-1) in $\Delta(v-1)$ for p = 5.

$$\Delta(1-1)$$
 $x^0 y^0$
 $\ell(1-1)$
 $\Delta(2-1)$
 $x^1 y^0 x^0 y^1$
 $\ell(2-1)$
 $\Delta(3-1)$
 $x^2 y^0 x^1 y^1 x^0 y^2$
 $\ell(3-1)$
 $\Delta(4-1)$
 $x^3 y^0 x^2 y^1 x^1 y^2 x^0 y^3$
 $\ell(4-1)$
 $\Delta(5-1)$
 $x^4 y^0 x^3 y^1 x^2 y^2 x^1 y^3 x^0 y^4$
 $\ell(5-1)$
 $\Delta(6-1)$
 $x^5 y^0 x^4 y^1 x^3 y^2 x^2 y^3 x^1 y^4 x^0 y^5$
 $\ell(6-1)$

Back

Fusion graphs.

The fusion graph $\Gamma_{\nu} = \Gamma_{T(\nu-1)}$ of $T(\nu-1)$ is:

- Vertices of Γ_v are $w \in \mathbb{N}$, and identified with T(w-1).
- k edges $w \xrightarrow{k} x$ if T(x-1) appears k times in $T(v-1) \otimes T(w-1)$.
- T(v-1) is a \otimes -generator if Γ_v is strongly connected.
- This works for any reasonable monoidal category, with vertices being indecomposable objects and edges count multiplicities in ⊗-products.

Baby example. Assume that we have two indecomposable objects 1 and X, with $X^{\otimes 2}=1\oplus X.$ Then:

$$\Gamma_1 = \stackrel{\frown}{\subset} 1 \qquad X \rightleftharpoons \qquad \Gamma_X = 1 \rightleftharpoons X \oslash$$
not a \otimes -generator
 $a \otimes$ -generator

Fusion graphs.	The fusion graph of $T(1) \cong \mathbb{K}^2$ for $p = \infty$:	
The fusion graph Γ • Vertices of Γ_v • k edges $w \xrightarrow{k} f$ • $T(v - 1)$ is a \emptyset		. $)\otimes extsf{T}(w-1).$
• This works for indecomposabl		vertices being in ⊗-products.
Baby example. As $X^{\otimes 2} = 1 \oplus X$. Then	The fusion graph of $\mathtt{T}(1)\cong \mathbb{K}^2$ for $p=2$:	objects 1 and X, with
Γ ₁		$ \subset X $
		or

Fusion graphs.	The fusion graph of $T(1) \cong \mathbb{K}^2$ for $p = \infty$:	
The fusion graph Γ • Vertices of Γ_v • k edges $w \xrightarrow{k} f$ • $T(v - 1)$ is a $\langle v \rangle$. $)\otimes extsf{T}(w-1).$
 This works for indecomposabl Baby example. As X^{⊗2} = 1 ⊕ X. Then 	The fusion graph of $\mathtt{T}(1)\cong \mathbb{K}^2$ for $p=2$:	V In general, there is are cycles of length p with edges jumping $1 = p^0, p^1, p^2,,$ units, reaping every $1 = p^0, p^1, p^2,,$ steps.
Γ		X 🔁 .or

 $\otimes\text{-ideals}$ of $\mathcal{T}\mathrm{ilt}$ are indexed by prime powers.

Thick \otimes -ideal = generated by identities on objects. \otimes -ideal = generated by any sets of morphism.

- Every \otimes -ideal is thick, and any non-zero thick \otimes -ideal is of the form $\mathcal{J}_{p^k} = \{T(v-1) \mid v \ge p^k\}.$
- There is a chain of \otimes -ideals $\mathcal{T}ilt = \mathcal{J}_1 \supset \mathcal{J}_p \supset \mathcal{J}_{p^2} \supset ...$ The cells, *i.e.* $\mathcal{J}_{p^k}/\mathcal{J}_{p^{k+1}}$, are the strongly connected components of Γ_1 .

Rumer–Teller–Weyl \sim 1932, Temperley–Lieb \sim 1971, Kauffman \sim 1987.

The category \mathcal{TL} is the monoidal \mathbb{Z} -linear category monoidally generated by object generators : \bullet , morphism generators : \frown : $\mathbb{1} \to \bullet^{\otimes 2}, \bigcup$: $\bullet^{\otimes 2} \to \mathbb{1}$, relations : $\bigcirc = -2$, $\bigcirc = = \bigcirc$.

Figure: Conventions and examples. The crossing is from "G. Rumer, E. Teller, H. Weyl. Eine für die Valenztheorie geeignete

Basis der binären Vektorinvarianten. Nachrichten von der Gesellschaft der Wissenschaften zu

Volume: 1932, pages 499-504.".

General-diagrammatics for *T* ilt. For type A we have webs à la Kuperberg ~1997, Cautis-Kamnitzer-Morrison ~2012. For types BCD there are some partial results, *e.g.* Brauer ~1937, Kuperberg ~1997, Sartori ~2017, Rose-Tatham ~2020. Rumer–Teller–Weyl \sim 1932, Temperley–Lieb \sim 1971, Kauffman \sim 1987.

The category \mathcal{TL} is the monoidal \mathbb{Z} -linear category monoidally generated by object generators : •, morphism generators : \bigcirc : $\mathbb{1} \to \bullet^{\otimes 2}, \bigcirc$: $\bullet^{\otimes 2} \to \mathbb{1}$, relations : $\bigcirc = -2, \qquad \bigcirc = = \bigcirc$. **Theorem (folklore).** \mathcal{TL} is an integral model of \mathcal{T} ilt, *i.e.* fixing \mathbb{K} , $\mathcal{TL} \to \mathcal{T}$ ilt, $\bullet \mapsto T(1)$ induces an equivalence upon additive, idempotent completion.

Figure: Conventions and examples. The crossing is from "G. Rumer, E. Teller, H. Weyl. Eine für die Valenztheorie geeignete Basis der binären Vektorinvarianten. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1932), Volume: 1932, pages 499–504.". By $\mathcal{TL} \to \mathcal{T}\mathrm{ilt},$ there are diagrammatic projectors

$$e_{\nu-1} = \operatorname{End}_{\mathcal{TL}}(\bullet^{\otimes(\nu-1)})$$

and the algebra we are looking for is

$$Z_{p} = \bigoplus_{v,w} \operatorname{Hom}_{\mathcal{TL}} e_{w-1}(\bullet^{\otimes (v-1)}, \bullet^{\otimes (w-1)}) e_{v-1} \rightsquigarrow$$

The generating morphisms are basically

$$D_i = \bigcup_{v=1}^{p^i}$$
, $U_i = \bigcup_{v=1}^{p^i}$

Then calculate relations.

