Fractals and modular representations of SL_{2}

Or: All I know about SL_{2}

Daniel Tubbenhauer

Joint with Lousie Sutton, Paul Wedrich, Jieru Zhu
February 2021

Question. What can we say about finite-dimensional modules of $\mathrm{SL}_{2} \ldots$

- ...in the context of the representation theory of classical groups? \rightsquigarrow The modules and their structure.
- ...in the context of the representation theory of Hopf algebras? \rightsquigarrow Fusion rules i.e. tensor products rules.
- ...in the context of categories? \rightsquigarrow Morphisms of representations and their structure.
The most amazing things happen if the characteristic of the underlying field $\mathbb{K}=\overline{\mathbb{K}}$ of $\mathrm{SL}_{2}=\mathrm{SL}_{2}(\mathbb{K})$ is finite, and we will see fractals, e.g.

Question. What can we say about finite-dimensional modules of $\mathrm{SL}_{2} \ldots$

- ...in the context of the reoresentation theorv of classical grouns? \rightsquigarrow The modu Spoiler: What will be the take away?
- ...in t Well, in some sense modular (char $p<\infty$) representation theory $=$ usion rules i.e. $\mathrm{t} \in \quad$ so much harder than classical one (char ∞ a.k.a. char 0)
- ...in $t \quad$ because secretly we are doing fractal geometry.
struct In my toy example SL_{2} we can do everything explicitly.
 of $\mathrm{SL}_{2}=\mathrm{SL}_{2}(\mathbb{K})$ is finite, and we will see fractals, e.g.

Weyl \sim 1923. The SL_{2} (dual) Weyl modules $\Delta(v-1)$.

$$
\begin{array}{lll}
\Delta(1-1) \\
\Delta(2-1) \\
\Delta(3-1) \\
\Delta(4-1) \\
\Delta(5-1) \\
\Delta(6-1) \\
x^{4}
\end{array}
$$

$$
\text { Example } \Delta(7-1)=\mathbb{K} X^{6} Y^{0} \oplus \cdots \oplus \mathbb{K} X^{0} Y^{6}
$$

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ acts as

a^{6}	$6 a^{5} c$	$15 a^{4} c^{2}$	$20 a^{3} c^{3}$	$15 a^{2} c^{4}$	$6 a^{5}$	c^{6}
$a^{5} b$	$5 a^{4} b c+a^{5} d$	$10 a^{3} b c^{2}+5 a^{4} c d$	$10 a^{2} b c^{3}+10 a^{3} c^{2} d$	$5 a b c^{4}+10 a^{2} c^{3} d$	$b c^{5}+5 a c^{4} d$	$c^{5} \mathrm{~d}$
$\mathrm{a}^{4} \mathrm{~b}$	$4 a^{3} b^{2} c+2 a^{4} b d$	$6 a^{2} b^{2} c^{2}+8 a^{3} b c d+a^{4} d^{2}$	$4 a b^{2} c^{3}+12 a^{2} b c^{2} d+4 a^{3} c d^{2}$	$b^{2} c^{4}+8 a b c^{3} d+6 a^{2} c^{2} d^{2}$	$2 \mathrm{bc}^{4} d+4 \mathrm{ac}^{3} \mathrm{~d}^{2}$	$c^{4} d^{2}$
$a^{3} b^{3}$	$3 a^{2} b^{3} c+3 a^{3} b^{2} c$	$b^{3} c^{2}+9 a^{2} b^{2} c d+3 a^{3} b d^{2}$	${ }^{3} c^{3}+9 a b^{2} c^{2} d+9 a^{2} b c d^{2}+a^{3} d^{3}$	$3 b^{2} c^{3} d+9 a b c^{2} d^{2}+3 a^{2} c d^{3}$	$3 b c^{3} d^{2}+3 a c^{2} d^{3}$	$c^{3} d^{3}$
$a^{2} b^{4}$	$2 a b^{4} c+4 a^{2} b^{3} d$	$c^{2}+8 a b^{3} c d+6 a^{2} b^{2} d^{2}$	$4 b^{3} c^{2} d+12 a b^{2} c d^{2}+4 a^{2} \boldsymbol{b} d^{3}$	$6 b^{2} c^{2} d^{2}+8 \boldsymbol{a} \boldsymbol{b} \boldsymbol{c} d^{3}+\mathbf{a}^{2} d^{4}$	$4 b c^{2} d^{3}+2 a c d^{4}$	$c^{2} d^{4}$
$a b^{5}$	$b^{5} c+5 a b^{4} d$	$5 b^{4} c d+10 a b^{3} d^{2}$	$10 b^{3} c d^{2}+10 a b^{2} d^{3}$	$10 b^{2} c d^{3}+5 a b d^{4}$	$5 b c d^{4}+\mathrm{ad}^{5}$	$c d^{5}$
b^{6}	$6 b^{5} d$	$15 \mathrm{~b}^{4} \mathrm{~d}^{2}$	$20 b^{3} d^{3}$	$15 \mathrm{~b}^{2} \mathrm{~d}^{4}$	$6 \mathrm{~b} \mathrm{~d}^{5}$	d^{6}

The rows are expansions of $(a X+c Y)^{7-i}(b X+d Y)^{i-1}$. Binomials!
$\Delta(3-1)$
$x^{2} y^{0} \quad x^{1} y^{1} \quad x^{0} y^{2}$

$$
\begin{equation*}
x^{3} y^{0} \quad x^{2} y^{1} \quad x^{1} y^{2} \quad x^{0} y^{3} \tag{4-1}
\end{equation*}
$$

$\Delta(5-1)$

$$
x^{4} y^{0} \quad x^{3} y^{1} \quad x^{2} y^{2} \quad x^{1} y^{3} \quad x^{0} y^{4}
$$

$$
\begin{equation*}
x^{5} y^{0} \tag{6-1}
\end{equation*}
$$

$$
x^{4} y^{1} \quad x^{3} y^{2}
$$

$$
x^{2} y^{3}
$$

$$
x^{1} y^{4}
$$

$$
x^{0} y^{5}
$$

$$
\Delta(7-1) \quad x^{6} y^{0} \quad x^{5} y^{1} \quad x^{4} y^{2} \quad x^{3} y^{3} \quad x^{2} y^{4} \quad x^{1} y^{5} \quad x^{0} y^{6}
$$

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto$ matrix who's rows are expansions of $(a X+c Y)^{v-i}(b X+d Y)^{i-1}$.

$$
\text { Example } \Delta(7-1)=\mathbb{K} X^{6} Y^{0} \oplus \cdots \oplus \mathbb{K} X^{0} Y^{6}
$$

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ acts as

a^{6}	$6 a^{5} c$	$15 a^{4} c^{2}$	$20 a^{3} c^{3}$	$15 \mathrm{a}^{2} \mathrm{c}^{4}$	$6 a^{5}$	c^{6}
$a^{5} b$	$5 a^{4} b c+a^{5} d$	$10 a^{3} b c^{2}+5 a^{4} c d$	$10 a^{2} b c^{3}+10 a^{3} c^{2} d$	$5 a b c^{4}+10 a^{2} c^{3} d$	$b c^{5}+5 a c^{4} d$	$c^{5} \mathrm{~d}$
$a^{4} b^{2}$	$4 a^{3} b^{2} c+2 a^{4} b d$	$6 a^{2} b^{2} c^{2}+8 a^{3} b c d+a^{4} d^{2}$	$4 a b^{2} c^{3}+12 a^{2} b c^{2} d+4 a^{3} c d^{2}$	$b^{2} c^{4}+8 a b c^{3} d+6 a^{2} c^{2} d^{2}$	$2 b^{4} d+4 a^{3} d^{2}$	$c^{4} d^{2}$
$a^{3} b^{3}$	$3 a^{2} b^{3} c+3 a^{3} b^{2} d$	$b^{3} c^{2}+9 a^{2} b^{2} c d+3 a^{3} b d^{2}$	${ }^{3} c^{3}+9 a b^{2} c^{2} d+9 a^{2} b c d^{2}+a^{3} d^{3}$	$3 b^{2} c^{3} d+9 a b c^{2} d^{2}+3 a^{2} c d^{3}$	$3 b c^{3} d^{2}+3 a c^{2} d^{3}$	$c^{3} d^{3}$
$a^{2} b^{4}$	$2 a b^{4} c+4 a^{2} b^{3} d$	$b^{4} c^{2}+8 a b^{3} c d+6 a^{2} b^{2} d^{2}$	$4 b^{3} c^{2} d+12 a b^{2} c d^{2}+4 a^{2} \boldsymbol{b} d^{3}$	$6 b^{2} c^{2} d^{2}+8 \boldsymbol{a} \boldsymbol{b} \boldsymbol{c} d^{3}+\mathbf{a}^{2} d^{4}$	$4 b c^{2} d^{3}+2 a c d^{4}$	$c^{2} d^{4}$
$a b^{5}$	$b^{5} c+5 a b^{4} d$	$5 b^{4} c d+10 a b^{3} d^{2}$	$10 b^{3} c d^{2}+10 a b^{2} d^{3}$	$10 b^{2} c d^{3}+5 a b d^{4}$	$5 b c d^{4}+\mathrm{ad}^{5}$	c d ${ }^{5}$
b^{6}	$6 b^{5} d$	$15 \mathrm{~b}^{4} \mathrm{~d}^{2}$	$20 b^{3} d^{3}$	$15 \mathrm{~b}^{2} \mathrm{~d}^{4}$	$6 \mathrm{~b} \mathrm{~d}^{5}$	d^{6}

The rows are expansions of $(a X+c Y)^{7-i}(b X+d Y)^{i-1}$. Binomials!

Example $\Delta(7-1)$, characteristic 0 .
No common eigensystem $\Rightarrow \Delta(7-1)$ simple.
Example $\Delta(7-1)$, characteristic 2.

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ acts as	a^{6}	0	$a^{4} c^{2}$	0	$a^{2} c^{4}$	0	c^{6}
	$a^{5} b$	$a^{4} b c+a^{5} d$	$a^{4} \mathrm{~cd}$	0	$\mathrm{ab} \mathrm{c}^{4}$	$b c^{5}+a c^{4} d$	$c^{5} \mathrm{~d}$
	$a^{4} b^{2}$	0	$\mathrm{a}^{4} \mathrm{~d}^{2}$	0	$\mathrm{b}^{2} \mathrm{c}^{4}$	0	$c^{4} d^{2}$
	$a^{3} b^{3} a^{2} b^{3} c+a^{3} b^{2} d a b^{3} c^{2}+a^{2} b^{2} c d+a^{3} b d^{2} b^{3} c^{3}+a b^{2} c^{2} d+$				$b c^{2} d^{2}$	$b c^{3} d^{2}+a c^{2} d^{3}$	$c^{3} d^{3}$
	$a^{2} b^{4}$	0	$\mathrm{b}^{4} \mathrm{c}^{2}$	0	$a^{2} d^{4}$	0	$c^{2} d^{4}$
		$b^{5} c+a b^{4} d$	$\mathrm{b}^{4} \mathrm{~cd}$	0	$\mathrm{ab} \mathrm{d}^{4}$	$b c d^{4}+a d^{5}$	cd^{5}
	b^{6}	\bigcirc	$b^{4} d^{2}$	0	$b^{2} d^{4}$	0	d^{6}

$(0,0,0,1,0,0,0)$ is a common eigenvector, so we found a submodule.

Weyl ~1923. The $\mathrm{SL}_{2}($ dual Wevl modules $\Delta(v-1)$.
 When is $\Delta(v-1)$ simple?

Ringel, Donkin ~ 1991. The indecomposable SL_{2} tilting modules $\mathrm{T}(v-1)$ are the indecomposable summands of $\Delta(1)^{\otimes i}\left(\cong\left(\mathbb{K}^{2}\right)^{\otimes i}\right)$.

Tilting modules $\mathrm{T}(v-1)$

- are those modules with a $\Delta(w-1)$ - and a $\nabla(w-1)$-filtration;
- are parameterized by dominant integral weights;
- are highest weight modules;
- $(\mathrm{T}(v-1): \Delta(w-1))$ determines $[\Delta(v-1): \mathrm{L}(w-1)]$;
- form a basis of the Grothendieck group unitriangular w.r.t. simples;
- satisfy (a version of) Schur's lemma $\operatorname{dim}_{\mathbb{K}} \operatorname{Hom}(\mathrm{T}(v-1), \mathrm{T}(w-1))=$ $\sum_{x<\min (v, w)}(\mathrm{T}(v-1): \Delta(x-1))(\mathrm{T}(w-1): \Delta(x-1))$;
- are simple generically;
- have a root-binomial-criterion to determine whether they are simple.

Slogan. Indecomposable tilting modules are akin to indecomposable projectives. Warning: SL_{2} has finite-dimensional projectives if and only if $\operatorname{char}(\mathbb{K})=0$.

Ringel, Donkin ~ 1991. The indecomposable SL_{2} tilting modules $\mathrm{T}(v-1)$ are the indecompos \quad How many Weyl factors does $\mathrm{T}(v-1)$ have?
\# Weyl factors of $\mathrm{T}(v-1)$ is 2^{k} where
Tilting mod

- are tho $k=\max \left\{\nu_{p}\left(\binom{v-1}{w-1}\right), w \leq v\right\}$. (Order of vanishing of $\binom{v-1}{w-1}$.)
- are par
- are higt
- (T $v-1 \quad$ non-zero non-leading digits of $v=\left[a_{r}, a_{r-1}, \ldots, a_{0}\right]_{p}$.
- form a bas
- satisfy (a $\sum_{x<\min (v, v}$
- are simple Maximal vanishing for $w=75594=[0,5,1,8,8,2]_{11}$;
- have a roo

Slogan. Indeco $\quad \Rightarrow T(220540-1)$ has 2^{4} Weyl factors. ple projectives. Warning: SL_{2} has finite-dimensional projectives if and only if $\operatorname{char}(\mathbb{K})=0$.

Ringel, Donkin ~ 1991. The indecomposable SL_{2} tilting modules $\mathrm{T}(v-1)$ are the indecomposable summands of $\Delta(1)^{\otimes i}\left(\cong\left(\mathbb{K}^{2}\right)^{\otimes i}\right)$.

Tiltin Which Weyl factors does $\mathrm{T}(v-1)$ have a.k.a. the negative digits game?
Weyl factors of $\mathrm{T}(v-1)$ are

- $\Delta\left(\left[a_{r}, \pm a_{r-1}, \ldots, \pm a_{0}\right]_{p}-1\right)$ where $v=\left[a_{r}, \ldots, a_{0}\right]_{p}$
- $(\mathrm{T}(v-1): \Delta(w-1))$ determines $[\Delta(v-1): \mathrm{L}(w-1)]$;
- form a basi
- satisfy (a v $\sum_{x<\min (v, w}$
- are simple
Example $\mathrm{T}(220540-1)$ for $p=11$? imples;

$$
v=220540=[1,4,0,7,7,1]_{11}
$$

has Weyl factors $[1, \pm 4,0, \pm 7, \pm 7, \pm 1]_{11}$;

- have a root e.g. $\Delta\left(218690=[1,4,0,-7,-7,-1]_{11}-1\right)$ appears. simple.

Slogan. Indecomposable tilting modules are akin to indecomposable projectives. Warning: SL_{2} has finite-dimensional projectives if and only if $\operatorname{char}(\mathbb{K})=0$.
 indecomposab

Tilting module

- are those
- are paran
- are highe
- $(\mathrm{T}(v-1)$
- form a ba
- satisfy (a $\sum_{x<\min (v}$
- are simple
- have a ro

Slogan. Inded
The tilting-Cartan matrix a.k.a. $(\mathrm{T}(v-1): \Delta(w-1))$? Warning: SL_{2} has finite-dimensional projectives if and only if $\operatorname{char}(\mathbb{K})=0$.

Tilting modules form a braided monoidal category \mathcal{T} ilt. Simple \otimes simple \neq simple, Weyl \otimes Weyl \neq Weyl, but tilting \otimes tilting $=$ tilting.

The Grothendieck algebra [\mathcal{T} ilt] of \mathcal{T} ilt is a commutative algebra with basis $[\mathrm{T}(v-1)]$. So what I would like to answer on the object level, i.e. for [\mathcal{T} ilt]:

- What are the fusion rules?
- Find the $N_{v, w}^{x} \in \mathbb{N}[0]$ in $\mathrm{T}(v-1) \otimes \mathrm{T}(v-1) \cong \bigoplus_{x} N_{v, w}^{x} \mathrm{~T}(x-1)$.
\triangleright For [\mathcal{T} ilt] this means finding the structure constants.
- What are the thick \otimes-ideals?
\triangleright For [\mathcal{T} ilt] this means finding the ideals.

Tilting modules form a braided monoidal category \mathcal{T} ilt. Simple \otimes simple \neq simple, Weyl \otimes Weyl \neq Weyl, but tilting \otimes tilting $=$ tilting.

The Grothendieck algebra [\mathcal{T} ilt] of \mathcal{T} ilt is a commutative algebra with basis [$\mathrm{T}(v-1)$]. So what I would like to answer on the object level, i.e. for [\mathcal{T} ilt]:

- What are the fusion rules?
- Find the $N_{v, w}^{x} \in \mathbb{N}[0]$ in $\mathrm{T}(v-1) \otimes \mathrm{T}(v-1) \cong \bigoplus_{x} N_{v, w}^{x} \mathrm{~T}(x-1)$.
\triangleright For [\mathcal{T} ilt] this means finding the structure constants.
- What are the thick \otimes-ideals?
\triangleright For [\mathcal{T} ilt] this means finding the ideals.

The morphism. There exists a \mathbb{K}-algebra Z_{p} defined as a (very explicit) quotient of the path algebra of an infinite, fractal-like quiver. Let $\mathrm{p} \mathcal{M}$ od- Z_{p} denote the category of finitely-generated, projective (right-)modules for Z_{p}. There is an equivalence of additive, \mathbb{K}-linear categories

$$
\mathcal{F}: \mathcal{T} \text { ilt } \xlongequal{\cong} \mathrm{p} \mathcal{M o d}-\mathrm{Z}_{p},
$$

sending indecomposable tilting modules to indecomposable projectives.

Figure: My favorite rainbow: The full subquiver containing the first 53 vertices of the quiver underlying Z_{3}.

The morphism. There exists a \mathbb{K}-algebra Z_{p} defined as a (very explicit) quotient of the path algebra of an infinite, fractal-like quiver. Let $\mathrm{p} \mathcal{M o d}-\mathrm{Z}_{p}$ denote the category of finitely-generated, projective (right-)modules for Z_{p}. There is an equivalence of additive, \mathbb{K}-linear categories

Figure: My favorite rainbow: The full subquiver containing the first 53 vertices of the quiver underlying Z_{3}.

Figure: My favorite rainbow: The full subquiver containing the first 53 vertices of the quiver underlying Z_{3}.

Example, generation 2 , i.e. up to p^{3}.

In this case every connected component
of the quiver is a bunch of type A graphs glued together in a matrix-grid.
Each row and column is a zigzag algebra, with arrows acting on the 0th digit or 1 digit, and there are "squares commute" relations.

Continuing this periodically gives a quiver for projective $G_{2} T$-modules (due to Andersen ~2019).

The morphism. There exists a \mathbb{K}-algebra Z_{p} defined as a (very explicit) quotient of the path algebra of an infinite, fractal-like quiver. Let $\mathrm{p} \mathcal{M o d}-\mathrm{Z}_{p}$ denote the category of finitely-generated, projective (right-)modules for Z_{p}. There is an equivalence of additive, \mathbb{K}-linear categories

$$
\mathcal{F}: \mathcal{T} \text { ilt } \xlongequal{\cong} \mathrm{p} \mathcal{M o d}-\mathrm{Z}_{p},
$$

In general, Z_{p} is basically a bunch of zigzag algebras

(there are scalars and a lower-order-error term, but never mind)
glued together in a fractal-way, according to the digits of $v=\left[a_{r}, \ldots, a_{0}\right]_{p}$.

Figure: My favorite rainbow: The full subquiver containing the first 53 vertices of the quiver underlying Z_{3}.

The whole story generalizes to Lusztig's quantum group over \mathbb{K} with $q \in \mathbb{K}$ via:

- We need p, the characteristic of \mathbb{K}, and I, the order of q^{2}.
- The p-l-adic expansion of $v=\left[a_{r}, \ldots, a_{0}\right]_{p, l}$ is $v=\sum_{i=0}^{r} a_{i} p^{(r)}$ with $p^{(0)}=1$ and $p^{(k)}=p^{k-1} I$. Here $0 \leq a_{0}<I-1$ and $0 \leq a_{i}<p-1$.
\triangleright Example. For $\mathbb{K}=\overline{\mathbb{F}_{7}}$ and $q=2 \in \mathbb{F}_{7}$, we have $p=7$ and $I=3$.
\triangleright Example. $68=[68]_{p, \infty}=[66,2]_{\infty, 3}=[1,2,5]_{7,7}=[3,1,2]_{7,3}$
- Repeat everything I told you for these expansions.

Here is the tilting-Cartan matrix in mixed characteristic $p=5$ and $I=2$:

Question. What can we say about finite-dimensional modules of SL $_{2} \ldots$
-..in the contect of the representation theory of classical groups? ‥The

- in teccateno of the
- in the contort of the representation theary of Hopf algetras? in Fusion rules
1.e. tensor products rults.
structure.
structure.
ofe most amaing things happen if the characteristic of the undelying firid $\mathrm{K}-\mathrm{K}$

(-ideals of $T \mathrm{ll}$ are indexed by prime powers.
- Every ©-ideal is thick, and any non-zero thick a-ideal is of the form
$J_{J^{\mu}}-\left\{\mathrm{T}(v-1) \mid v \geq \rho^{k}\right\}$.
There is a chain of 9 -deak $T_{1 l}-\mathcal{J}_{1} \supset \mathcal{J}_{p} \supset \mathcal{J}_{p} \supset$... The cells, we
J_{p} / J_{p} mi, are the strongly connected components of Γ
Example ($p-3$).

\Leftrightarrow

Weyl ~1923. The SLL $L_{\text {I }}$ (dual) Weyl modules $\Delta(v-1)$.

$\left(\begin{array}{l}0 \\ \mathrm{~d} \\ \mathrm{~d}\end{array}\right) \rightarrow$ matrix who's rows are expansions of $(a X+c Y)^{-1}\left(b X+d Y^{\prime}-1\right.$

Fusion graphs.
The fuscon graph $\Gamma_{v}-\Gamma_{\eta(v-1)}$ of $\mathrm{T}_{(v-1) \text { is: }}$

- Vertices of $\mathrm{r}_{\text {, }}$ are $w \in \mathrm{~N}$, and identified with $\mathrm{T}(w-1)$.
- k edges $w \stackrel{y}{n}$ if $\mathrm{T}(x-1)$ appears k times in $\mathrm{T}(v-1) @ \mathrm{~T}(w-1)$
- $T(v-1)$ is a \&-generator if T, is strongly connected

This works for any ressonatle moncidal category, with vertices being
indecomposable objects and edges count multiplicities in ©-products

Eaby example. Assumse that we have two indecompocable objects 1 and X , with
$\mathrm{X}^{82}-1$

$x^{b 2}-1$. 1 . Then:

$$
\operatorname{cm}
$$

The morphism. There evists a K-algebra Z_{p} defined $2 s$ a (very explcit) quotien of athe algetra of an infinite, fractal-zee quiver. Let $\mathrm{pMod}-Z_{p}$ denote the

equivalence of additive, K-linear categroies
sending indecomposable tilting modules ta indecomposable projectives.

Figure: My faverite miritow. The at whenier comaining the firs 53 vertien of 1 ed Figure: $M y$ theverito n
quiver undethting Z_{z}.

There is still much to do...

Question. What can we say about finite-dimensional modules of SL $_{2} \ldots$
-..in the contect of the representation theory of classical groups? ‥The

- in teccateno of the
- in the contart of the representation theary of Hopf algetras? in Fusion rules
i.e. tensor products rults.
structure.
The most amazing things happen if the characteristic of the undelying fidid $\mathbb{K}-\mathbb{X}$
of $\mathrm{SL}_{2}-\mathrm{SL}_{2}(\mathrm{~K})$ is finite, and we will see froxtals, e.g

Q-ideals of $T \mathrm{lit}$ are indexed by prime powers.

- Every ©-ideal is thick, and any non-zero thick o-ideal is of the form
$J_{J^{\mu}}-\left\{\mathrm{T}(v-1) \mid v \geq \rho^{k}\right\}$.
- There is a chain of - -deakk T ilt $-\mathcal{J}_{1} \supset \mathcal{J}_{p} \supset \mathcal{J}_{\mathrm{f}} \supset$. The cells, i.e
J_{p} / J_{p} min, are the strongly connected components of Γ
Example ($p-3$).

∞

Weyl ~1923. The SLL $L_{\text {I }}$ (dual) Weyl modules $\Delta(v-1)$.

Fusion graphs.
The fusion graph $\Gamma_{v}-\Gamma_{\pi v-1)}$ of $\mathrm{T}(v-1)$ is:

- Vertices of $\mathrm{r}_{\text {, }}$ are $w \in \mathrm{~N}$, and identified with $\mathrm{T}(w-1)$.
k edges $\mathrm{w} \rightarrow x$ if $\mathrm{T}(x-1)$ applars k times in $\mathrm{T}(v-1) \oplus \mathrm{T}(\mathrm{w}-1)$
- $\tau(v-1)$ is a $\%$-generator if r_{v} is strongly connected
-This works for any ressonable moncidal category, with vertices being

Baby example. Assume that we have two indecompocable objects 1 and X , with Baty example. Ass
$x^{b 2}-1$. 1 . Then:

$$
\mathrm{m}
$$

The morphism. There coists a K -algebra Z_{p} defined 25 a (very explicit) quotien of the aigsta of an infinite, fractai-be quiver. Let $\mathrm{PMOCd}-\mathcal{Z}_{\text {p }}$ denote the of sdditionerated, projective (rizht mad
equivalence of additive, K-linear categroies
sending indecomposable titing modules ta indecomposable projectives.

 Figure: $M y$ theverito n
quiver undethting Z_{z}.

Thanks for your attention!

Weyl \sim 1923. The SL_{2} simples $\mathrm{L}(v-1)$ in $\Delta(v-1)$ for $p=5$.

Weyl ~ 1923. The SL_{2} simples $\mathrm{L}(v-1)$ in $\Delta(v-1)$ for $p=5$.

Fusion graphs.

The fusion graph $\Gamma_{v}=\Gamma_{T(v-1)}$ of $T(v-1)$ is:

- Vertices of Γ_{v} are $w \in \mathbb{N}$, and identified with $\mathrm{T}(w-1)$.
- k edges $w \xrightarrow{k} x$ if $\mathrm{T}(x-1)$ appears k times in $\mathrm{T}(v-1) \otimes \mathrm{T}(w-1)$.
- $\mathrm{T}(v-1)$ is a \otimes-generator if Γ_{v} is strongly connected.
- This works for any reasonable monoidal category, with vertices being indecomposable objects and edges count multiplicities in \otimes-products.

Baby example. Assume that we have two indecomposable objects $\mathbb{1}$ and X , with $\mathrm{X}^{\otimes 2}=\mathbb{1} \oplus \mathrm{X}$. Then:

$$
\begin{array}{cc}
\Gamma_{\mathbb{1}}=\circlearrowright \mathbb{1} & \mathrm{X} \longmapsto \\
\text { not a } \otimes \text {-generator } & \Gamma_{\mathrm{X}}=\mathbb{1} \rightleftarrows \mathrm{X} \\
\text { a } \otimes \text {-generator }
\end{array}
$$

Fusion graphs.

The fusion graph of $T(1) \cong \mathbb{K}^{2}$ for $p=\infty$:

The fusion graph Г

- Vertices of Γ_{v}
- k edges $w \xrightarrow{k}$
- $\mathrm{T}(v-1)$ is a
- This works for indecomposab
$\otimes \mathrm{T}(w-1)$.
vertices being
n \otimes-products.
The fusion graph of $T(1) \cong \mathbb{K}^{2}$ for $p=2$:
Baby example. As $\mathrm{X}^{\otimes 2}=\mathbb{1} \oplus \mathrm{X}$. Then

Fusion graphs.

The fusion graph of $\mathrm{T}(1) \cong \mathbb{K}^{2}$ for $p=\infty$:

The fusion graph Γ

- Vertices of Γ_{v}
- k edges $w \xrightarrow{k}$
- $\mathrm{T}(v-1)$ is a
- This works for indecomposab

Baby example. As
The fusion graph of $T(1) \cong \mathbb{K}^{2}$ for $p=2$: $\mathrm{X}^{\otimes 2}=\mathbb{1} \oplus \mathrm{X}$. Then

- Every \otimes-ideal is thick, and any non-zero thick \otimes-ideal is of the form $\mathcal{J}_{p^{k}}=\left\{\mathrm{T}(v-1) \mid v \geq p^{k}\right\}$.
- There is a chain of \otimes-ideals \mathcal{T} ilt $=\mathcal{J}_{1} \supset \mathcal{J}_{p} \supset \mathcal{J}_{p^{2}} \supset \ldots$ The cells, i.e. $\mathcal{J}_{p^{k}} / \mathcal{J}_{p^{k+1}}$, are the strongly connected components of Γ_{1}.

Example $(p=3)$.

The ideal $\mathcal{J}_{p^{k}} \subset \mathcal{T}$ ilt $/ \mathcal{J}_{p^{k+1}}$ is the cell of projectives.
The abelianizations $\mathcal{V e r}_{p^{k}}$ of \mathcal{T} ilt $/ \mathcal{J}_{p^{k+1}}$ are called Verlinde categories.
The Cartan matrix of $\mathcal{V} \mathrm{er}_{p^{k}}$ is a $p^{k}-p^{k-1}$-square matrix

- T with entries given by the common Weyl factors of $\mathrm{T}(v-1)$ and $\mathrm{T}(w-1)$.
$J_{p^{k} / J_{p^{k+1}}}$, are th
Example (Cartan matrix of $\mathcal{V e r}_{3^{4}}$).
Example ($p=3$).

Rumer-Teller-Weyl ~ 1932, Temperley-Lieb ~ 1971, Kauffman ~ 1987.
The category $\mathcal{T} \mathcal{L}$ is the monoidal \mathbb{Z}-linear category monoidally generated by object generators : \bullet, \quad morphism generators : $\cap: \mathbb{1} \rightarrow \bullet^{\otimes 2}, \cup: \bullet^{\otimes 2} \rightarrow \mathbb{1}$, relations : $\bigcirc=-2, \bigcup \cap=\rceil=\bigcap$.

Figure: Conventions and examples. The crossing is from "G. Rumer, E. Teler, H. Weyl. Eine firi die Valenztheorie geeignete

[^0]Rumer-Teller-Weyl ~1932, Temperley-Lieb ~ 1971, Kauffman ~ 1987.
The category $\mathcal{T} \mathcal{L}$ is the monoidal \mathbb{Z}-linear category monoidally generated by object generators : \bullet, \quad morphism generators : $\cap: \mathbb{1} \rightarrow \bullet^{\otimes 2}, \cup: \bullet^{\otimes 2} \rightarrow \mathbb{1}$,

$$
\text { relations : } \bigcirc=-2, \quad \bigcirc=\mid=\bigcap .
$$

Theorem (folklore).
$\mathcal{T} \mathcal{L}$ is an integral model of \mathcal{T} ilt, i.e. fixing \mathbb{K},

$$
\mathcal{T} \mathcal{L} \rightarrow \mathcal{T} \text { ilt }, \quad \bullet \mapsto \mathrm{T}(1)
$$

induces an equivalence upon additive, idempotent completion.

Figure: Conventions and examples. The crossing is from "G. Rumer, E. Teller, H. Weyl. Eine für die Valenztheorie geeignete
Basis der binären Vektorinvarianten. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1932),
Volume: 1932, pages 499-504.

By $\mathcal{T} \mathcal{L} \rightarrow \mathcal{T}$ ilt, there are diagrammatic projectors

$$
e_{v-1}=v_{v-1} \in \operatorname{End}_{\mathcal{T} \mathcal{L}}(\bullet \otimes(v-1))
$$

and the algebra we are looking for is

$$
\mathrm{Z}_{p}=\bigoplus_{v, w} \operatorname{Hom}_{\mathcal{T} \mathcal{L}} e_{w-1}\left(\bullet^{\otimes(v-1)}, \bullet^{\otimes(w-1)}\right) e_{v-1} \rightsquigarrow \begin{array}{|c|}
\hline w-1 \\
\hline \text { morphism } \\
\hline v-1 \\
\hline
\end{array}
$$

The generating morphisms are basically

$$
D_{i}=\xlongequal[\substack{p^{i}}]{\substack{p^{i} \\ v-1}}
$$

Then calculate relations.

[^0]: Basis der binären Vektorinvarianten. Nachrichten von der Gesellschaft der Wissenschaften zu Volume: 1932, pages 499-504."

 General-diagrammatics for \mathcal{T} ilt.
 For type A we have webs
 à la Kuperberg ~ 1997, Cautis-Kamnitzer-Morrison ~ 2012.
 For types BCD there are some partial results,
 e.g. Brauer ~ 1937, Kuperberg ~ 1997,

 Sartori ~ 2017, Rose-Tatham ~ 2020.

